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Node label controlled (NLC) grammars are graph grammars (operating on node
labeled undirected graphs) which rewrite single nodes only and establish connec-
tions between the embedded graph and the neighbors of the rewritten node on the
basis of the labels of the involved nodes only. They define (possibly infinite)
languages of undirected node labeled graphs (or, if we just omit the labels,
languages of unlabeled graphs). Boundary NLC (BNLC) grammars are NLC grammars
with the property that whenever - in a graph already generated - two nodes may
be rewritten, then these nodes are not adjacent. The graph languages generated
by this type of grammars are called BNLC languages.

The present paper continues the investigations of basic properties of BNLC
grammars and languages where the central question is the following: "If L is a
BNLC language and P is a graph theoretic property, is the set of all graphs from
L satisfying P again a BNLC language?" We demonstrate that the class of BNLC
languages is very '"stable" in the sense that for almost all properties we con-
sider the resulting languages are BNLC. In particular, the above question gets
an affirmative answer, if the property P is: being k-colorable, being connected,
having a subgraph homeomorphic to a given graph, and being nonplanar.




INTRODUCTION

Node label controlled (NLC) grammars are graph grammars operating on node
labeled undirected graphs. A production in an NLC grammar is a pair (d,Y), where
d is a Tabel and Y is a graph. Such a production is éppTicab]e to a node x in a
graph X if and only if x is labeled by d. The rewriting process consists of (i)
deleting x in X (together with incident edges), (ii) adding Y disjointly to the
remainder of X and (iii) estéb]ishing connections between nodes in Y and ("for-
mer") neighbors of x in the remainder of X. This embedding is controlled by a
so-called connection function conn whi&h maps labels to sets of labels. More
specifically, a neighbor z (of x) labeled by a is connected to a node y (of Y)
labeled by b if and only if a € conn(b). The graph language generated by an NLC
grammar consists of the set of all graphs such that (i) they can be obtained from
the axiom (graph) Z of the grammar by a sequence of rewr1t1ngs, and (1i) they
have labels only from the set A of terminal labels of the grammar.

NLC grammars have been introduced by Janssens & Rozenberg (1980a,b) as a
basic framework for the mathematical investigation of graph grammars (the more
general work on the theory of graph grammars is well presented in Nagl, 1979,
and Ehrig, 1979). Since then this model has been intensively investigated, see.
e.g. dJanssens & Rozenberg (1981), Brandenburg (1983), Turdn (1983), Ehrenfeucht
et al. (1984) and Janssens et al. (1984). In particular, it has turned out that
most basic problems of graph theoretic nature concerning NLC grammars (languages)
are undecidable. Although the membership problem for NLC grammars is decidable,
NLC grammars can generate PSPACE-complete graph languages. Results like this
have inspired a search for feasible but "nontrivial” subclasses of the class of

NLC grammars (see e.g. Janssens, 1983).

The class of boundary NLC grammars, BNLC grammars for short, has been defi-
ned as follows (Rozenberg & Welzl, 1984). An NLC grammar is a BNLC grammar if
(1) the Teft-hand side of each production is a nonterminal label, and (ii) all
the graphs involved (i.e., the axiom and the right-hand sides of productions)
are such that two nonterminally labeled nodes are never adjacent. It turns out
that the class of BNLC languages (i.e., the graph languages generated by BNLC
grammars) can be defined by using the subclass of NLC grammars in which (i)fhe
Teft-hand side of each production is a nonterminal label and (ii) the range of
the connection function consists of terminal labels only. Hence, on the one hand
one can view BNLC grammars as an analogue (in the framework of NLC grammars) of
fundamental subfamilies of context-free string grammars (such as linear grammars




or context-free grammars in operator normal form), while, on the other hand,
one gets a characterization of BNLC languages by considering a restriction on
NLC grammars that is certainly a very natural one from the mathematical point
of view. _

In Rozenberg & Welzl (1984) a systematic investigation of BNLC grammars
has been initiated. Among others, it has been demonstrated that quite a number
of interesting families of graphs can be generated by BNLC grammars (e.g.
maximal outerplanar graphs, 2-trees, graphs of cyclic bandwidths 2) and that
(as opposed to the general NLC case) BNLC Tanguages can be attractive from the
"complexity" point of view (the membership problem in BNLC languages can be
solved in polynomial time for connected graphs of fixed bounded degree).

In the present paper we continue the investigation of BNLC grammars and
languages. In particular, this paper fdcusses on the behaviour of BNLC langua-
ges under various "squeezing mechanisms". The typical question considered is
of the fol]owing type. "Let P be a graph theoretic property. Is, for an arbi-
trary BNLC language L, the set of all graphs from L satisfying P again a BNLC
language?" Typical properties considered are connectedness, k-colorability, ha-
ving a subgraph homeomorphic to a fixed graph, planarity, having clique number
not exceeding k, where k is a fixed positive integer.

It turns out that the family of BNLC languages is "very stable" in the
sense that for almost all properties we consider (and we consider many of them)
the resulting languages are again BNLC languages. This certainly sheds light
on the mathematical nature of the family of BNLC languages, and, moreover,
such a stability turns out to be technically very useful in proving various
properties (e.g. decidability, complexity and combinatorial properties).

This paper is organized as follows. After recalling in Section 1 some
preliminaries from graph theory and the theory of graph grammars, basic defi-
nitions, examples and basic properties concerning BNLC grammars are given in
Section 2. In Section 3 we investigate "subgraph-taking operétions“ when ap-
plied to BNLC languages. It appears that the set of all induced subgraphs from
a BNLC Tanguage is again a BNLC language while, in general, this is not the
case when one considers arbitrary subgraphs. In Section 4 we show that, for
a natural number k, the set of all graphs in a BNLC language which are k-color-
able is again a BNLC language. Moreover, "relabelings" of BNLC grammars are
considered which are technically important in various proofs. Section 5 deals
with connectedness anu we prove there that both the set of all discunnected graphs
and the set of all connected graphs from a 8NLC language are BNLC languages. In
Section 6 we demonstrate that, for an arbitrary given graph Z,“the set of all



graphs from a BNLC language which have a subgraph homeomorphic to Z is again a
BNLC language. From this result it easily follows that the nonplanar graphs from
a BNLC language form again a BNLC language. Finally, in Section 7, it is shown
that, for an arbitrary given natural number k, the set of all graphs from a
BNLC Tanguage which have no complete subgraph on k nodes is again a BNLC
Tanguage. A short discussion in Section 8 concludes the paper.



1. PRELIMINARIES

We start with basic notations concerning graphs and graph grammars which
we need for this paper. We assume familiarity with rudimentary graph theory.
In particular, we use the following notions as defined in Harary (1969):

adjacent, neighbor, degree of a node in a graph, subgraph, induced subgraph,

path in a graph, complete graph, cycle, totally disconnected graph. Note,

however, that (i) a k-coloring of a graph in "Harary's sense", corresponds

to a proper k-coloring as we will define it (following Bondy & Murty, 1976f,

and (ii) two graphs are homeomorphic in "Harary's sense", if they are

homeomorphic to a common graph as we will define it (following Garey & Johnson,

1979).

For a finite set V, we denote its cardinality by #V.

Graphs

We considef finite undirected node labeled graphs without loops and without

multiple edges. For a set of labels 7, a graph X (over ) is specified by a finite

set VX of nodes, a set EX of two element subsets of VX (the set of edges), and

a function ®y from VX into z:(the labeling function). The set of all graphs
over 7 is denoted by GZ. The unique graph on the empty set of nodes is called

the empty graph and it is denoted by X\.

Let X be a graph and let x ¢ VX' The label set of X, lgE(X), is the set

{¢X(y);yve VX}. The neighborhood of x in X, neighx(x), is the set {y € ng{x,y} EEX}.

The context of x in X, EQQEX(X),is the set {@X(y); y € ggigﬁx(x)}. The graph
X-x is the subgraph of X induced by VX-{x}. A graph X' 1s‘isomorphic to X, if
there is a bijection from VX‘ to VX which preservesblabe1s and adjacencies.

The set of all graphs isomorphic to X is denoted by [X]. The size of X, #X, is

the number of nodes in X, i.e., #X = #VX.



Let Z and z' be sets of labels. A relabeling o from 2' (to Z) is a function

from z' into Z. If X is a graph over Z, then the p-image of X, p(X), is defined

by Vp(X) = Vys ED(X) = EX and for all x ¢ Vp(X)’ @p(x)(x).= p(@x(x)).

Disregarding the labeling function of X, one gets the underlying unlabeled

graph of X, denoted by Hgg(x). For a set L of graphs we denote by und(L) the set
{und(X) | X € L}.

Graph Grammars

A node label controtled (NLC) grammar is a system G = (Z,A,P,conn,Zax),
~ where 2 s a finite nonempty set of']abe1s, A is a nonempty subset of Z (the

set of terminals), P is a finite set of pairs (d,Y), where d € Z and Y ¢ GZ

(the set of productions), conn is a function from Z into 22 (the connection
function), and Zax E.Gz (the axiom).

By [P] we denote the abstract production set {(d,Y')|Y' € [Y] for some .

(d,Y) € P}. By maxr(G) we denote ggi({#zax} U {#Y|(d,Y) € P for some d € Z}).

The sets - A isreferred to as the set of nonterminals and we will reserve

_the symbol I (possibly with an appropriate inscription)to denoteZ-4A. In the con-

text of G, given a graph X € GZ we refer to nodes labeled by elements of I' (4, res-

pectively) as nonterminal nodes (terminal nodes, respectively).

Let X,Y,Z be graphs over Z with V, NV, =@ and let x €V,. Then X con-

cretely derives Z (in G, replacing x by Y), dendted by X = (x,Y) Z, if
- G i

(.@x(X),Y) ¢ [P] ’,VZ = VX‘X u V\{:
E, = Ey_, UE, U {{x',y}|x"¢€ neigh (x), y € Vy, oy(x') € conn(oy(y)) 3

¢z equals Py_y ON Vy_yo and o, equals ¢y on VY} (Intuitively speaking, we replace

x 1n X by the graph Y and connect a node y of Y to a'neighbor x' of x if and only

if oy (x') € conn(oy(y)).)



A graph X directly derives a graph Z (in G), in symbols X => 1, if there

M ‘
is a graph Z' € [Z], such that X concretely derives Z' in G. =E$ is the transi-

. * N
tive and reflexive closure of =E$. If X =E? Z, then we say that X derives Z
(in G). If G is understood, then we often omit the inscription G in %? s =E$ s
and =%%.

The exhaustive language of G, S(G), is the set {X ¢ GZ | Zax =%? X} and

the language of G, L(G), is the set {X ¢ GA IZax =%$ X3

A graph language L is an NLC language if there is an NLC grammar G such

that L =L(G).



2. DEFINITIONS

Let ¢ be a set of labels. A graph X is a §~boundary graph, if no two adja-
cent nodes of X that are labeled by elements of ¢ are adjacent.

A boundary NLC (BNLC) grammar is an NLC grammar G = (Z,A,P,Eggg,zax), where
Zax is a I'-boundary graph and, for all (d,Y) € P, d € T and Y is a I'-boundary
graph. A graph language L is a BNLC language, ff thefe is a BNLC grammar G
such that L = L(G). A language L of unlabeled graphs is a u-BNLC language, if
there is a BNLC language L' such that L = und(L'). (Reca]]; that we set impli-
citely 2 - A =T!)

We give now examples of BNLC grarmars and BNLC lanquages. which we need also

for forthcoming proofs (Theorems 3.2 and 4.1).

Exampie 1 (complete graphs). Consider the BNLC grammar G; = ({A,b},{b}, Pis

connl,Zl), where connl(b) = connl(A) = {b}, Zl is a graph with a single node labeled
by A, and P1 consists of the productions (A,b.——iﬁ) and (A,ob). Then it is easily

seen that L(Gl) consits of ali compiete graphs with all nodes Tabeled by b. «

Example 2 (cycies), -Consider the BNLC grammar G2 = ({A,b,c},{b,c},Pz,connZ,Zz),

where connz(A) = {c}, connz(b) = {b}, connz(c) = {b,c}, Z2 is a‘tfiang1e with its
nodes labeled by A, band ¢, and P2 consists of the productions (A, Qb_4ﬁ) and
(A,QC). Then L(GZ) consists of all cycles where all nodes are labeled by b except

for two adjacent nodes labeled by c. Hence, EEQ(L(GQ)) is the set of all unlabeled

cycles. a

The bandwidth of a graph X is the minimum integer k for which there exists a

bijection f from VX to {1,2,...,#X} such that for all {x,y} € EX, [f(x) - f(y)l = k.



Example 3 (graphs of bandwidth = k). Let k be a natural number and let

K= {1,2,...,k}. Consider the BNLC grammar G3 = (23,A3,P3,59223,23) where

by = K x ZK, 2y = bg U K, 59333((1,r)) = {(j,s) € A3[j € r} for all (i,r) ¢ by
and 59233(1) = {(j,s) € A3|j # 1}, for all i € K, and Z3 is a graph consisting
of one node labeled by 1 € K. P3 consists of all productions of the form
(1,(j’s)®——~oj) and (i,o(j’s)) where s ¢ K, j=1 fori =k, whilej=1+1,
otherwise.

Fig. 2.1. depicts a derivation in G3. It is not difficult to see that

EQQ(L(G3)) consists of all graphs of bandwidth = k. o

1 (2,9) 2 (2,8) (1,9) 1
e —> 6—0 =——> =2
(2,8) (1,0) (2,{2}) 2 (2,8) (1,8) (2,12}) (1,{1,2}) 1

N e

X"

Fig. 2.1. A derivation of a graph of bandwidth = 2 in G4 (for k = 2).

Since it has been shown in Rozenberg & Welzl (1984, Theorem 6.6) that for
an integer d and a u-BNLC language L, "X ¢ L?" can be decided in polynomial time
for connected éraphs X of maximal degree < d, Example 3 proves that for a natural
number k, it can be decided in polynomial time whether a graph is of bandwidth < k.
(Note, that a graph of bandwidths k is of maximal degree < 2k, and that a graph

is of  bandwidth = k if and only if each of its
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connected components is of bandwidth = k). Although, this has already been demon-
strated in Saxe (1980), it is interesting to note that this result can be ob-
tained via BNLC grammars. Of course, we cannot deduce the concrete O(nk) time
bound for the recognition of graphs withbandwidth < k (sge Gurari & Sudborough,

1982).

For more examples of BNLC grammars and languages we refer to Rozenberg &
Welzl (1984), where also a number of basic properties of BNLC grammars have been
elaborated. We recall here three of these properties, as they are often implicitely

used in many proofs concerning BNLC grarmars.

PROPOSITION 2.1. Let G = (Z,A,P,conn,zax) be a BNLC grammar. Then every

graph in S(G) is a TI'-boundary graph. o

PROPOSITION 2.2. Let G be a BNLCAgrammar. Let Xj ¢ S(G), Tet X,y ¢ ij
C

and let Yl’Yz’Xl’XZ be graphs such that

0T et T oy R
holds. If Xi and Xé are the graphs, such that
o Ty h T (x,Y]) *2

holds, then Xé = XZ‘ a

We use the following normal forms for BNLC grammars. Let G (z,A.P,conn,Z)

be a BNLC grammar.

G is normalized, if (1) for all (A,Y) € P, &#Y =1, (2) #Z

1, and (3) for

all d € 3, conn(d) < & .

G 1s context consistent, if there is a function n from I into 2% yith the

following property: for every graph X ¢ S(G) and for every nonterminal node

X € VX’ contX(x) = ﬂ(@x(x)) holds. The function n satisfying the above is called
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the context describing function of G.

G is chain-free, if, for all (A,Y) € P with V, = {y} (i.e., #Y = 1), y is

a terminal node.

PROPOSITION 2.3. For every BNLC language L there is a normalized,

context-consistent, and chain-free BNLC grammar G such that

L(G) = L - {A\}. o

In what follows we consider two graph languages to be equal if they coincide °
up to the empty graph .
We conclude this section by providing a technical tool which will be needed

in forthcoming proofs.

Concrete derivations

~

Let G = (z,A,P,conn,Zax) be an NLC grammar. If a graph X concretely derives

a graph Z in G, replacing a node x by a graph Y, then, somewhat informally, we

refer to the construct X E$(x Y) Z as a concrete derivation step in G (from X to Z).

A sequence of "successive" concrete derivation steps in

o>

D: X0 E$( Y,) X1 E$( y X2 cee 53( Y ) Xn,

Xoy 1 Xls 2)

where n = 0 and the sets VX , VY » 1 =1 =n, are pairwise disjoint, is referred to
0 .

~as a concrete derivation in G (from X, to X ).

The node set of D is Vp= LJ“*O VX . The edge set of D is Ey= Lj?zo Exi .
The 1abe]1ngrfunct1on o © of D is defwned by wD(x) = Py (x) if x € VX and
0

¢op(x) = in(X) if x € VYi for some i, 1 =1 = n. Note that ¥, U L}1 ! Y ,

hence ®p is defined on the whole set VD' Moreover, if x € VX. for some i, 0<i sn
3 .

then Py (x) = wD(x). Thus every concrete derivation D defines naturally a graph

with  set of nodes VD’ set of edges ED and labeling function ?ps this justifies

our abuse of notation in using VD’ ED, and °p when referring to various elements
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of a concrete derivation D. Note that this ‘graph’ D is a I'-boundary graph when-
ever XO is a I'-boundary graph and G is a BNLC grammar.
Let 0y be a distinguished element not in Vp which is called the origin of D.

The predecessor mapping predD of D is a function from VD into VD U {OD} such

that for x ¢ VD

0, if x €V and

_ | XA

predD(x) 1 0
Y.

P x; Af x €V ~for an i, 0 =i = n-1.
i+l

Hence preaD maps every node x in VD to the node from which x is direct1y derived
(or to OD if x was already present in Xb).
The history histD(x) of a node x ¢ VD in D is the sequence (yO,yl,...,ym),

m=1, y; € VD for all i, 1 = i< m, such that Yo = OD, Y = % and ¥1 = predD(yi+1)

for all i, 0 =1 =m-1.
Finally, we denote the set of nodes in VX which are derived from a node

n
X € VD by targD(x), i.e., targD(x) = {y ¢ VX |x € histD(y)}. (For a sequence
n

s = (Ygo¥ps---sY,) we write x € s if there is an i, 0 =1 =m, such that x = y;.)

For basic properties of concrete derivations we refer the reader to Rozenberg

& Welzl (1984).



3. SUBGRAPHS

Given a graph language L, one often considers (various types of) subgraphs
of graphs from L. In this section we consider "subgraph taking operations"
for the case of BNLC languages. In particular, we demonstrate that the set of

all induced subgraphs of the graphs from a BNLC Tanguage is again a BNLC language,

while this is not the case when one considers the set of (arbitrary) subgraphs.

THEOREM 3.1. The set of all induced subgraphs of the graphs from a BNLC

language is again a BNLC Tanguage.

Proof. Let G = (2,4,P,conn,Z) be a normalized BNLC grammar. Consider now the

BNLC grammar G' = (Z,4,P',conn,Z), where

-,

P' ={(d,Y')[Y' is an induced subgraph of some Y with (d,Y) ¢

}.

>

It is easily seen that L(G') is the set of all induced subgraphs of graphs in

L(G). Since each BNLC language can be generated by a normalized BNLC grammar,

the result follows. o

THEOREM 3.2. There exists a BNLC language L such that the set of all

subgraphs of the graphs in L is not a BNLC language.

Proof. By Example 1, the set of all complete graphs with all nodes labeled
by b, say, is a BNLC language. Obviously, the set of all subgraphs of these graphs
is the set of all graphs labeled by b. However, it follows from Rozenberg & Welzl

(1984, Theorem 5.2) that this is not a BNLC language. o

Let A be a set of labels. The A-projection, projA(X), of a graph X is the
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subgraph of X which is induced by nodes of X with labels from A. (For example
if lab(X) N 4 = @ , then projA(X) = X and if lab(X) ¢ A, then grojA(X) = X).

For a graph language L, we define projA(L) = {projA(X)|X € L}.

THEOREM 3.3. For a set of labels A and for a BNLC language L, the language

projA(L) is a BNLC language.

Eﬁgéf. Let G' = (2',4",P',conn',Z') be a BNLC grammar such that L = L(Gf)
We construct a BNLC grammar G = (2,4,P,conn,Z) with L(G) = EIEQA(L((Y)) = EIQQA(L)
as follows (without loss of generality we assume that A N T' = @).

letz = aUT". For d € Z, we set conn(d) = conn'(d) N 2. Z = Eﬁgiz(z')'
Finally, P is the set {(A,Brgiz(Y)))(A,Y) € P'}. It is easily seen that indeed

L(G) = projA(L) and so the theorem holds. o



4. K-COLORABLE GRAPHS

In this section we prove that for every positive integer k, the set of all
k-colorable graphs from a BNLC language is again a BNLC language. For  techni-
cal reasons we étart by considering relabelings of BNLC languages.

In some of the subsequent proofs, when we want to show that a language L
is a BNLC lanquage, we construct first a BNLC grammar G and give a relabeling
o, suchthat L = o(L(G)). However, in general it may happen that p(L(G)) s not

even an NLC language.

THEOREM 4.1. There exists a BNLC language L and a relabeling o such that

o(L) is not an NLC 1anguage.

Eﬁggf,‘ln Ehrenfeucht et al. (1984, Corollary 3.3) it has been demonstrated
that for a label b, no infinite subset of the set LO of all cyc!gs labeled by
b is an NLC language. Consider now the BNLC language L(GZ), where G2 is the
grammar of Example 2 from Section 2. Let p be the relabeling from {Db,¢ to {b}
defined by o(c) = o(b) = b. Theno(L(G,)) = L, and so o(L(G,)) is not an NLC

language. o©

To cope with the situation indicated above we proceed as follows.
Let G = (Z,4,P,conn,Z) be a BNLC grammar. A relabeling o from Z is called

G-applicable, if o(r) N o(4) = P and if, for all d,d' € 2, (i) »(d) € o(conn(d"))

implies d ¢ conn(d') and (ii) o(d) = o(d') implies o(conn(d)) = o(conn(d")).

If o is G-applicable, then the c-image of G, denoted by o(G), is the grammar
(0(2),0(8)20(P).COM. 0(2)), where o(P) = {(p(d),0(¥)) | (&Y) € P} and, for
all d ¢ 2, conn_ (0(d)) = o(comn(d)).

Note that conn | is well-defined on the whole set o(Z), because of condition
(ii) above on a G-applicable relabeling. Moreover, note that o(G) is a BNLC grammar,

because G is a BNLC grammar and because o(T) N o(a) = 0.
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LEMMA 4.2. Let G be a BNLC grammar and let p be a G-applicable relabeling.

Then p(L(G)) < L(p(G)).

Proof. Let G = (Z,A,P,conn,Zax). Consider a concrete derivation step

X Ea(x Y)Z in G, where X is a r'-boundary graph. We will show that

o(X) E$(x 5 Y))D(Z> is a concrete derivation step in p(G). This proves that

P(S(G)) < S(p(G)) and, consequently, p(L(G)) < L(p(G)).

Since @p(x)(x)v= p(@X(X)), we have (¢Q(X)(x),p(Y)) € [o(P)]. The crucial

point is-to prove that

(*) {{z,y}|z ¢ neigh, (x), y ¢ Vys and ¢y (z) € conn(py(y))} =
{{z,y}}; € HE19h3(X)(X)sy5 YD(Y) and ®5(X) (z) ¢ Con”p(@p(y) (¥))}.
Observe that (i) neighp<x)(x) = neighx(x), (i) VY = Vp(y)’ and (iii), for all d?
d'€ z , d € conn(d') if and only if p(d) ¢ connp(p(d')) = p(conn(d"')). Since
@p(x)(z) = p(wx(z)) and @p(Y)(y) = p(@Y(y)) this proves the equality (*) and so
the lemma holds. o

LEMMA 4.3. Let G = (Z,A,P,conn,Zax) be a BNLC grammar and let p be a
G-applicable relabeling of 3z, such that po is the identity on T'. Then
o(L(G)) = L(r(G)). |

Proof. Let X' E$(x Y,)Z' be a concrete derivation step in p(G). Consider now

a graph X over z with p(X) = X' and let (d,Y) € [P] be such that o(d) = wx.(x)'
and o(Y) = Y'. Since p(d) = d, we have oy(x) = d and so there is a graph Z such
that X 5?(x Y)Z is a concrete derivatioh step in G. Since Z is unique, it follows

from the previous proof that p(Z) = Z'. Consequently, for every concrete deri-

vation of a graph Z' from p(Zax) in p(G)bthere exists a concrete derivation of a

graph Z from Z . in G such that p(7Z) = 7'. This proves that L(o(G)) ¢ o(L(G)).
This,in turn, implies (by Lemma 4.2) the equality of L(o(G)) and o(L(G)). a



For a natural number K, a k-coloring of a graph X is a function from VX
into {1,2,...,k} A k-coloring of X is proper, if it assignes different "colors"

to adjacent nodes in X. A graph X is k-colorable, if there is a proper k-coloring

of X.

THEOREM 4.4. Let k be a natural number and let L be a BNLC Tanguage. The

set of all k-colorable graphs from L is again a BNLC language.

Proof. Let G = (Z,4,P,conn,Z) be a normalized BNLC grammar with L = L(G).

(Such a normalized grammar always exists.)

The basic idea behind our construction is that a coloring is "guessed"

during'a derivation and during the same derivation it is checked whether the colo-

ring is proper.

Let L, be the set of k-colorable graphs from L. First we define a BNLC grammar

' P'.conn', Z') and a relabeling o such that p(L(G")) = Lg.
= ' ua'.

~t \
a s O

Let & = a x {1,2,...,k}, T' = {A A €T,rca'}and Tet 2’

= A for Ar € T' and

We use the relabeling o fromz' toZ defined by: p(Ar)
c{a,i)) = a for (a,i) € &'
The connection function conn' is defined by conn'(d) =p'1(conn(p(d))) for all

d € 3. If A is the label of the unique node of Z, then Z' is a one node graph

Tabeled by AQ.

P' consists of all productions (Ar’Y)’Ar €eT' and Y ¢ GZ’ satisfying the fol-

lowing conditions:
(1) (o(A.),0Y)) &P

(ii) Let y be a nonterminal node in Y withoy(y) = By € r'. Then

s =(rn conn’(BS)) U contY(y).

(ii1) If<pY(y1) = (a,i) € a' and wY(yZ) = (b,j) e o' for two adjacent nodes

¥y and Yo of Y, then i # J.
(a,i) ¢ a', then

.

(iv) If, for some y ¢ VY’ ¢Y(Y) =

it

conn'((a,i)) N r N {(b,1)|b € A}
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From condition (ii) it follows that G' is context consistent with context
describing function n', where n'(Ar) = r for all A; € T''. Hence, it is easily
seen that conditions (iii) and (iv) together imply that if (a,i) and (b,Jj) appear
-~ as labels of two adjacent nodes of a graph from S(G'), then i #j. That is, all
graphs in L(G') are k-colorable.

It is straightforward to see, that p is G'-applicable. Consequently, o(G')

is defined and (by Lemma 4.2) p(L(G')) ¢ L(p(G’)). Consider o(G') = {p(=')s0(a")s0(P'),

conn e(Z')). Then p(2') = z, o(4") = 4, o(P') < P, conn; = conn, and o(Z') = Z.
Thus it is easily seen that L(p(G')) < L(G), that is we have shown that
o(L(G')) < L(G). |

It is Teft to show that o(L(G")) contains all k-colorable graphs in L(G).
Let X be a graph from L(G) for which there exists a proper k-co?oringAa. Consider

a concrete derivation in G of X from XO € Z]:

X, o = X =X,

ﬁ: v a .
o xpp¥p) 72 (xn—l’Yn> n

(xgo¥1) “1

We define a labeling o' of VD' For X‘€ VD with @D(x) =2 € A,0"(x) = (a,a(x)),
and for x € V, with o5(x) = A € T,e' (x) = A swhere r = {o'(y)]{x,y} ¢ Ep}. This
labeling ¢' induces a concrete derivation D' in G' in the obvious way. Note 1in
particular that,for x,y ¢ VD = VD.a@'(x) € conn'(g'(y)) if and on]ylif
@p(x) = o(e'(x)) € plconn'(p'(y)) = conn(e(e'(¥))) = conn(ey(y)).
Obviously, for the resulting graph h of D', p(Xﬁ) = Xn = X, which implies
that o(L(G")) contains all k-colorable graphs from L(G). Thus we have shown that
LO = po(L(G")). "
Let now o' be the relabeling from &' to I'' U A, where o' is the identity on

I' and o' equals o on a'. Then p' is G'-applicable, po'(G') exists, and we can

apply Lemma 4.3 to conclude that o'(L(G')) = L(p'(G')). Obviously po'(L(G")) =
o(L(G")) and so LO = L(e'(G")), which proves that LO is a BNLC language. o

We get now the following easy corollaries of Theorem 4.4,
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COROLLARY 4.5. It is decidable whether or not L(G) contains a k-colorable

graph, where k is a natural number and G is a BNLC grammar.

Proof. In the proof of Theorem 4.4, we gave an effective construction of a
BNLC grammar G' which generates all k-colorable graphs in L(G). Since it is easily

seen that the emptiness problem for NLC grammars is decidable, the result follows.o

COROLLARY 4.6. It is decidable whether or not L(G) contains a totally dis-

connected graph, where G is a BNLC grammar.

Proof. This follows from Corollary 4.5 and from the easy observation, that a

graph is totally disconnected if and only if it is l-colorable. g

It is instructive to compare the above result with the situation for general
NLC grammars. It has been shown in Janssens & Rozenberg (1981, Theorem 3) that it
is undecidable whether or not L(G) contains a totally disconnected graph, where

G is an NLC grammar.

‘COROLLARY 4.7. Let d be a natural number and let L be a (u-)BNLC language.
For (unlabeled) graphs X ¢ L of maximal degree =d, and for a natural number

k, it is decidable in polynomial time whether or not X is k-colorable.

Proof. We consider the labeled case,i.e., L is a BNLC language. If k > d, then

a graph X of maximal degree = d is always k-colorable, which makes the problem
trivial. Hence wé may assume that k = d énd k is fixed (because d is a constant).
A graphFX is k-colorable if and only if each of its connected components is
k-colorable. Let now L0 be the set of ihduted subgraphs from L and Tet L1 be the
set of all k-colorable graphs from LO' Now a graph X in L is k-colorable 1if and

only if its connected components are in Ll. That is, since L1 is a BNLC language

(see Theorems 3,1 and 4.4)
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we have (polynomial time) reduced the problem "X k-colorable?" for X € L to the
membership problem of connected graphs in a BNLC language. This has been shown
to be decidable in polynomial time for graphs of bounded fixed degree in Rozen-

berg & Welzl (1984 , Theorem 6.3) and so the result holds. Since this membership

problem is also decidable in polynomial time for a u-BNLC language, the result

can be shown analogously for a u-BNLC language L. @

- To put the above result in a proper perspective, let us recall that the pro- .
blem whether a graph of maximal degree = 4 is 3—co1orab?ekis NP-complete (see

Garey et al., 1976, Theorem 2.3).
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5. CONNECTED AND DISCONNECTED GRAPHS

Let X be a graph and let x and y be nodes in VX' A walk from x to y in X
is a sequence (xo,xl,...,xm),m > 0, of nodes in VX such that Xg = Xs Xp = Y,
and {Xi’xi+1} € EX for all i, 0 =i =m-1. A graph X is connected, if, for
every pair of nodes x and y in VX’ there is a walk from x to y. A graph X 1is

disconnected if it is not connected.

THEOREM 5.1. The set of all disconnected graphs from a BNLC language is

again a BNLC language.

Proof. We use here the following easy observation. A graph X is disconnected
if and only if there is a 2-coloring of X such that (i) 1 is assigned to at least
one node and 2 is assigned to at least one node and (ii) adjacent nodes have the
same color assigned to.

Let G = (Z,4,P,conn,Z) be a normalized BNLC grammar. First we cbnstruct a
BNLC grammar G' = (Z';4',P',conn',Z') and we give a relabeling o such that o(L(G"))
consists of all disconnected graphs in L(G).

We set A' = A x{1,2}, T'' = F><2A’X 2{1’2}, and Z' = A' UT', The relabeling
o is defined by: e((a,i)) = a for (a,i) € A', and e(A,r,t)) = A for (A,r,t) €T,

For d € Z', conn'(d) = p—lgggg(p(d)). If A is the label of the unique node
of Z, then Z' is a graph cbnsisting of one node labeled by (A,Q,{I,Z}). |

P' consists of all productions ((h,r,t),Y) which satisfy the f61lowing condi-
tions. |

(i) (A,o(Y)) € P.

(ii) Lety ¢ VY with @Y(y) = (B,s,u) € F’.Thens==GWWEQQQK(B,s,w»ljggggw(y).

(iii) If @?<y1) = (a,i) € o' and @Y(yz) = (b,j) € o' for two adjacent ﬁodes

Yy and 2 of Y, then i = j.

(iv) If, for some y ¢ Vy, @Y(y) = (a,i) € o', then

conn{(a,i)) N r N {(b,) € a'| i £ 3} =0
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(v) If i € t, then either there is a terminal node y in Y such that

@Y(y) = (a,i) for sohe a € A, or there is a nonterminal node y in Y

such that wy(y) = (B,s,u) € T' and i € u.

Using arguments similar to those from the proof of Theorem 4.4 one can
show that (i) e(L(G')) consists of all disconnected graphs in L and that

(i1) o(L(G')) is a BNLC Tanguage. o

THEOREM 5.2. The set of all connected graphs from a BNLC ]anguage is

again a BNLC language.

Proof. The problem we have to cope with in this proof is that being
connected is not a "local property" of a graph (and so "local" techniques
like the one for guessing a coloring as used in the proofs of Theorems 4.4
and 5.1 do not apply dikect]y).

Let us consider the following example. Suppose that the axiom of a
BNLC grammar derives a graph X as depticted in Fig. 5.1{a) . We apply now
a production to the B-labeled node whigh disconnects the "direct” walk from
its c-labeled neighbor to its f-labeled neighbor via the B-labeled node (see
Fig. 5.1(b)). Now, whether or not the graph resulting from a further derivation
"continuing this step" is connected, depends on the "behaviour" of the A-la-
beled node. This A-labeled node “"does not know", whether the B-labeled node
has disconnected the c-f path, and, moreover, the B-labeled node is not able
to "send a message" to the A-labeled node. We will settle this probiem by a
"gquessing mechanism", which, however, is essentially different from the ones
we use in the proofs of Theorems 4.4 and 5.1. To every nonterminal node certain
"connection tasks" are (nondéfferminisfiﬁa]]y) conferred. In our example, this
would mean that we introduce labels AQ and A{{a,d}} instead of A, and labels
BQ and B{{c,f}} instead of B. Then, e.q., B{{c,f}} stands for : whatever is

derived
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Fig. 5.1. "Breaking up" a walk in a derivation step.
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Fig. 5.2. "Secure” graphs'derived instead of the graph

X5

in Fig. 5.1(a).

from a node labeled by thisknontermina1, there must be a walk from each c-labeled
neighbor of this node to each f-labeled neighbor of this node. This means

that we actually derive two graphs X' and X" rather than X - these are shown

in Figs.5.2(a) and (b).

We turn now to the formal proof. Let G = (Z,A,P,gggg,zax) be a normalized
chain-free and context-consistent BNLC grammar with context describing function
n (such a grammar exists for every BNLC language) and let LC be the sét of all
connected graphs from L(G). The BNLC grammar G' = (Z‘,A,P',Egﬂn',Zéx),such
that L(G') = Lévis now constructed as follows. |

Let ' = {AriA €T, rc {{a,b}|a,b e n(A)}and Tet 2' = T' U A. (Note that
for Ar from T', the set r might contain sets of cardinality 1.) The relabeling

o from ' to 2 is defined by p(Ar) = A, for Ar € T' and p(a) = a, for a € A.



For all d € 3', we set conn'(d) = conn(p(d)). (Note that conn(e(d)) =

-1
o " conn(p(d)), because conn(d) ¢ a.) If A is the label of the unique node of
Zax’ then Zéx is a graph consisting of one node Tabeled by AQ.

In order to define the set of productions P' we need the following notions.

Let Y be a I''-boundary graph. A walk (XI’XZ"f"Xn) from x, to Xq in Y is a

secure walk from‘xl to x in’y if, for 2=1=n1, @Y(xi) = A, €T’
implies that {@Y(xi—l)’ @Y(xi+1)} ¢ r. (This gntuitively means that whenever, on
the walk from X1 to X > We are passing a nonterminalnode X35 2 =3 =<n-1, then we
can "re]y" on X, in the sense that if X; is replaced by a graph, then, in the
resulting graph, there will still be a possibility of getting from x;_; to x1+1.)

A T''-boundary graph Y is now called securely connected if it is connected and

if there is a secure walk from x to y in Y for all pairs of terminal nodes X,y ¢ Vy.
(Note that a graph labeled by terminals only is securely connected if and only if
it is connected.)
et Y be a T'-boundary graph and let a and b be (rot necessarily distinct)
terminal labels. A walk (xl,xz,...,xn) from xy to X, is a secure (a,b)-connec-

ting walk from x, to x, in Yy, if (i) it is a secure walk from x4 to x» (i)

a € ggﬂg’(my(xl)) and b € Egﬁﬂ’(@Y(xn}), (ii) if @Y(xl) = Ar ¢ T', then
{a,@Y(xz)} € r (or {a,b} € r, if n=1) and (iv) if mY(xn) =B, € r', then
{wY(xn_l),b} € s (or {a,b}es, if n=1). (This intuitively means that if, in
a graph X, an a—]abeled'node z4 and a b-labeled node z, are connected via a
nonterminal node z which is rep\éced by Y, then-in the resulting graph - there
is a secure walk from Z4 to 22.)

A T'-boundary graph Y is {a,b}-connecting, if there are nodes x and y in VY

for which there is a secure (a,b)-connecting walk from X toy in Y or a (b,a)-con-

necting walk from x to y in Y.

Let s < A. A I''-boundary graph Y is externally connected by s, if, for

every node x of Y, there exists a secure walk (Xl’XZ”"’xn) from some node X4

to x in Y, such that: conn‘(wY(xl)) Ns # B and if wY(xl) = Ar €T and n = 2,



for some a ¢ conn'(wY(xl)) N s.(This intuitively means that if a node z with
context s is replaced by Y, then, in the resulting graph, there is a secure
walk from every node x in Y to a neighbor of z.)

Now we are ready to define the set of productions P':

P' = f(Ar’Y)ln(A) =@, Y is securely connected and (A,o(Y)) € P} U
U {(Ar,Y){n(A) # 0, Y is {a,b}-connecting for all {a,b} € r, Y is

externally connected by n(A), and (A,o(Y)) € P}.

We will prove now that indeed L(G') = Lc‘

Claim 1. A1l graphs in S(G') are seture?y connected.

Proof of Claim 1. Clearly the axiom of G' and every graph directly derived

- from the axiom is securely connected. Moreover, it is also clear, that no graph

in S(G') except for the axiom has a nonterminal node Tabeled by Ar where n(A) = 4.

(Recall that G is chain-freef) |
Let X be a securely connected graph in S(G') - [Zéx} and let us consider a

concrete derivation step X Eé(x,Y)z in G'. We will show that Z is securely connected

wnich implies the claim.

Let wX(x) = Ar and let y be an arbitrary node pf Y. Since Y is externally con-
nected by n(A) = EQDEX(X) # @, there is a secure walk from y to a node x' € ggighx(x).
Now, let X1 and Xs be two nodes of X-x such that there is a secure walk
(xl,i,xz) in X. If X # x, then (xl,i,xz) is a secure walk in Z. If §,= X, then xq

and X, are terminal nodes, where {@X(xl), @X(xz)} € r. Consequently, Y is

{@X(xl), @X(xz)}-connecting and so there is a secure walk (xl,yl,yz,...,yk,xz),
k =1, from X1 to Xo in Z with Yy € VY for all i, 1 =1 = k. This actually shows
that every secure walk from a node Z of X-x to a node Z, of X-x in X can be
transformed to a secure walk from Z4 to z, in Z, simply by inserting a "correspon-

ding" walk in Y wherever x occurs.
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It remains to show that there is a secure walk from every ¥q of Y to every

Yo of Y in Z. Such a walk can be obtained by concatenating a secure walk from

y; toa node Xq € neighx(x) in Z with a secure walk from a node X, € neighx(x) to
Yo in Z using a secure walk from Xq to Xo in Z. Note that the concatenation of
such secure walks always yields a secure walk in Z, because the “connecting" nodes

x; and x, are terminal nodes. Thus Claim 1 holds.

Claim 2. L(G') < L_. - |

Proof of Claim 2. Obvidus1y, p is G'-applicable. It is easily seen that

L(o(G')) ¢ L(G). By Lemma 4.2, we have po(L(G')) c L(p(G")). Since p(L(G')) = L(G"),
we also have L(G') ¢ L(G). Claim 1 implies that all graphs in L(G') are connected.
Hence L(G') ¢ LC and the Claim holds.

Claim 3. LC c L(G").

Proof of Claim 3. Consider a concrete derivation D of a connected graph X from

XO € Lzaxj in G»

D: X X X)... = X,
07 (.Y TixpY,)"2 (x,_sY )%

where X = Xn. We will show that there is a derivation D' of X from a graph

X!

0 € [Zaxj in G'.

Let x ¢ VD - VX’ where @D(x) = A ¢ I. Then we assign to x a new label
o' (x) = Ar’ where r is the set of all sets {a,b} ¢ A with the following property:
- There are nodes x,,X, ¢ neighD(x), (i.e.,{xl,x} € Ep and {x,,x} € Ej ) with
@D(xl) = a, mD(xz) = b and there is a walk (xl’zl’ZZ""’Zh’Xz)’ m=> 1, from
Xy to x, in X, such that z; € targD(x) for all i, 1 =i =m. |
note that, if fi,xé € neighp(x) with @D(xi) = a and @D(xé) = b, then
(xi,zl,zz,...,zm,xé) is a walk from Xy to X5 in X.) Th1s‘mapp1ng ', gxtended
by o'(x) = @D(x), for x ¢ Vx,'is a new labeling of VD. This labeling yields in

the obvious way a "primed" sequence,
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= AKS eee. 2 .
)71 (xl’YZ) 2 (Xn-l’Yn) n
by setting V = VX.’ EX' = EX. , and @X‘ equal the restriction of ¢' to
X i i
VX' for all i, 0 =1 = n, (and setting ana]ogous]y each Y' for i, 1 =1 = n).

We w111 show that D' is a concrete derivation in G'. Since Xé € {Zéx] and
X, = X, this implies that X € L(G').

It is easily seen that, f i, 0< i< n- ! ! i

y n tha or all i, 0 < i < n-1, X1 E$(X Y;+1) X]+1 is a |
concrete derivation step in G', provided that &PX’ (x ) Y1+1) ¢ [P')(recall the
i+l ‘

proof of Lemma 4.3).
Clearly, (O(le(")) (Y;+l)) € [P]. Thus, it remains to show that
- 4‘ B
(i) Yi is secure]y connected,

and for all i, 1 =i < n-1, if Ar = ®X'(xi)’ then
i

(1) ¥,y

(i11) ¥Y:,1 s externally connected by n(A).

is {a,b -connecting for all {a,b} ¢ r, and

(Note that, because G is chain-free and i >0, the set r # 9.)
To demonstrate (i), let (yl,yz,...,yk), k = 2, be a walk from ¥y to Yi in X,
such that Y.y, € V,, and Y5 £Vy, foralli, 2=<1i-= k—l If k = 2, then
1’7k Y1 Y
(yl,yz) s a secure walk in Y1 If k > 2, then there is a node z ¢ Vys with

1
zZ € hTStD(yi) for all i, 2 =i = k-1. (Suppose there are distinct nonterminal

nodes z, and z, in Yi such that z; € h1stD(yi) and z, ¢ hxstD(yi+l) for some 1,
2 < 1i = k-2. Then z and z, are not adjacent, and so Y; and Yi41 2re not adja-
cent, a contradiction.) This implies that (by definition of '), for ¢Y,(z) = Ar’

{oyr (Y1) oy (¥, )} € r holds. Hence (y,,z,y, ) is a secure walk in Y. Thus every
Y1 17’ Y1 k . ‘1 k 1
walk from a terminal node y € Vy. to a terminal node y' ¢ Vy. in X can be trans-
formed to a secure walk fromy to y' in Yi, simply by rep1acing subsequences of
nodes not in VY by the 'torresponding' nonterminal nodes in V Obv1ous1yY1 must be
Y1

. 1
connected This proves that Yi is securely connected.



Conditions (i1) and (iii) can be proved analogously by transforming walks

in tho secure walks in Yi+1’ for all i, 2 =1 = n~-1. Hence the claim holds.
The theorem follows now from Claims 2 and 3. g

Using the reasoning analogous to the one from the proof of Corollary 4.5,

we get the following decidability results.

COROLLARY 5.3. It is decidable whether of not (i) L(G) contains a connected

graph, (ii) L(G) contains a disconnected graph,;where G is a BNLC grammar. o -

Thfs result should be compared with the situation for general NLC grammars.
In particular, it is undecidab]é whether or not L(G) contains a connected graph,
where G is an NLC grammar (see Janssens & Rozenberg,1981, Theorem 8).

Note, however, that our (effectivé) closure properties for BNLC languages
aoc not only entai}.a number of decidability and complexity results which differ -
significantly from those known for NLC grammars (as we have seen in Corollaries
4.5, 4.6, 4.7, and 5.3). We can use these results also to confer combinatorial
properties of BNLC languages to subsets of BNLC languages defined by graph theo-
retic squeezing mechanisms. For example, (by a correspondence to context-free
string grammars,) it is easiiy seen that an NLC language L has always a semilinear
"size-set", i.e., the set {#X|X € L} is semilinear (see e.g. Ginsburg, 1966, for
the definition of a semilinear seﬁ). However, the set of connected graphs in ani
NLC language has possibly a size set which is not semilinear, as it can be easily
deduced from a result in Janssens & Rozenberg (1980b, Theorem 9). For example,
there exists an NLC language L such that {#X|X € L and X is connected} is exactly
the set of prime numbers (see Janssens & Rozenberg, 1980b, Theorem 9 and Salomaa,
1973; Example i.2.5). By Theorem 5.2, the set of connected graphs in a BNLC language

has a semilinear size set.
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6. GRAPHS WITH SUBGRAPHS HOMEOMORHPIC TO A GIVEN GRAPH AND NCNPLANAR GRAPHS

Let Z be an unlabeled graph. A subdivision of an edge {x,y} in EZ is the
replacement of {x,y} by a node z (not in VZ) together with edges {x,z} and {z,y}.

An unlabeled graph X is homeomorphic to an unlabeled graph Z-if X can be obtained

from Z by a sequence of subdivisions of edges. A graph X is homecmorphic to an

unlabeled graph Z, if und(X) is homeomorphic to Z. (Recall here the remark about
our de%inition of "homeomorphic" given at the beginning of Section 1.)
»,The.goai of this section is to show that, for a given graph Z, the set of
all graphs from a BNLC language which have a subgraph homeombrphic to Z forms
again a BNLC language. Consequently, the Kuratowsky theorem %mp1ies that the set

of all nonplanar graphs from a BNLC language js again a BNLC language.

LEMMA 6.1. Let X and Z be un]abe1gd grabhs. X has a subgraph homeomorphic
to Z, if and only if there is a function f from VX into Vz U EZ!J {$} with
the following properties.
(1) For every z ¢ VZ’ there is exactly one X € VX with f(x) = z.
(2) For every {zl,zz} € EZ and every x € Vy with F(x) = Zys there is exactly
one neighbor x' of x with F(x') € {{z],2,},2,}-

| (3) if, for a nodé X €‘Vx, f(x) = {zl,zz} € EZ, then there are exactly two

neighbors x' and x" of x in X, such that f(x'), f(x") € {21,22, {24,251}

Proof. Let f be a function from VX satisfying the statement of the Temma.

Then it is easily seen that for all {21’22} € EZ, there is a unique path
Xl’x2""’xkf k=2 from the unique node xp € VX with f(xl) =z to the unique node
X, € VX with f(x,) = z,» such that f(x;) = {zy,2,5}, for all i, 2 =i = k-1. Hence,
using f one can find a subgraph X' homeomorphic to Z. Note however, that not all
nodes x € VX with f(x) #.$ must appear in such a subgraph X' - there might be cycles

“in X with their nodes having some {21,22} € EZ assigned to by f which do not belong
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to this subgraph X'.

On the other hand, let X' be a subgraph of X homeomorphic to Z.

Without loss of generality, we may assume that X' is minimal in the sense that
#X" = #X' for every sﬁbgréph X" of X homeomorphic to Z. Hence there is a function
g from VZ into VX‘ such that for all {21,22} € Ez there is a corresponding path
from g(zl) to g(zz) in X',.and for different edges in EZ these corresponding paths
are disjoint (except perhaps from their start - and endpoints). Moreover, the
minimality of X' implies that only consecutive nodes on these paths are adjacent
in X.

Let us fix such a collection of (péirwise disjoint) paths. Now it is rather
easy to define a function f from VX into VZ u Ez U {$} which fulfills conditions
(1) through (3) from the statement of the lemma:

- for all nodes x, for which there is a z € VZ with g(z) = x we set f(x) = z,

- for a node x ¢ VX on a path (from the chosen collection) corresponding to

the edge {21,22} € EZ’ we set f(x)A= {21,22} (unless x is an end- or start-

point of this path), and, finally,

- we assign § to the remaining nodes in X.

Thus the lemma holds. o

THEOREM 6.2. Let Z be an unlabeled graph. The set of all graphs from a

BNLC Tlanguage having a subgraph homeomorphic to Z is again a BNLC language.

Proof (sketch). The proof of this theorem uses Lemma 6.1. and ideas similar

to those from the proofs of Theorems 4.4 and 5.1. Let G = (Z,A,P,conn,Zax) be a
normalized BNLC grammar. Then we define a new set of terminals by

A' = A X (VZ U EZ U {$}) and a relabeling o from A' to & , where o((a,u)) = a

for a € A and u € V, U EZ U {$}.

YA
v
3 - 1 - Z 1
Consider now G1 = (zl,A ,Pl,connl,Zl), where Z, =T x 27U a'. Let oy be

the relabeling from Z; to I such that p, equals o on &' and o7((A,U)) = A, for

A< Tand U< V,. For (AU) € s a production ((A,U),Y) € P1 if and only if:

7



(i} (A,pl(Y)) € P, and |

(ii) z € U if and only if either there is exactly one node y € VY with
wY(y) = (a,z), for some a € A, or there is exactly one node y ¢ VY with
wY(y) = (B,U") for some B € T and some U' ¢ V, such that z € U'.

If A is the label of Zax’ then Z, is a graph consisting of one node labeled by

1

(A,VZ). Finally, we set conn; = Py conno . It is not too difficult to see

that L(G,) consists of all graphs X € GA. such that o(X) € L(G), where for each

1
z € VZ there is exactly one node x in X with wx(x) = (a,z) for some a € A .
Thus we have guessed a function f and then we have "filtered out" all graphs
satisfying condition (1) from the statement of Lemma 6.1.

The next step is to filter out all those graphs from L(Gl) which satisfy
condition (2) from the statement of Lemma 6.1. To this aim we choose an edge
{21,22} € EZ and an element of {21,22}, say z;.

" Now, rather than to provide tedious formal details we give the intuition
underlying our constructidn. To every néhtermina] in T we append a second
component which contains the informétion about the labels in the
neighborhood and, moreover, this component "notes” whether a label occurs once,
twice or more often. In addition, a flag (0 or 1) is added which says whether
this nonterminal is responsible for estabfishing the uﬁique edge between the
unique node labeled by (a,zl) for some a € A, and a node labeled by (b,u) for
some b € A and u ¢ {22,{21,22}}- Obviously, this information can be kept finite
and it is sufficient for choosing thosevproducfions which fulfill the appropriate
task. Although this despription is not very detai]éd we think that it provides
enough "hints" for the construction of a grammar which Qenerates all those graphs
in L(Gl)’ where the unique terminal node with z, in the second component of its
label has a unique neighbor with z, or {21,22} in the second component of its label.

The same procedure has to be performed successively for all {z',z"} E’EZ and

z € {z',2"}.
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Analogous techniques can be used for assuring condition (3) from the state-
ment of Lemma 6.1. Thus We obtain a BNLC grammar G' = (z',a',P",conn',Z") such
that p{L(G'))consists of all graphs in L(G) having a subgraph homeomorphic to Z.

Let o' be the relabeling from Z' tor' U‘A such that p' is the identi-
dy on 1' and p' equals p on A'. If one follows the construction of G', then
it appears that Lemma 4.3 can be applied, i.e.,p'(G') generates exactly
p'(L(G")) = p(L(G')) which completes this informal reasoning behind a possible

proof of the theorem. o
The following corollaries follow now easily from the above theorem.

COROLLARY 6.3. The set of all nonplanar graphs from a BNLC language is again

a BNLC language. o

COROLLARY 6.4. It is decidable whether or not L(G) contains a nonplanar graph,

where G is a BNLC grammar. o

CORCLLARY 6.5. Let Z be an unlabeled graph, let k be a positive integer and
let L be a BNLC language. Then for a graph of maximal degree =k in L it is

decidable in polynomial time whether it hasva subgraph homeomorphic to Z. o



7. GRAPHS WITH FORBIDDEN COMPLETE SUBGRAPHS

In the preceding section, we considered graphs (from a BNLC language) which
have certain substructures. In this section we consider tﬁe opposite case, i.e.,
we are interested in graphs which do not contain certain subgraphs.Inparticular, we
show that, for a given k, the set of all graphs from a BNLC language that do not
contain a complete subgraph on k nodes is again a BNLC 1angdage. The more gene-
ral problem, i.e., "Given a graph Z, is the set of all graphs from a BNLC language
" that do not contain an induced subgraph isomorphic to Z again a BNLC language?"

is open.

THEOREM 7.1. Let k be a positive integer. The set of all graphs from a

BNLC language which have no complete subgraphs on k nodes is again a BNLC

language.

Proof (sketch). Let G = (Z,0,P,conn,Z) be a normalized BNLC grammar.

Let D be a concrete derivation in G of a graph X ¢ L(G) from a graph XO € [Z]
and let x and y be two nonterminal nodes in an intermediate graph X' in D. Since
x and y are not adjacent, a complete subgraph of X cannot have nodes both in Egggo(x)
and in Egzgg(y).'That is, if a complete subgraph contains a node in EEEQD(X)a then
it is built up entirely from nodes in Egrga(x) U ggjgﬁx,(x). This observation
allows one to construct a BNLC grammar G' = (z',4,P",conn',Z") which generates the
set of all graphs from L(G) with no complete subgraph on k nodes, using'a "Jocal
control" of nonterminal nodes over their neighborhoods.

To this end, let A= {al,az,...,anh n = #5, be an enumeration of 4, let
K= {0.1s....k-1}, and Tet 1* = rx 2&™) | Intuitively, for (A,r) € T,
ﬁl,iz,...,in) ; r stands for: there is a complete subgraph on (il+iz+...+in) nodes
in the graph induced by the neighborhood of the (A,r) labeled node, where i nodes

from this complete subgraph are al—labeled, iz are a2~1abe1ed,,.. , and in are

a _~labeled.
n



Consider now a production (A,Y) € P and a set r ¢ K", Although rather tedidus
to define formally down to the last detail, it is now intuitively easy to see how
a corresponding production ((A,r),Y') in P' looks like. (i) One has to verify that
no complete graph on k nodes 1is produced by the neighborhood of the replaced node
(which is sufficiently described by r) or by the terminal labeled nodes in Y
(otherwise there is no corresponding production ((A,r),Y') in P'). (ii) Once (i)
is satisfied, for every nonterminal node from Y the second component of its label
in Y' has to be calculated from r and from its neighborhood in Y (the first compo-
nent is the "old" label in Y).

Z' and conn' have to be chosen in the obvious way.This completes the infor-

mal sketch of the construction underlying the proof of the theorem. o



8. DISCUSSION

This paper has continued a systematic investigation of BNLC grammars and
languages initiated in Rozenberg & Welzl (1984). We believe that these two papers
together indicate that the family of BNLC languages is an attractive subfamily
of the family of NLC languages. In particular, in this paper we have demonstrated
that very often considerations of the from - "Consider only those graphs from a
BNLC language that satisfy a particular property" - do not lead out of the BNLC
family. This certainly makes the family of BNLC grammars mathematically attrac-
tive to work with and allows one to prove a number of properties which are either
not true or (at‘this stage) not known for the general family of NLC Tanguages. )

Clearly, a number of open prob]emé and problem areas should still be inves-
tigated before one gets good insight into the basic properties of BNLC grammars.
For example, , '

(1) We have shown that the set of all nonplanar graphs from a BNLC language
is again a BNLC language. What about planar graphs?

(2) Is the set of hamiltonian (nonhamiltohian) graphs from a BNLC language
again a BNLC language? In general, it would be interesting to find nontrivial
graph properties which - applied to BNLC languages as squeezing mechanisms -
lead out of the family of BNLC languages.

In addition to concrete open problems as outlined above, one should treat
a number of topics not "touched" until now. In particular, one should investigate
combinatorial properties of BNLC languages. A typical question we have in mind is
of the following type: "If a BNLC Tanguage satisfies a combinatorial property
Pl then it must satisfy also property PZ", where Pl anva2 should be "interesting"
graph theoretic properties.

We are currently investigating a number of problems of this type and we
hope to report on this research in the near future.
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