ObjTalk84
Reference Manual

Andreas C. Lemke

Technical Report CU-CS-291-85

June 19, 1985
Dept. of Computer Science
University of Colorado, Boulder

Copyright © 1985 Andreas C. Lemke

ObjTalk84 Reference Manual 1

1. Introduction

Objtalk84 is an object-oriented extension of UNIX 4.2bsd Franzlisp. It was developed by Christian
Rathke at the University of Stuttgart, Germany.

The general control paradigm of ObjTalk is message passing. A message is sent to an object using the
lisp macro ask.

1.1. Metanotation

For syntax descriptions we use the following metanoctation:

€a> ::= » <¢>... «d>

Angle brackets denote non terminal symbols. The symbol “...” denotes “any number of”’. <a» is defined
as followed by an arbitrary number of <c>s (including 0) followed by <d>.

 ::= SLOT

Words completely in upper case denote any lisp symbols.

<c> ::= object

Words not completely in upper case are terminal symbols. So are any special characters other than *::s”
and “...7.

2. Lisp Functions
Slot access functions are described in section 5.1.2, page 13.

(ask <object> <message>)

returns: the result of the execution of the method of <objscts the filter of which matches ¢message>.
use: to send a message to an object.
note: ask evaluates only those arguments which are preceded by a comma. The only exception is

the first argument (¢object>}) which is evaluated if it is a symbol. If it has no value but a file
name on its autoload property then this file is loaded. For details see Appendix I.

(ask self <message>)
, ! (<message>)
note: the second form is equivalent to the first.

ObjTalk84 Reference Manual 2

(ask (<object> <class>) <message?)

note: <object> behaves as if it were of the class ¢class»; i.e. methods are searched for in <class>.

see also: the viewed-as: message in section 3.3.

(class-of *so_object)

returns: the class of so_object. If so object is a symbol then the class of an object which is the value
of so_object or which is autoloaded is returned.

(mapask 'l msg ’1 objects) i
side-effect: the message 1 msg is sent to each object in 1_objecte.

{objectp 'g x)
returns: nonnil iff g x is an object.

{object-of ‘*so _object)

returns: so_object, if it is an object. If soc _object is a symbol, it’s value is returned or it is tried to
autoload an object (load it from a file the name of which is the value of the autoload
property).

{ofclassp 'o object ‘o _class)

returns: nonnil iff o_object is an instance of o_class or one of its subclasses.

(try-rules *(s rulename...)}
side-effect: the specified rules are activated. If try-rules is applied to nil all rules are activated.

3. Objects

Objects have two basic properties:

e A set of slots which can store values (any Lisp s-expressions).

® A set of methods which define the object’s reaction when it receives a message.

In order to have easy access to objects you bind them to symbols (cf. the make: message, p. 10)

3.1. Definition of object

Common properties of all objects are defined in the class object which is superclass of all other classes.
object is defined as follows:

2. Lisp Functions 2. Lisp Functions

ObjTalk84 Reference Manual 3

(ask class renew: object
(superc)
(descr
(pname
(default (get_pname (concat ®<some_* (get-slot (cadr self) pname} *>%)))))
(methods
(edit: => sysedit)
(eval: ,%<expr> => eval)
(get: ,*<msgs> =3>=) getmultiple)
(init: ,*<msgs® => sysiniti)

(kill: => syskill)

(pp: => syspp)

(redefining~form: => gysredefinei)

(set: ,*<msgs> =>=> setmultiple)

{show: =» sysshow)

(super: => gyssuper)

(viewed—as: ,?¢class? ,*<msg> =) sysviewed)))

3.2. Slots of Objects

pname = gt name

description: contains a symbol or string which is used to print the object.

3.3. Methods of object

object has methods to interpret the following messages. Since object is superclass of any class, the mes-
sages are understood by any object. If you want to make any object understand a new message then add
an appropriate method to object.

<message> ::= edit:
side-effect: calls the lisp editor on the object’s redefining form. If you don’t leave the editor regularly
the object may be in an inconsistent state.

see also: redefining-form: Imessage.
<message> .= eval: <expr>
returns: the value of <expr» evaluated in the binding context of the object (e.gn1 seif will be bound to

the object, see section 6.4).

use: normally you do not want to use this. Define a method which does what ¢expr> would do.
A reason is that <expr> will not be compiled and you will therefore run into problems with
unspecial variables.

<message> ::= get: SLOT...
returns: a list of the fillers of the slots.

1exempli gratia

3. Objects 3.1. Definition of object

ObjTalk84 Reference Manual 4

<{message> :

;= init: <dnit-messages>

<init-nessages> ::= (<message>)...

side-effect:

note:

use:

see also:

<message> .

side-effect:

note:

<message>

side-effect:

see also:

<message>

returns:

see also:

<message> :

returns:;
side-effect:

use:

<message>

returns:

tise:

<message>

returns:

<message>

note:

use:

3. Objects

<init-messages> are sent to the object.

this method will be called after creation of the object. Normally you do not send this mes-
sage by yourself.

to initialize slots and to send initial messages. This method is often extended in subclasses.

make: and instantiate: methods of class.

1= kill:

the object is deleted.

this method is often extended to kill dependant objects or to remove links from other ob-
jects.

(= pp:

the object’s redefining form will be prettyprinted.

redefining-form: message.

::= redefining-form:

an s-expression which when evaluated redefines the object.

pp: and edit: messages.

:= get: (<message»)...

a list of the values of the messages.
the messages are sent to the object.

to set multiple slots.

::= gshow:

the filler of the pnane slot.

this is used by the printmacro for objects. If you prefer a different printed representation,
define your own show: method.

:= super:

the object’s class

:= viewed-as: <class> <message>

<message> is sent to the object but method searching begins at ¢class>.

to select a certain perspective (ie. to direct method search) if the class of the object has
multiple superciasses or extended methods.

3.3. Methods of object

ObjTalk84 Reference Manual 5

4. Classes

Every object is instance of a class. The class defines the properties and behaviour of its instances.
Classes are themselves objects and therefore instances of a class {usually of the class class).

Message is not

understood.
‘unknown- message’
Mo approp- error.
rigte slot
found.
Look in Mo method found.
superclas- Message is now
sesl interpreted as

slot access
message.

Method search

starts here . .
If no appropriate

method found,
procesd ta first
supercliassi

Figure 4-1: Method Search

4.1. Interpretation of Messages

The behaviour of an object is its reaction to received messages. The methods and slots of its class and its
tree of superclasses define this reaction (see figure 4-1).

e The methods of the object’s class are searched for a method with a filter matching the mes-
sage (see section 6.1} in left to right order. If found, the body of the method is executed (see
section 6.4).

e If no method is found, search proceeds in the class’s superclasses again in left to right and
depth first order.

e If no matching method is found at all, the message is interpreted as a slot access message (see
section 5.1.1).

4. Objects 4. Classes

ObjTalk84 Reference Manual 8

4.2, Overview of Predefined Classes

There are a set of predefined classes and objects which determine the structure of ObjTalk itself. They
are explained in more detail below.

4.2.1. Sub- and Superclasses

Figure 4-2 describes the hierarchy of the predefined classes. For example, Action is a subclass of object and
Method is the superclass of Extended-¥ethod.

action

Method

Figure 4-2: Sub- and Superclasses

4.2.2. Classes and Instances

Figure 4-3 describes the class - instance relationship of the predefined objects. For example, Action is an
instance of class and set-forw-rule is an instance of Rule.

4.3. class

Every class is an instance of the special class class. Since class can have instances it is itself a class and
therefore an instance of itself.

4, Classes 4.2, Overview of Predefined Classes

ObjTalk84 Reference Manual 7

Foxtende

Method Method

Figure 4-3: Classes and their Instances

4.3.1. Definition of class

The following could be a definiton of class:>
(ask class renew: class
(methods
(addmethod: ,?<named:atom ,*<method-restd =% sysaddmethodc)
(addslot: ,?¢newslotd:atom ,*<newdescr? => sysaddsiot)
(compile: =» syscompile)
(delmethod: ,%<oldslotd:atom => gysdelmethodc)
(delslot: ,?<oldslotd:atom =» sysdelslot)
(describe: ,?<¢oldslot?:atom =» gys??c)

(init: ,#<msgs> =»=> gysinitc)

(instantiate: ,*<msgsd> = sysinstwith)

(kill: =>=> gyskille)

(make: ,?<obj>:atom =» sysmake)

(make: ,?<obj>:atom with: ,%<msgs} => sysmake)
(new: ,?<obj>:atom ,#<alistd =) gysnew)
(redefining=forn: => gysredefinec)

(remake: ,?<obj» => sysremake)

(remake: ,?<obj> with: ,*<msgs> => sysremake)

(renew: ,%<obj» ,*<alist> =» sysrenew)
(replace: ,?<¢oldslot>:atom ,*<newdescr> =» sysrepl)
(repmethod: ,?<name>:atom ,*<method~rest> => gysrepmethodc)

(repslot: ,?<newslotd:atom ,*<newdescr® =) sysrepslot)

(slots: => sysslots))
(descr

2.
Since class cannot be created by sending a message to itself, class is created in a more basic way.

4, Classes 4.3.1. Definition of ¢clags

ObjTalk84 Reference Manual 8

(superc
(default (list object)})
(if-set (instead
(lambda (<superc®}
(mapcar {function object-of) <cuperc®)))
(after
(lambda (<supsrcd)
,I(hierarchie = , (mkhierarchis ,!isuperc))))))
(descr
(default nil)
(if-set (instead mkdescrs))
(if~added (instead mkdescr)))
(methods
(default nil)
(if-set (instead mkmethods))
(if-added (instead mkmethod))
(if~changed
(after
(lambda (m)
(in=all-gubclasses~do *,!(all-methods = nil))))))
(rules
(default nil)
(if-get (instead mkrules))
(if~added
(instead mkrule)
(after
(lambda (r)
(in-all-gubclasses=do '{establish~ali~rules))))))
(¢lass-slots)
(subclasses (default nill))
(instances (default nil))
(hierarchie)
(prote)
(all~descr (default nil))
(all~methods (default nil))
(all-rules (default nil))
(init~list (default nil))
(pattern (default 'make-form))
(pname (default ®<some_class>?)))
(superc cbject))

4.3.2. Slots of Classes

guperc = (<class> ...)

description: contains a list of the class’s superclasses.

subclagses = (<subclass> ...)

description: contains a list of the classes which have this class in their superc slot,

instances = {(<instance> ...}

description: contains a list of the class’s (immediate} instances. Instances of subclasses are not con-
tained.

4. Classes 4.3.1. Definition of class

ObjTalk84 Reference Manual 9

4.3.3. Methods of class

class provides methods to interpret the following messages. So, any class (being an instance of class)
understands them.

<message> ::= addmethod: <method-specification>
side-effect: adds a new method to the left of the existing methods.

note: if the new method is an extended method, a preexisting method with the same key is not
deleted and remains accessible. The method is accessibie for already existing instances.

<message> ::= addslob: SLOT <slot-description>...

side-effect: adds a new slot.

note: the new slot will be propagated to existing instances. The slot will be unbound. It is an
error for sLOT to already exist,

see-also: but see default and if-needed filler descriptions.

<message?> ::= delmethod: KEY
side-effect: every method with key KEY is removed.

<message> ::= delslot: SLOT

side-effect: sSLOT is removed.

note: Instances are not affected.

<message> ::= describe: SLOT

returns: a list of the form (SLOT ¢slot-descriptiond...)
<message> ::= init: (<message>)...

side-effect: the messages are sent to the object.

note: this message will be automatically sent to an object after its creation.
<message> ::= instantiabe: <init-messages>
returns: a new instance.

side-effect: after creation the message *init: <init-messages>® 15 sent tc it. The instances slot of its class
is updated to hold the new instance.

note: this 1s the basic way to create objects.

<message> ::= kill:

side-effect: the class, all instances and subclasses are killed.

4. Classes 4.3.3. Methods of class

ObjTalk84 Reference Manual 10

<message> ::
::= make: INSTANCE

<message>

note:

<message> :

returns:

side-effect:

note:

<message>

<message> :@:

note:
use:

warning:

<message>

note:

warning:

<message> :

side-effect:

<message> :

note:

<message>
note:

<message>

returns:

4. Classes

make: INSTANCE with: <init-messages>

this is equivalent to the instantiate: message. In addition the new instance is bound to the
symbol INSTANCE.

:= new: NAME <class-description>...

a new class.

the new class is bound to NAME.

this is equivalent to the make: message but uses the syntax
(SLOT . <value>)

mnstead of:

(BLOT = <value®)

i

remake: INSTANCE with: <init-messages>
remake: INSTANCE

this is equivalent to the make: message, but if INSTANCE is bound to an existing instance the
messages are sent to it and no new object is created.

to redefine an instance.

this does not always do what you might expect: the object is not completely rebuilt. Instead
the old object is modified.

::7 renew:. NAME <class-description>...

if NAME is bound to an existing class this class is redefined rather than created as a new class.
Otherwise this is equivalent to the new: method.

see remake. Message.

:= replace: SLOT <filler-description>...

the mentioned slot descriptions are substituted. If <filler-description> is a symbol (e.g.
default), then this filler description is deleted. slot are deleted.

:= repmethod: <method-specification>

equivalent to the addmethod: message, but if a method with the same key already exists, it is
removed first.

.:= repslot: SLOT <filler-description>...

equivalent to the addslot: message but if sLoT already exists 1t is removed first.

::= slots:

a list of all slot names of the class and its superclasses.

4.3.3. Methods of class

ObjTalk84 Reference Manual 11

4.4. Class Descriptions

<clags-descripbion> ::= (superc SUPERCLASS...)

This description defines the superclasses of a class. A class inherits class descriptions from its superclasses
in depth-first, left to right order. object is the default superclass.

<class-description> ::= (descr <slot-description>»...)

This description defines the slots of instances of a class. Information can be stored into slots and read
from slots by sending messages to an instance. See Chapter 5 for a detailed description of slots.

<class-description> ::= (methods (<method-specification>)...)
<method-specification> ::= <filter> <type> <body>

Methods define the reaction of instances of the class to messages sent to them. See Chapter 6 for a
detailed description of methods.

<class-description> ::= (rules <rule-specification>...)
<rule-specification> ::= (RULENAME <premises> <affected-slots> <body>)

For each rule specification a rule is created as follows:

(ask Rule instantiate:
(trigger-names: = <premises>)
(output-names: = <affected-slotsd?)
(body: = (<body>)))

See chapter 7.

5. Slots

Slots are used to store data in objects. Fach slot may have at most one value called “filler”.

5.1. Slot Access

Slots can be accessed either by sending messages to the object or by using certain basic access functions
from within an object’s method or rule bodies.

5.1.1. Slot Access Messages

The following behaviour of slots is only defined if there is no if-accessed filler description (see section
III.1). Slot access messages can trigger demons (see section 5.2.2).

4. Classes 4.4. Class Descriptions

ObjTalk84 Reference Manual 12

<message>

returns:

<message> :

returns:

side-effect:

<message>

returns:

side-effect:

<message>»

returns:

side-effect:

<message?

<message> .

returns:

side-effect:

<message> :

returns:

see also:

<message>

note:

returns:

<message>

returns:

<message>

note:

5. Slots

1= SLOT

the filler of sLoT. If it doesn’t have a filler, the message

SLOT needed:

is sent to the object and its result is returned instead of the filler of the slot.

:= SLOT = <value>

<valued.

SLOT 1s set to <valuer

c:= SLOT forget:

SLOT

the filler of sLOT 1s removed.

;= SLOT add: <elem>

€elem>

celew> is inserted in the list which is the filler of SLOT if it is not already there (checked
with eq).

i

SLOT delete: <elen>
SLOT sub: <elem>

Selem>

H

removes <elem> from the list which is the filler of sLOT {uses eq).

:= SLOT describe:

the slot description of sLoT.

describe: method of class.

:= SLOT needed:

this message is sent automatically by ObjTalk if sLoT is read and it has no value.

if the slot has a detault filler description, the default is reevaluated, assigned to the slot and
returned. If the slot has an if-needed Or set-it-needed filler description, its value is returned.
Otherwise a ®*slot not set:* error is signaled.

:= SLOT setp:

nonnil iff sLot has a filler.

::= SLOT <message>

<message> is forwarded to the object which is the filler of suor. If the filler of sLOT is no
object, the break function is called and its result is used instead of the filler.

to send a message along a path in a network of objects.

5.1.1. Slot Access Messages

ObjTalk84 Reference Manual

5.1.2. Slot Access Functions

The following functions may be used from within objects (i.e. methods or rules).

(setp SLOT)
(setpt *SLOT)

returns: non nil iff sLoT has a filler,

, 1SLOT

(slotvalue SLOT)

(sysget 'SLOT)

returns: the filler of sLor. If it has no filler, the message

SLOT needed:

is sent to the object and its result is returned instead of the filler of the slot.

see-also: Section I1.1.

5.2. Slot Descriptions

<slot-description> ::= (SLOT <filler-description>... }
The following sections describe the types of possible filler descriptions.

5.2.1. Slot Initialization

5.2.1.1. The Procedure of Slot Initialization

1. If there are either
¢filler-description> ::= (init <s-expressiony)
or
<filler~description? ::= (init create} (class CLASS)

the slot is filled either with the value of ¢s-expression’ or with an instance of class.

[3]

. Then any <init-messages> are sent to the object.

. Then if

(e

<filler-description’ ::= (modality required)

is provided and the slot is not set yet, an error message
“slot sLoT is required”’
is printed.

4. Then if there is no init filler description and the slot has not been initialized by an init-

message and either

13

5. Slots 5.1.2. Slot Access Functions

ObjTalk84 Reference Manual 14

¢filler-descriptiony ::% (default ¢s-expression?)
or
<filler-description® ::= (default create) (class CLASS)

is provided then the slot is filled either with the value of <s-expression» or with an instance of
CLASS.

Slot initialization may be executed in parallel but for any one slot the above mentioned order is in general
valid. An exception is when during initialization of one slot a demon reads the value of a not yet initial-
ized slot. In this case, a default of the second slot will be evaluated prematurely.

5.2.1.2. Inheritance

Slots are inherited from the superclasses. If some superclass has a slot with the same name then its filler
descriptions are inherited unless a subclass has a filler description of the same type (e.g. default). In the
latter case, always the filler descriptions of the lowest subclass are valid. An inherited filler description
can be disabled by specifying an empty filler description e.g.

“filler~descriptiony ::= (default)

which means: no default.

5.2.2. Demons

5.2.2.1. Assignment Demons

The following filler descriptions are used to specify functions (demons) to be triggered if a slot gets a filler
via the *=* message:

<message> ::= SLOT = <s~expression>

5.2.2.1.1 if-set Filler Description

<filler-description> ::= (if-set <time-description>...)
<time-description® ::= (ipstead <demon>)

<demon> ::= <function-name>

<demon> ::= <function>

<demon> ::= <s-expr>...

the result of the demon being applied to the assigned s-expression will be the new filler. instead functions
are inherited as follows: If too, stoo, ssfoo are the instead functions of the same slot of a class, its superclass
and the superclass of its superclass, the new filler will be:

(ssfoo (sfoo (foo <s-expressiond)))

If there are more than one instead functions at one level, the rightmost one will be applied first, the second
rightmost will be applied to the result of the rightmost etc..

5, Slots 5.2.1.1. The Procedure of Slot Initialization

ObjTalk84 Reference Manual 15

<time-description> ::= (before <demon>)
<time~-description> ::= (after <demon>)

Before (after) the slot is assigned a value, the demon is applied to the new filler®.

5.2.2.1.2 if-changed Filler Description

<filler-description> (if-changed <time-description-1>...)

(before <demon>)
(after <demon>)

<time-description-1> ::
<time-description-1> ::

t

This is similar to if-set demons. But these demons are only triggered if the slot has already a filler and
¢s-expression’ 1S not eq to the old filler. betore-demons are applied to the new filler, atter-demons to the
old filler.

5.2.2.1.3 trigger-rules Filler Description

<filler-description> ::= (trigger-rules RULENAME...)
Each rule is triggered in the specified sequence.

5.2.2.1.4 Invocation Sequence of Assignment Demons

When a slot is assigned a new value, the following demons (if present} are invoked in the following order.
If there are more than one demon on the same level (in the same class) evaluation proceeds from left to
right.

1. instead functions in leaf to root order of superclasses.

3]

. if-changed-before demons in leaf to root order.
3. il-set-before demons in leaf to root order.

4. new filler is assigned to slot.

5. if-set-after demons in root to leaf order.

6. rule demons in leaf to root order.

7. if-changed-after demons in root to leaf order.

5.2.2.2. Set Manipulation Demons

The following filler descriptions are used to specify functions (demons) to be triggered if a value is added
to (deleted from) a set (represented as a list) which is the filler of a slot via the add: (delete:) message.

3atter being transformed by instead functions.

5. Slots 5.2.2.1.1. if-set Filler Description

ObjTalk84 Reference Manual 16

<filler-description> ::
<filler-description> ::

(if-added <time-description>...)
{(if-deleted <time-description-i»...)

Inheritance of set manipulation demons is analoguous to that of assignment demons.

5.2.2.3. if-forget Demons

<filler-description> ::= (if-forget <time-description-i>...)

This filler description is used to specify functions (demons) to be triggered if a filler is removed from a slot
via the forget: message. The demon is triggered only if the slot actually had a filler before.

5.2.2.4. if-needed Demons

<filler-description> ::= (if-needed <s-expression>)
<filler~description> ::= (set-if-needed <s-expression>)

This filler description specifies an s-expression to be returned as the result of a slot read message
<message> ::= SLOT
if there is no filler and no default description. Note, the first form (if-needed) does not automatically

assign the value of the expression to the slot. Therefore, In most cases you will prefer the set-it-needed
form.

If several (set-)if-needed demons are specified then the first (in subclass to superclass and left to right
order) is valid.

5.2.3. Filler Descriptions for Documentation Purposes

These descriptions are not interpreted by ObjTalk. The user may add other types of descriptions.

<filler-description» ::= (restrict PREDICATE...)
<filler-description> ::= (one-of (value <s-expression>)...)
<filler-description> ::= (all-of 777?)

<filler-description> ::= (list-of ??7)

5.2.4. Other Slot Descriptions
5.2.4.1. Constant Slots

<filler-description> ::= (quote <value>)

If this description is present the slot is a constant slot with the value ¢<valuwe». Constant slots have always
the same value for every instance,

5. Slots 5.2.2.2. Set Manipulation Demons

ObjTalk84 Reference Manual 17

6. Methods

Methods define the procedural behavior of objects. Methods consist of

e a filter which describes the set of messages which trigger the method and

¢ a body (sequence of s-expressions) which describes how the message is to be interpreted.

6.1. Method Filters

The filter of a method describes the set of messages which can invoke it.

<filter> ::= KEY <filter-element>...
A message matches a filter if it begins with kEy and each filter element matches.

ATOM
(*any* ATOM... }

<filter-element> ::
<filter-element> ::

matches the atom ATOM or any element of the list.

, TELEMENTVARTABLE
, TELEMERTVARTABLE : <pred>:<pred>. ..

<filter-element> ::
<filter-element> ::

matches any single s-expression if all of the predicates hold for it.

, *SEGMENTVARIABLE
,*SEGMERTVARIABLE : <pred>:<pred>. ..

<filter-element> ::
<filter-element> ::

i

matches any sequence of s-expressions (even the empty sequence) if all of the predicates hold for it.

<filter-element> ::= ,#CLASSVARIABLE:<class>

matches a single s-expression if it is an instance of class <class>,
8.2. Types of Methods
Methods can be of different types.

<type> (= =

Recursive methods. The method is of class ¥ethod. A message sent from within its body that matches its
own filter invokes it recursively.

8. Slots 8. Methods

ObjTalk84 Reference Manual 18

<type> ::= =>=>

The method is of class Extended-Method. Method search for messages with the same key sent from within

its body* ignores this method. This kind of method is used to extend the behavior of existing, inherited
methods by defining a sort of shell around them.

<filter> ::= (KEY <method-type-name>) <filter-element>...

Users can define their own method types (as subclasses of Method). When a class is created (e.g. using the
new: message) for each method-specification an instance of its method class is created as follows:

(ask <method~type~name> instantiate:
(pname = KEY)
(filter: = (<filterd>))
(body: = (Cbody>)))

6.3. Method Classes

Methods are instances of the following classes:

(agk class renew: Action
(rules (set~form |,| . set=-form-rule))
(descr (body: (trigger-rules set=form))
(type:)
(predicates: (trigger-rules set-form))

(form:}))

(ask class renew: Method
(superc Action)
(descr (filter: (if-set (after Method:set-predicates)))

(type: ’=3))
(methods (cond-form: =» Method:cond~form:1)
(show: =» Method:show:1)
(make-form: =y Method:mkform:)))

(ask class renew: Extended~Method
(superc Method)
(descr
(type: ’'=»=»)
(unique-name (default (gen-unique-name)))
(predicates:
(if-set
(instead
(lambda (p)
(cons *(not (memg *,,tunique-name prohibit=calls)) p)))J)
(form:
(if-set
(instead
(lambda (f)
“(((lambda (prohibit-calls) ,01)
(cons ',,!unique-name prohibit~calls)})))))))

4 .
dynamic scope.

8. Methods 6.2. Types of Methods

ObjTalk84 Reference Manual

6.4. Method Bodies

<body>» ::= <s-expression>...
<body> ::= FUNCTIONNAME

16

The body of a method is executed if the object receives a message which matches the filter {i.e. it inter-
prets the message). If the body is a sequence of s-expressions then it is executed with the filter variables
lambda bound to their actual values in the message. If the body is a function name then the function is
applied to the values of the filter variables. In addition the following variables are available:

selt is bound to the object receiving the message

sender is bound to the object sending the message.

then object is the sender.

nsg is bound to the whole message.

7. Rules

If the message is sent from the toplevel

Rules are similar to methods but they can only be invoked from within their objects. There are two ways

to invoke a rule:

e if a slot is set which has a trigger-rules slot description.

e explicitly using the function try-ruies. See page 2.

Rules consist of:

® a set of premises for its execution,
a list of the slots which are affected by the body,
e a body.

7.1. Premises

<premises> ::= (<premise>...)

The premises are in the trigger-names: slot of the rule.

<premise> ::= SLOT

The premise is satisfied if the slot is set (has a filler).

<premise> ::= <s-expression>

The premise is satisfied if the expression evaluates to non nil.

8. Methods

6.4. Method Bodies

ObjTalk84 Reference Manual 20

7.2, Affected Slots

<affected-slots> ::= (SLOT...)
The list of affected slots is in the output-nanes: slot of the rule. This list has only documentary purposes.

7.3. Rule Body

<body>» ::= <s-expression>...

The variable rule is lambda-bound to the object representing the rule. The body is in the body: slot of the
rule.

7.4, Definition of Rule

(ask class renew: Rule
(superc Action)
(desor
(type: *Rule)
(trigger-names:
(default nil)
(if-set
(after
(lambda (tn) ,%(predicates: = ,(mkpreds tn))))))
{output~names: (default nil)))
(methods (make-form: => Rule:mkform:)))

8. Constraints

Constraints® are used to define abstract relations like sum, maxrimum, etc.. It is then possible to declare
such a constraint to hold for some slots of a specific object or alternatively of all instances of a class in
general.

Once declared, constraints are automatically maintained by the ObjTalk system. Values which can be
inferred are computed and assigned to their slots; contradictions are detected and presented to the user for
resolution.

8.1. Definition of Constraints

Constraints are instances of the class constraint which is a subclass of class.

(ask class renew: constraint
(superc class)
(descr
(patterns (default nil))
o)
L)

5The features described in this chapter are made available by loading the file constr in the O‘bjTa,lk directory.

7. Tules 7.2. Affected Slots

ObjTalk84 Reference Manual 21

The main difference between a regular class and a constraint is that the rules of a constraint are triggered
automatically whenever a slot is affected.

<class-description> ::= (patterns <pattern-specification>...)
<pattern-specification> ::= (<pattern-element>...)
<pattern-element> ::= ,*SLOT

<pattern-element> ::= <atom>

Any of the specified patterns may be used in a class description to specify the slots of the class which

correspond to the slots of the constraint (see Section 8.4).

ObjTalk supplies for instance the

(ask constraint renew: adder
(descr (a:) (b:) (¢c:))

(rules

following constraint for the sum relation:

(adder-rule~1 (b: c:} (a:)
(and (numberp ,!b:) (numberp ,tc:)
(ask self a: = ,(~ ,ic: ,!b:))))
(adder~rule~2 (a: c:) (b:)
(and (numberp ,!a:) (numberp ,lc:)
(ask self b: = ,(~ ,tc: ,1a:))))
(adder-rule~3 (a: b:) (¢:)
(and (numberp ,fa:) (mumberp ,ib:)
(ask self c: = ,(+ ,la: ,iD:)))))
(patterns
(,%c: = ,*a; + ,%b:)
(,*a: = ,%¢: = ,%b:1)))

8.2. Coreferences

Slots can be declared coreferent.

<message> ::= SLOT1 == <object> SLOT2

side-effect: the values of sLoTt and of sLOT2 of <objects are declared to be always the same.

With the following class description, coreferences can be declared for all instances of a class.

<class-description> ::= (corefs <coref>...)
<coref> ::= (<path> == <path>)
<path> ::= SLOT...

The slots at the end of the two paths have always the same filler. If either of them is changed the other
will also be changed.

8.3. Constraint Application to a Single Object

In order to declare a constraint for a specific object it is necessary to make an instance of the constraint
and to make its slots coreferent to slots of the object using the #==» slot message (see Section 8.2).

Example:

%, Constraints 8.1. Definition of Constraints

ObjTalk84 Reference Manual 22

(ask class new: package
(descr (gross:) (net:) (wrap:)))

(let ((adder! (ask adder instantiate:}))
(ask package make: packagel)

(ask packagel net: == ,adderl a:)
(ask packagel wrap: == ,adderi b:)
(ask packagel gross: == ,adderl c:))

8.4. Constraint Descriptions of Classes

An additional class description is used to declare constraints to hold for any instance of the class.

i

<class-description> ::= (constraints <constraint-clause>...)
<constraint-clause> (CONSTRAINT (<path-or-comstant>...))
<path-or-constant> ::= SLOT...
<path-or-constant> <atom>

The ¢path-or-constant> list should match one of the constraint’s pattern specifications and thereby specify
which slots (or slot paths) correspond to which slots of the constraint.

Example:

(ask class new: package
(descr (gross:} (met:) (wrap:))
(constraints (adder (gross: = net: + wrap:))))

8.5. Behaviour of Constraints

If the global variable ctrace:var (default value: t) is nonnil then constraints report their actions (e.g. in-
ferences of slot values). If a slot, the value of which is inferred from other slots by means of a constraint,
15 assigned a different value then this situation is considered a contradiction. In this case the user is asked
to retract one of the slot values which were used for the inference. ‘

Example:

-?» (ask packagel net: = 100)

awakening <some_adder® because its a: got the valus 100
100

-» (ask packagel wrap: = 20)

awakening <some_adder> because its b: got the value 20
adder-rule~3 computed 120 for ¢: from (a: b:)

awakening <some adder> because its c¢: got the value 120
20

-> (ask packagel gross: = 130)

coptradiction when merging 120 of (packagel gross:) and 130
these are the premises that seem to be at fault:

{1.} (packagel net:) = 100

12.1 (packagel wrap:) = 20

choose one of these to retract and RETURN it.
Break choose culprit

€1>: (return 1)

retracting the premise (packagel net:)
removing 100 from (packagel net:)

8. Constraints 8.3. Constraint Application to a Single Object

ObjTalk84 Reference Manual 23

removing 120 from (®<some_adder>® c:)
because of ("<some adderd® a:) == (packagel net:)
aFakening <some_adder> because its c: lost its value
avakening <some_ adder> because its a: lost its value
awakening <some adder> because its c: got the value 130
adder-rule~1 computed 110 for a: from (b: ¢:)
awakening <some adder> because its a: got the value 110
130
-2

9. Error Handling

ObjTalk calls the following standard error handlers. They can be redefined by the user.

(no-object-error 'g form)

called-when: a message is sent to a non object.
side-effect: prints an error message and enters a break loop.
returns: the value returned from the break loop (if it returns!).

note: ObjTalk continues with the returned value instead of g forn.

(slot-not-set-error ’s slot)

called-when: s slot is read and has not been assigned a filler yet.

side-effect: prints an error message and enters a break loop. The returned value is assigned to the
unbound slot.

returns: the value returned from the break loop (if it returns!).

note: ObjTalk continues with the returned value.

(unknown-slot ’s slot)

called-when: there is no slot with this name.
side-effect: prints an error message and enters a break loop.
returns: the value returned from the break loop (if it returnst).

note: ObjTalk continues with the returned slot name instead of s_slot.

(unknown-message 'l msg)
called-when: there is no method with the required key.

side-effect: prints an error message and enters a break loop.
returns: the value returned from the break loop (if it returns!}.

note: ObjTalk continues with the returned value instead of 1_nsg.

8. Constraints 8.5, Behaviour of Constraints

ObjTalk84 Reference Manual 24

(unknown-pattern ‘o _self "o _sender 'l msg)

called-when: there is a method with the required key, but no method with all of its filter elements match-
ing the message.

side-effect: prints an error message and enters a break loop.
returns; the value returned from the break loop (if it returns!).

note: ObjTalk continues with the returned value instead of 1 msg.

10. Compiling ObjTalk

Liszt compiles method and rule bodies. Also demons which are lambda expressions are compiled. The rest
of the object cannot be compiled.

Put the following line at the beginning of your file:

(includef (concat objtalk:dir ’objincl))

Appendix I. The Backquote Macro

The backquote macro is an extended version of the standard Franz Lisp version. The ask macro evaluates
its arguments like the backquote macro.

I.1. Types of Evaluation

Only expressions preceeded by a comma are evaluated:

< insert <x» (do not evaluate).

, <x> insert the value of <x>.

, €% splice in the value of <x> (using nconc).

,8¢x> splice in a copy of the value of <> (using append).

I.2. Nested asks and Backquotes

asks and backquotes can be nested within each other:
‘(ask ,x ,8°,msg)
This means: nsg is evaluated at the first evaluation time and a copy of its value is spliced in.

~> (setq msg '(move: 5 17)3
(move: 5 17

-» *(ask ,x ,8" ,msg)
(ask ,x move: B 17)

Figure I-1 describes the evaluation scheme in nested asks and backquotes. An x means that the expression
1s evaluated at that time and inserted. Amn o means that the expression is evaluated at that time and a

9. Error Handling 9. Error Handling

ObjTalk84 Reference Manual 25

copy of the value is spliced in. The use of ,. for splicing without copying is analogous.

|- third last evaluation
|- second last evaluation
|- last evaluation

X , B
b 4 , .8
X X !

X .. .a

X x 2y s B

X X , .8
X X X -
a ,8a

[+ .8 ,a
8 x , 03

g e ,8,83
x @ ,8,a

Figure I-1: Use of the Backquote Macro

Appendix II. Efficiency Considerations

I1.1. Reading Slots

There are two ways to read a slot:
1810t and ,!(Slot)

Both are functionally equivalent, but the first is more efficient since it does not use the message passing
mechanism.

I1.2. Fast Slot Access Functions

These functions access slots without using the message passing mechanism and therefore are faster. They
do not trigger any demons.

{get-slot ’<object> SLOT)
returns: the filler of sLoT of <object>. If it doesn't have a filler, the message

SLOT needed:

is sent to the object and its result is returned instead of the filler of the slot,

(<~ SLOT °<s-expression>}
(set-slot ’<object> SLOT ’<s-expression>)

returns: <s-expression?.

side-effect: ¢s-expression> is filled into sLoOT.

1. The Backquote Macro 1.2. Nested asks and Backquotes

ObjTalk84 Reference Manual 28

(set-slot-unbound ’SLOT)

side-effect: the filler of sL0OT is removed.

Appendix IlIl. Experimental Features

II1.1. if-accessed Description

<filler-description> ::= (if-accessed FUNCTION)

The user may alter the behavior of slots using the if-accessed filler description. If this description is
provided all other descriptions are not interpreted but are passed to FUNCTION. Whenever a message is sent
to SLOT, FUNCTION is called as follows:

(FUNCTION *SLOT ‘<slot-descriptiond ’<rest-message?®)

<rest-message> 1S the message without the slot name.

II1.2. Inverse Slot Relations

<filler-description> ::= (<inverse-relation> SLOT)

<inverse-relation» ::= 1:1
<inverse-relation®» ::= 1:n
<inverse-relation> ::= n:i
<inverse-relation> ::= n:n

These slot descriptions are used to declare inverse (bidirectional) links between objects. Declarations have
to be present in both participating objects.

Example:
If the slot FATHER has the description

(FATHER (1:n SONS))

and the slot soNs has the corresponding description

(SONS (n:1 FATHER))

then the slot soNs of object x will always contain a list of all the objects for which x is a filler of
slot FATHER.

IIL.3. ObjTalk Files

The facilities described in this section are intended to serve the file handling for o'bjectse8 Networks of
objects can be saved on files to be restored later.

8The features described in this section are made available by loading the file file in the ObjTalk directory.

II. Efficiency Considerations 11.2. Fast Slot Access Functions

ObjTalk84 Reference Manual 27

(ask class renew: file
(descr (objects: ...) (objects~not-to-save: ...)
(methods (save: ,*objs => ...)
(close: =» ...0))

The class tile describes an ObjTalk file. The save: message is used to associate objects to a file (the
objects are stored in the objects: slot).

The close: message causes a file object to store its network of objects on a file with the name equal to its
pname. The close: method stores the following objects:

e objects contained in the objects: slot,

® objects which are referenced by objects to be stored except:

o they are bound to a variable and the user decides (upon request) not to store them or

o they are contained in the objects-not~to~save: slot.

An ObjTalk file is loaded like any other lisp file (e.g. using the 1oad function).

(ask class new:
(methods
(just~loaded: =>=> ... ,i(just-loaded:) ...}
S
)

The just-loaded: method can be extended to accomplish special initialization actions when the object is
reloaded from an ObjTalk file.

after-load-actions = (<g~expr>...)
This variable holds a set of s-expressions which are evaluated after loading an ObjTalk file.

(world [’o class])

returns: a list of o_class, its subclasses and their instances. Without parameter, it returns a list of all
currently existing objects.

Appendix IV. Pitfalls

In the current implementation names of slots are lambda-bound within method and rule bodies. So, do
not use variables with the same names as your slots.

In general it is a good strategy to use different names for slots, objects, filter variables etc..

II. Experimental Features v HL3. ObjTalk Files

ObjTalk84 Reference Manual

Index

, “‘evaluate” 24 get-slot function 25

, ! read macro 1 get: message 3

, ISLOT 13

,# class variable 17 if-accessed filler description 286

,% segment variable 17 if~added filler description 18

.. “splice in” (nconc} 24 if-changed filler description 15

,? element variable 17 if~deleted filler description 16

,8 “splice in” (append) 24 it-forget filler description 186
if-needed filler description 186

1:1 filler description 26 if-set filler description 14

1:n filler description 26 init filler description 13
init-messages® 4

<= function init: message 4, ¢
instantiate: message @

= glot message 12 instead time deseription 14

== slot message 21 <¢inverse-relation> 26

=% method type 17

=»=> method type 18 just-loaded: megsage 27
add: slot message 12 kill: message 4, 9
addmethod: message 9

addslot: message € list=of filler description 16
<affected-slots> 20

after time description 15 make: message 10
after-load~actions variable 27 mapask function 2

all-of filler description 16 <method-specificationy 11
ask function 1 modality filler description 13

mnsg variable 19
before time description 15

<body» 19, 20 n:i filler description 26
n:o filler description 28
<class~description® 11, 21, 22 needed: slot message 12
class-of function 2 new: message 10
close: message 27 no-object=error function 23
constraint class 20
<constraint-clause> 22 object-of function 2
Constraints 20 objectp function 2
Contradiction 22 ofclassp function 2
<corefd 21 one-of filler description 18
Coreferences 21
ctrace:var variable 22 <path> 21
{path-or-constantd 22
default filler description 14 ¢pattern-element>» 21
delete: slot message 12 <¢pattern-specification® 21
delmethod: message @ pp: message 4
delslot: message 9 <premise> 19
<demon? 14 <premises® 16
describe: message ¢
describe: slot message 12 quote filler description 16
edit: message 3 redefining-form: message 4
eval: message 3 remake: message 10
renew: message 10
fils class 27 replace: message 10
<filler~descriptiond 13, 14, 15, 16, 26 repmethod: message 10
<filter> 17 repslot: message 10
<filter-element® 17 restrict filler description 18

forget: slot message 12 <¢rule-specificationd 11

ObjTalk84 Reference Manual

save: message 27

self variable 19
sender variable 19
set-if-needed filler description
set~slot function 25
set: message 4

setp function 13

setp* function 13
setp: slot message 12
show: message 4
{slot-description> 13

slot~not-set~error function 23

slots: message 10
slotvalue function 13
sub: slot message 12
super: message 4
sysget function 13

¢time-description®» 14, 15
<time~description—-1> 16
trigger-rules filler description
try-rules function 2

<typer 17,18

unknown-message function 23
unknoen~-pattern function 24
unknown-slot function 23

viewed-as: message 4

world function 27

16

15

ObjTalk84 Reference Manual

Table of Contents

1. Introduction
1.1. Metanotation

[

. Lisp Functions

W

. Objects
3.1. Definition of object
3.2. Slots of Objects
3.3. Methods of object

4. Classes

4.1. Interpretation of Messages

4.2. Overview of Predefined Classes
4.2.1. Sub- and Superclasses
4.2.2. Classes and Instances

4.3. class
4.3.1. Definition of class
4.3.2. Slots of Classes
4.3.3, Methods of class

4.4. Class Descriptions

5. Slots
5.1. Slot Access
5.1.1. Slot Access Messages
5.1.2. Slot Access Functions
5.2. Slot Descriptions
5.2.1. Slot Initialization
5.2.1.1. The Procedure of Slot Initialization
5.2.1.2. Inheritance
5.2.2. Demons
5.2.2.1. Assignment Demons
5.2.2.1.1 iz-set Filler Description
5.2.2.1.2 if-changed Filler Description
5.2.2.1.3 trigger-rules Filler Description
5.2.2.1.4 Invocation Sequence of Assignment Demons
5.2.2.2. Set Manipulation Demons
5.2.2.3. it-torget Demons
5.2.2.4. it-needed Demons
5.2.3. Filler Descriptions for Documentation Purposes
5.2.4. Other Slot Descriptions
5.2.4.1. Constant Slots

8. Methods
6.1. Method Filters
6.2. Types of Methods
6.3. Method Classes
6.4. Method Bodies

B et et

[1] W W o

>

Reliie i N Mo e]

11

11
11
11
13
13
13
13
14
14
14
14
15
15
15
15
16
16
16
16
16

17
17
17
18
19

ObjTalk84 Reference Manual

7. Rules
7.1. Premises
7.2. Affected Slots
7.3. Rule Body
7.4. Definition of Rule

8. Constraints
8.1. Definition of Constraints
8.2. Coreferences
8.3. Constraint Application to a Single Object
8.4. Constraint Descriptions of Classes
8.5. Behaviour of Constraints

9. Error Handling
10. Compiling ObjTalk

Appendix I. The Backquote Macro
L.1. Types of Evaluation
1.2. Nested asks and Backquotes

Appendix II. Efficiency Considerations
I1.1. Reading Slots
I1.2. Fast Slot Access Functions

Appendix III. Experimental Features
IH.1. it-accessed Description
IT11.2. Inverse Slot Relations
II1.3. ObjTalk Files

Appendix IV, Pitfalls

Index

List of Figures

Figure 4-1: Method Search

Figure 4-2: Sub- and Superciasses
Figure 4-3: Classes and their Instances
Figure I-1: Use of the Backquote Macro

19
19
20
20
20

20
20
21
21
22

23
24

24
24
24

25
25
25

28
26
26

27
28

T =3 Oy v

[}

