ObjTalk

Primer

Christian Rathke, Andreas C. Lemke

Technical Report CU-CS-290-85

July 17, 1985
Translated Version hy
Vera M. Patten, Christopher P. Morel

Dept. of Computer Science
University of Colorado, Boulder

Copyright © 1985 Christian Rathke

ObjTalk 83 Primer

Preface

1. Overview
1.1 Objects
1.2 Classes and Instances
1.3 Sending Messages
1.4 The Class Hierachy
1.5 Methods
1.6 The System Kernel

2. Sending Messages

3. Definition of a Class
3.1 The superc Aspect
3.2 The descr Aspect

3.2.1 Default
3.2.2 Coref
3.2.3 lf-changed
3.2.4 If-forget
3.2.5 If-needed
3.3 The methods Aspect
3.4 The corefs Aspect
3.5 The constraint Aspect
3.5.1 The rules Aspect

Table of Contents

3.5.2 The patterns Aspect

4. Classes and their Methods

4.1 The make Message

4.2 The instantiate Message
4.3 The addslot Message
4.4 The describe Message
4.5 The replace Message
4.6 The delslot Message

4.7 The addmethod Message

4.8 The delmethod Message

5. Instances and their Methods

5.1 The init Message
5.2 The viewed-as Message
5.3 The kill Message

8. Slot Access Methods
6.1 Slot Inquiry
6.2 Slot Assignment
6.3 Value Deletion
6.4 Filler Description
6.5 Coreferences

7. The Objects class and object

7.1 The Object class
7.2 The Object object

8. ObjTalk Syntax

O D o Wb = b L

11
11
12
13
13
14
15
15
15
18
20
21
22

24
24
25
25
25
25
26
26
26

27
27
27
28

28
29
29
30
30
30

30
30
32

32

ObjTalk 83 Primer

Figure 1-1:
Figure 1-2:
Figure 3-1:

List of Figures

A Class Hierarchy
An Inheritance Hierarchy
Another Inheritance hierarchy

10
12

ObjTalk 83 Primer i

Preface

This is an introductory primer to the C)bj‘TmUc1 language.

ObjTalk is implemented in Liep. Since ObjTalk can be viewed as an object-oriented extension of Lisp,
knowledge of Lisp is helpful.

A description of the language ObjTalk can give a good impression of its features. However, to learn the
language, immediate practice on a terminal is recommended. The examples given in this primer can easily
be followed and small ambiguities can be clarified through testing by the user.

First, a short introduction to object-oriented programming will be given, followed by an overview of the
available ObjTalk language constructs. This section is only intended to give the reader an idea of the
constructs, and therefore, attention to the syntax is not yet required. In further sections, the objects
available in the system and the messages that are understood by them will be examined more closely and
examples will be given. The last chapter will give a complete summary of the ObjTalk syntax.

ObjTalk is being developed as part of a research plan of the Institute for Computer Science at the
University of Stuttgart.

Since ObgTalk is not yet fully developed, we welcome comments of any kind.

1. Overview

ObjTalk is a frame-based, object-oriented language for the representation of knowledge. The structural
organization of the knowledge is achieved through a hierarchy of frames, and computation is object-
oriented, i.e. represented through the sending and receiving of messages between objects.

1.1 Objects

Objects are active, structured knowledge entities for describing a situation. An example of an object
could be the representation of a room. A room consists of walls, doors and usually pictures. Furthermore,
it is a three dimensional structure, consists largely of air, and people can congregate in it and find electri-
cal outlets. All of these facts could be represented in 2 "room object®.

The parts of the room object can also be described through objects: pictures, chairs and walls could be
objects as well as people, life forms, situtations, verbal expressions, attitudes, or thoughts.

Objects are active in the sense that they can exchange messages with each other. As a result, a room
object can be "asked" about its attributes. An object that represents a lamp can be told through a
message to plug itself into an outlet in the room. Consequences of these actions can be propogated
through objects (the lamp is on, the room is brighter, electricity is being used).

lObj Talk is an acronym for object and talk.

ObjTalk 83 Primer 2

1.2 Classes and Instances

There exists two object types: classes and instances. Classes are objects that describe other objects. For
example, all people can be described by a person class. In ObjTalk the definition of a person class can
be:

(ask class new: person
(descr (last-pazme)
(first-name)

(telephone—number)}))2

. person

With this expression, the class person is defined. Through the use of the keyword sk, a message is for-
mulated. The receiver of the message is the object cisss. This portion
(descr (last-nams)

(first-name)
(telephone~number))

defines the slots of the class person. In ObjTalk, the slots describe the characteristics of the class. The
class persor, in this example, is described with the slots last-name, tirst-nams, and telephons-number.

From a class, objects can be generated in which the slots have predetermined values. Such objects are
called instances. For example, by sending a message to the class person, the instances john and mary could
be created with:

(ask person make: jobn with:
(last-name = gmith)
(first~name = jokn)
(telephone-number = 4423342))

==) john

(ask person make: mary with:
(last~name = miller)
(tirst-name = mary)

(telephone-number = 4444434))

==> mary

We have so far created three objects: person, john, and mary. person is the class of all people; john and mary
are instances of parson. The slots that we defined in the class person were initialized when john and mary
were created.

2 F . 0
“You are encouraged to immediately type in these expressions.

3 .
=z» means "results in®".

ObjTalk 83 Primer 3

Every instance belongs to a certain class. In the class, the slots are defined; in the instance the slots are
filled.

1.3 Sending Messages

Objects in ObjTalk can be manipulated by sending them messages. Let us look at the two examples
from above:

(ask class new: person
(descr (last~name)
(first-name)
(telephone-number)))

==> person

(ask person make: john with:
(last~name = suith)
(first-name = john)

(telephone-number = 4423342))

==>» john

We sent messages to the objects class and person and in the process created new objects.

The sending of messages is achieved through the use of the keyword asx. Following ask is the object to
which we want to send messages. The rest is the message itself. With the new message to class, new
classes are created.

In the second case, we sent the make message to the class person. All classes can understand the make
message which creates instances of that class.

The sending and receiving of messages is the defining characteristic of programming in ObjTalk. In other
words, "programming in ObjTalk" means the formulation of messages. The sending of messages is in-
dicated through the use of the keyword ask. Objects receive and interpret messages on the basis of their
own specific attributes.

Next, we know that the objects class and person can understand messages for the production of new ob-
jects. Which messages, for example, john can understand depends completely on which class john belongs
to. jobn is an instance of person. Therefore, john understands questions regarding the slots that were
defined in the class person:

ObjTalk 83 Primer 4

(ask john last-name)
==> smith
(ask john first-name)

==> john

Additionally, we can ask john to reassign his slots:

(ask john telephone-number ¥ 4423333)

==> 4423333

(ask john telephome-number)

==> 4423333

The messages that can be understood by a given object depend entirely on which class the object belongs
to. As shown above, an instance {join) can be asked about the values in its slots or can have the values of
its slots reassigned through a message.

1.4 The Class Hierachy

We want to introduce the class co-worker that, in addition to all the slots contained in perses, also has a
project-slot in which the co-worker’s research project membership can be stored. ObjTalk allows the
previously existing class person to be used in the definition of co-worker:

(ask class new: co-worker
(superc person)
(descr (project-affiliation)))

==} co-worker

We will also define a new class project.

ObjTalk 83 Primer 5

(ask class new: project
(descr (boss)
(employees)))

==» project

To generate an instance, we send the make message (as above) to a class:

(ask project make: zi)

==y a.;i4

(ask co-worker make: donald with:
(last-name = anderson)
(first-name = donald)
(telephone~number = £421234)

(project-affiliation = , 21%))

==)» donald

What was accomplished with these statements? The object class was asked to generate a new class. The
message, however, was extended to say:
Make a new class co-worker with the slot project-atzilistion; also, the class person should be a
superclass of co-worker.
In this way, the class co-worker contains the slot project-affiliation and also inherits all the slots from
person. Therefore, when we define donald, the slots of both classes can be filled.

To avoid redefining slots, they can be passed from one class to another. An analogy to the example would
be the expression: "every co-worker is a person®. In ObjTalk this means: "every instance of the class
co-worker" inherits all the slots of the class person®.

The inheriting mechanism plays a substantial role in ObjTalk. All classes are embedded in an inheritance
hierarchy. The root of this hierarchy (the class that passes its slots to all other classes) is named object.
object is automatically established as a superclass when no other is specified (as in the definition of person).

With our examples, we have generated a class hierarchy (see Fig. 1-1).

4When you type in the previous expression, actually the newly created object is returned. Since objects are some
complicated internal data structures, the Lisp system will only print their name. There is also 2 way to print out a more
full fledged representation of an object.

5The comma is necessary here, because objects are implemented as some lisp data structures which are bound to symbols.
E.g. the object that describes the project ““ai’ is the value of the Lisp symbol ai. So, in this example, ai has to be preceded
by a comma to assign the object and not the symbol ai to the slot project~affiliation.

ObjTalk 83 Primer 8

Cobject

< person> (m}

I

(/c k
O-wWor
Ceo-worker)

————

Figure 1-1: A Class Hierarchy

To complete the example, we will define a few more classes and instances:

(ask co~worker make: gerhard with:
(last-name = fischer)
(first-name = gerhard)
(telephone-number = 4920000)
(project-affiliation = ,ai))

==» gerhard

(ask ai boss = ,gerhard)

==> gerhard

(ask ai employees = (,donald ,gerhard))

==> (donald gerhard)

(ask donmald project-affiliation)

==y ai

(ask ai boss)

==> gerhard

With the previously introduced object definitions, the class project and its instance =i were introduced, as
well as a new instance of co-worker (gerhard). Furthermore, messages were used to ask donald for the value
of his project-affiliation slot and to ask ai the value of its voss slot.

1.5 Methods

Objects can understand messages that inquire about the status of their slots. For example, we have seen
above that the objects person and class can understand messages for the production of other objects (the
e and make messages). Such messages, which are independent of slots, are understood by objects on the
basis of methods.

ObjTalk 83 Primer 7

A method is a procedure that is executed when an object receives a certain message. Methods are com-
posed of two parts:

e a recognition portion, that is used in the understanding of the message

® an executable portion, that “computes’ the ‘‘answer” to the message.

In this example, we will specify a method supervisor. The definition of co-worker would then have to be as
follows:

(ask class new: co-worker
(superc person)
(descr (project-affiliation)}
(methods
(supervisor =>» (ask ,(ask self project-sffiliation) boss))))

==» co~worker

Everything that appears before the arrow (=»>) comprises the recognition portion (or *filter") of the
method. In the example, all instances of co-worker can understand the message supervisor. After the ar-
row, the executable portion (or the body) of the method appears. In this portion, the value of the slot
project-atfiliation, which has to be an instance of the class project in this example is asked about its slot
boss. self always refers to the indicated instance (which in this case is co-worker, either gerbard or donsld).
A comma before an expression causes its evaluation. The two messages in the executable portion of the
method are predefined for reading the slots project-affiliation O boss.

Since donald and gerhard are instances of co-worker, we can send them the message supervisor.

(ask donald supervisor)
==> gerhard
(ask gerbard supervisor)

== gerhard

Methods can also have parameters as the following example for the definition of the second method of
co~worker (colleague) demonstrates:

ObjTalk 83 Primer 8

(agk class new: co-worker
(superc person)
(descr (project-affiliation))
(methods
(supervisor =» (ask ,(ask self projsct-affiliation) boss))
(colleague of ,?person ? =>
(and (menq person
(ask , (ask self project-affiliation) employees))
(not (equal self persom))))))

=z} co-worker

(ask donald colleague of gerhard %)
== {

(agk gerhard colleague of donald ?)
== ¢

(ask donald colleague of donald 7)
==> pil

(ask donald colleague of mary ?)

== nil

The recognition portion of the method consists of four parts:

1. colleague
2. ot
3. ,?person

4,7

The parts 1, 2 and 4 are constant parts of the filter and must be literally the same in the corresponding
portion of the message. ,?person denotes a variable designated through the prefix *,2". ,tperson is a filter
variable and one can substitute an arbitrary name in its place.

The filter variable is bound to a value in the executable portion of the method. In the example, we tested
whether the portion bound to the variable (person) belongs to the co-worker's own project group and
whether the variable is not equal to the referred to instance (of co-worker). The variable selt is used as a
temporary storage for the referred to instance. In the executable part of the method, many Lisp expres-
sions can exist which will be evaluated in sequence. The recognition portion of a method can become
quite complex. A special "pattern matcher” serves to compare the method filter with the arriving mes-
sage.

ObjTalk 83 Primer ')

1.6 The System Kernel

At system start-up, two predefined classes exist: class and ovject. These classes already have specified
slots and methods. The slots and methods of the two objects determine the behavior of the entire system.
The reason for this lies in the system architecture of ObgTalk which we will look at more closely now.

Previously, we split objects into the two categories: classes and instances. We said that classes will be
embedded into a hierarchy, whereas instances belong to a specified class. These assertions have to be
somewhat modified now: all objects are instances of a particular class. All classes are instances of the
class class.

When we distinguish between classes and instances, then in reality we discern between objects which are
instances of class and those which are not instances of class.

Since all classes are instances of the class class, they can themselves generate instances as well as have
slots and methods. Classes are ordered in an inheritance hierarchy. For every class, we can define super-
classes. Along the inheritance hierarchy, slots and methods of the superclasses are passed to their sub-
classes. This means that the later generated instances of a class have all the slots of the superclasses that
lie in the inheritance path, and that they can react to all the messages that are defined as methods in the
superclasses.

Now we turn to objects which are not instances of class. These objects also inherit their attributes from
the classes (and superclasses) to which they belong. Often these objects and their classes are created by
the user and comprise their special ObgjTalk application. The inheritance mechanism is very powerful
and can be used to create complicated, nested systems. However, the inheritance path of all the objects
always ends with the designated class: object. This results in all objects inheriting the attributes that were
defined in object.

What complicates the whole story is the fact that object is a superclass of ciass, and this is why all classes
inherit attributes from object. As an instance, however, obvject behaves in accordance with the definitions
of its class (also the class class). class has as a superclass object and therefore the behavior of object also
defines itself in object.

The entire structure of ObjTalk is not easy to understand. Therefore, the inheritance hierarchy with the
previously introduced classes and instances are illustrated here in figure 1-2. Also, see chapter 7 for a
further description.

This structure gives the ObjTalk programmer 2 high degree of control over the ObsTalk system itself.
By overwriting and supplementing the predefined methods in class and object, one can modify the system
to fit one’s own special applications.

2. Sending Messages

As mentioned before, the basis of ObjTalk programming is the sending and receiving of messages. Since
we find ourselves in a Lisp environment, this action is introduced through a function call:

ObjTalk 83 Primer 10

b

?.'
] - superclass
g . \.\. ::f?:-
N .
\ = instance-of
~ T e >

N -
(co-worker)
Mq_,__‘____-‘

Figure 1-2: An Inheritance Hierarchy
(ask <objectd <messaged)

ask is a Lisp function that does not evaluate its arguments unless the comma prefixes are used. These
are analogous to the *‘* (backquotes) in Lisp.

The first argument of ask must be an ObjTalk object.@ It is either a class or an instance. This object
receives the message. The message consists of a symbol (the method name)} and a sequence of elements of
any length.

The object interprets messages with the methods that are known to it. The methods known to an object
are those that were defined for the class of the object.

For a class, the following methods are defined:

e the methods of the class itself

e the methods that are defined for its superclasses.

Note the recursiveness of theses definitions. In this way, a class inherits the entire methods of all its
superclasses, even those several levels away.

The interpretation of a message depends on the construction of the class hierarchy and on the available
method filters. The classes are searched with a "depth first strategy®. However, no class is examined
until all of its subclasses were searched. In a class, the comparison of a message with the method filters
decides which method is sufficient for the execution.

The body of the method is evaluated by the Liep interpreter. The filter variable and the variables seif
and sender are bound in the method body. The result of this evaluation will be the value of the call to ssk.

Slt is also possible to use a symbol which is bound to an object. This is done throughout this primer.

ObjTalk 83 Primer 11

3. Definition of a Class

In ObjTalk there are two pre-existing objects: clase and object. These objects understand predefined
messages of the system. class reacts to the new message with the creation of a class.
(ask class nsw: {class®

(superc ¢superclass® ...}

(descr ¢slot descriptiom?® ...)

(methods <method® ...)

(corefs Ccoref? ...)

(constraints ¢constraint® ...))

This message to class generates a class with the name <classy. At the same time, optional superclasses,
slots, methods, coreferences, and constraints (see below) can be specified.

If these statements are missing, the new message has the simple form:

(agk class new: <classd)

(ask class new: life-form)

==y life-form

With this the class 1ife-form is generated. It has no slots or methods. object automatically became its
superclass.

3.1 The superc Aspect

(ask class new: <classd
(superc <superclass® ...)})

With the superc aspect, <class> is embedded into the inheritance hierarchy. The superc aspect defines the
superclass(es) of ¢class>. If this aspect is missing, object is the superclass.

One can specify more than one superclass. This means that the newly defined slots and methods of a
class can be inherited through more than one path.

ObjTalk 83 Primer i2

(ask class new: person
(superc life~form))

==) person

(ask class new: animal
(superc life-form))

=23 animal

(ask class new: fictitious=-creature
(superc person animal))

== fictitious-creature

Through these messages to class, the classes person, animal, and fictitious-creature are produced. At the
same time, an inheritance hierarchy is established along which the characteristics of the classes are passed
(see Fig. 3-1).

ob i eE'{:‘)

CTife-rorm>

.J"“ \‘s
<A ficti tiﬁus-craature>
S -

—— e

Figure 3-1: Another Inheritance hierarchy

3.2 The descr Aspect

(ask class new: <classd
(descr <slot description® ...))

During class definition, the use of the descr aspect will define new slots of the class. In addition to the
methods (see below), the slots are a portion of attributes that are passed to subclasses through the in-
heritance hierarchy.

The slot description consists of the name of the slot and a desired number of filler descriptions. Filler
descriptions denote the later values of a slot during class instantiation.

ObjTalk 83 Primer 13

¢slot descriptiond ::= (<slot? <filler description’ ...)

3.2.1 Default

With the help of filler descriptions, slots can be given default values:

(default <s-expression?)

If during class instantiation the slot is not given a value then the slot takes on the value <s-expression>.

(ask class new: person
(superc life-form)
(descr (sex (default ’female))
(children (default (ask self spouse children)))
(spouse)})

==)» person

If in the creation of an instance of the class person no value is given for sex or children, then female is the
default value and the value of the children slot becomes that of the spouse’s.

3.2.2 Coref
(coref <path> ...)

The value of a slot as specified above is always equal to the value of the other slots described by the
paths. That is, if the value of this siot changes, then the value of the other slots change also and vice
versa. These other slots are indicated by path descriptions:

<pathd := (<slot> ...)

A path is a list of slots. It begins with a slot of <class» and ends with the slot whose value should be equal
to the described slot. In the case that two slots of <ciass» itself should be equal, then the path has a
length of one.

ObjTalk 83 Primer 14

(ask

class new: person
(descr (spouse (class person))
(children {corsf (spouse children)))))

==» person

(ask person make: jim) =z? jim
(ask person make: jack) ==> jack
(ask person make: susan) ==> susan

(ask
(ask

(ask

(ask

(ask

(ask

person make: mary) == mary
person make: john) ==» johm

mary spouse = ,john} ==> john

john spouse = ,mary) == mary

mary children = (,jim ,jack ,susan)) ==3 (jim jack susan)

john children} ==> (jim jack susan)

In the example, it is stated that married people presumably have the same children and therefore, the
children slots of the two people should be equal.

3.2.3 If-changed

(if~changed (before <functiond)

(instead <function®)
(zfter <functiond))

Before and after a value is assigned to 3 slot, unary functions {ones with one argument) can be called.
The value with which the slot will be filled can later be modified. The functions have a parameter which
the new slot value is bound to.

(ask

class new: person
(descr
(birthday
(if-changed
(instead
(lambda (date)
(cond ((objectp date) date)
(t (generate-date date)))))
(after (lambda (date) (set-age date (today))))))
(age

(if-changed
(after (lambda (year) (set-birthyear year (today))))))))

In the above example, the connected slots age and birthday are kept consistant with each other through
functions that are activated after the slots are filled. Before the birthday of the person is filled, the given
birthdate is checked to determine if it is an object. If not, a date is generated and placed into the slot

instead.

ObjTalk 83 Primer 15

As one can see, not all if-changed options have to be specified.

3.2.4 If-forget

(if~forget (before <function®}
(after <functiond))

Before or after a slot value is deleted, the functions are executed.

3.2.5 If-needed
(if-needed <function?)

In case a slot is accessed which has not received a value yet, then the result of <function> is returned. The
slot name is supplied as the parameter of <functions.

3.3 The methods Aspect

(ask class new: <class>
(methods <methodd ...}

Objects are provided with methods so that they can react to messages. We have already seen that for
every slot the system automatically prepares a slot method so that we can communicate with the slot; i.e.,
we can read or fill the slot (see also the section on *Slot Access Functions®).

Methods determine the reaction of objects to messages. Therefore, they play an important role in the
communication of an ObjTalk system. The ObjTalk system kernel itself depends on the definitions of
such methods. At this point, we are describing the nes method that is understood by the object clase.
The method aspect itself is a portion of this method.

<method? ::= (<method name> <filter slement> ... => <method body?)

¢filter element> ::= <constantd | <element variabled |
{segment wariable> | <class variabled

<element wariable> ::= ,?<symbold | ,?¢symboly:<{predicated
¢segment variable> ::= ,%<¢symbol> | ,7<symbold:<predicated
C¢class variable> ::= ,#<symbold:<classd

<method body» ::= Ks-expression? ...
1= <function?

Next, we want to provide the class person with some methods that we will examine more closely later.

ObjTalk 83 Primer

18

(ask class new: person
(superc life-form)
(descr (age)
(height)
(birthday)
(mother))
(methods
(how ¢ld => (ask self age))
(what is your ,%slot => (ask self ,slot))
(what is your ,*slots =)
(mapcar *(lambda (s} (ask self ,s))
slotgl))
(is ,#x:person your ,%slot =3
(equal (ask self ,slot)
x323))

==) person

Methods consist of two parts: the filter, whose first element is the method name, and the method body.
The method name can be an arbitrary Edep symbol. Through this name the method is accessed. The

entire filter is used to decide if a message can be recognized.

The filter consists of an arbitrary number of constants and variables. The individual filter elements are
compared with the message. The type of the filter elements distinguishes the kinds of comparison
procedures. As a side effect, the variables are bound to appropriate portions of the message so that one
can access these bindings in the message body. A comparison of the message with the filter is successful

when constants coincide and a binding between variables is possible.

Constants must match in the message and the filter.

filter: how old
example: (ask donald how o1d)

Ho other message can be recognized through this filter.

An element variable binds exactly one element of the message to the variable,

denoted with the prefix *,2" .

Element variables are

ObjTalk 83 Primer

17

filter: what is your ,?slot

example:

(ask donald what is your age)

binding: slot ==> age

example:

(ask donald what is your (age height birthday))

binding: slot ==>» (age height birthday)

not recognized messages would be:

your age
what is your age and height

A segment variable binds an arbitrary number of elements (including none) to the variable. It is desig-
nated with a ¥ =% |

filter: what is your ,*slots

example:
binding:

example:
binding:

example:
binding:

examplae:
binding:

(ask donald what is your)
slots ==» nil

(ask donald ghat is your age)
slots ==> (age)

(ask donald what is your age height birthday)
slots ==> (age height birthday)

(ask donald what is your (age height birthday))
slots ==» ((age height birthday))

not recognized messages: what's your height

what are your siblings

A class variable binds exactly one element of the message to the variable.

instance of the class <class». A class variable is introduced with *,8"* .

This element has to be an

Filter: is ,#x:person your ,%?slot

Example:
Binding:

is john your father
x == john, slot ==» father
(in case john is an instance of person)

The method body can consist of a series of s-expressions which are evaluated one after another like in a
progn, or it can be a function. In the method body, all variables of the filter are bound. In addition, the
variables se1t (bound to the referred object) and sender (bound to the sender of the message) are bound.

In the method body, the referred to objects can be accessed through their slots with the command

,i<gloty.

ObjTalk 83 Primer i8

(methods (who is your father =» ,ifather))

Instead of the arrow (=»), a double-arrow (=)=} can be placed between the method filter and the method
body to indicate an "extended method®. In the body of such a method, a recursive call will not cause the
application of the same method. In this way, existing methods (in the example, the slot access method})
can be extended. In this case, a superclass of the method will be searched instead for the method.

(ask class ne¥: number
(descr (value)))

==> number

(ask class new: positive~number
(superc number)
(descr (value))
(methods

(value =?=> (concat '+ (ask self valuel))))

==> pogitive-number

(ask positive-number make: pi with: (value = 3.141))

==» pi

(ask pi value)

==y +3, 141

In "simple" methods (those that use the =»> symbol), the message (ask sel value) would have led to a
recursive behavior without a termination point.

3.4 The corefs Aspect

(ask class new: <classy
(corefs <coref» ...))

With the help of the corets aspect, portions of objects that can only be reached through the slot path of
¢class», can be connected with one another. The slots located at the end of the path always have the
same value,.

¢coref> ::= (Lslotld ... == <slot2> ...)

An example should clarify this:

The class 1ine should have two slots which store the begin and end points. The class triangle is defined as

ObjTalk 83 Primer

19

a class with three slots that has values that are instances of the class 1ine. For a triangle, the begin and

end points of its corresponding "coref® lines must be equal.

(ask class new: point
(descr (x~coord)
(y-coord))}

==» point

(ask class new: linse
(descr (begin-point)
(end-point}))

==> line

(ask class new: triangle
(descr (linei)
(1ine2)
(1ined)
(corefs (linel begin-point == line3 end-point)
(1inel end-point == line2 begin-point)
(line2 end-point == line3 begin-point}))

==> triangle

If one of the corner points of a triangle is modified through the shifting of a line point, then the cor-

responding point on the adjacent line is changed.

(ask triangle make: trianglel with:
(l1inel = , (ask line instantiate:

(begin-point = ,(ask point make: pl with:

0)
0333

(x-coord
(y~coord
(line2 = ,(ask lins instantiate:

B om

(begin-point = , (ask point make: p2 with:

10)
)3

(x-coord
(y-coord
(1ine3 = ,(ask line instantiate:

W

(begin-point = , (ask point make: p3 with:

(x-coord = B)

(y-coord

==» trianglei

(ask trianglel linel begin~point)

==3 pt

(ask trianglel line3 end-point)

==? pl

1033320

ObjTalk 83 Primer 20

(ask trianglel linel begin-point = ,(ask point make: p4 with:
(x-coord = 1}
(y~-coord =0)))

== p4

(ask trianglel line3 end-point)

==> p4

3.5 The constraint Aspect

(ask class new: <{classd
(constraints <congtraint® ...))

With the help of constraints, relationships among slots that are automatically updated by the system can
be defined.

As an example, the description of a package in which the gross, pet, and packaging weights can be
described through a summation relationship:

(ask class new: package
(descr (gross)
(net)
(wrap)
(constraints (sum (gross = met + wrap))))

==» package

In order to establish this relationship in the above specified form, the constraint sum must first be defined.
For this purpose, the class constraint exists which is in the position to generate new constraints.

One creates a new constraint through sending the new message to the class constraint. This message has
the following form:

(agk constraint new: <constraint®
(guperc <superclass® ...)
(descr ¢slot description® ...)
(methods ¢method> ...)
{corefs <coref® ...)
(constraints <constraint® ...)
(rules <rule> ...)
(patterns <pattern® ...))

As one can easily infer, this form of the new message is similar to the one of class. Except for two ad-
ditional aspects: rules and patterns, the remaining aspects have the same meaning as previously defined.

ObjTalk 83 Primer 21

3.5.1 The rules Aspect

The function behavior of a constraint depends significantly on the rules that are used to establish the
relationship described through the constraint. These rules are specified in the rules aspect. A rule consists
of four parts: a name, two slot lists, and the rule body:

<ruled ::= (<rule-name> <entry-slots® <output-slots? <rule-bodyy)

(ask constraint new: sum
(descr (add-1)
(add~2)
(sum}}

{rules
(ri (add-1 add-2)
(sum)
(ask self sum = , (¢ ,ladd~1 ,!add~2)))
(r2 (add-1 sum)
(add~2)
(ask self add-2
(r3 (add-2 sum)
(add~-1}
(ask self add-1 = ,{~ ,lsum ,ladd=2))3))

L= Lisum ,ladd=1)))

==) gum

With this, the functionality of the constraint sus is completely described. The first slot list after the ¢rule
name> describes the slots that when modified will activate that rule. In our example, the rule r1 "triggers®
when one of the two operands is filled with a new value.

The second slot list specifies the slots that will be modified by the rule. In the rule rl, this is the sum-slot
sum.

The <rule body> consists, like a method, of a series of s-expressions that are evaluated in sequence.

With the above defined constraint sum, instances can now be generated and can be connected to instances
of other classes where this constraint should hold.

In our specific case, this could look as follows:

ObjTalk 83 Primer 22

(let ((my-sum (ask sum instantiate:)))
(ask package make: present with: (net = 100) (wrap = B))
(as8k present net == ,my-sum add-1)

(ask present wrap == ,my-sum add-2)
(ask present gross == ,my-sum sum)
'present)

==> present

(ask present gross)

==» 106

(ask present wrap = 10)

==y 10

(ask present gross)

==>» 110

Through the binding of the package slots with the slots of the sum constraint, we have achieved the effect
that the relationships specified in sun will also apply to an instance of the class package. This is a form of
"constraint application®.

The above depicted procedure is however still too complicated. It is not desirable to write a large piece of
code each time a package is instantiated. Furthermore, the relationship "gross = net + wrap® might
preferably be specified during the definition of the class packags.

For this we have the patterns aspect during the definition of a constraint and the constraints aspect which
is possible to use during each class definition.

3.5.2 The patterns Aspect

The patterns aspect describes the relationship specified through a constraint in one or more expressions.
When the definition of sun is extended to include this aspect, the definition looks like this:

ObjTalk 83 Primer 23

(ask constraint new: sum
(descr (add-1)

(add-2)
(total))
(rules
(r1 (add=-1 add-2)
(total)

(ask gelf total = ,{* ,bladd-1 ,!add-2)))
(r2 (add-i total)

(add~2)

(ask self add-2 = ,(~ ,!total ,ladd~1)))
(r3 (add-2 total)

(add~1)

(ask self add-1 = ,(~ ,ftotal ,1add-2)))}

(patterns (,%*total = ,*add-1 + ,*add-2)
(,*add-1 = ,#total - ,*add-2)))

==) gum

After utilizing the patterns feature as above, one can now use this relationship under the constraints aspect
when defining the class packags:

(ask class new: package
(descr (gross)
(net)
(wrap))
(constraints (sum (gross = net + wrap))))

==> package

The constraints aspect consists of several lists. The first element of every list is the name of a constraint
(in the example: sun). The second element is an expression of slots and constants that have to correspond
to one of the patterns of the constraint.

During instantiation of the class package, the above procedure is executed. That is, an instance of a con-
straint is created and corresponding slots are bound to each other so that "constraint maintenance® is
achieved.

Here is an additional example:

ObjTalk 83 Primer %4

(ask class new: earnings
(descr (salary)
(base~pay)
(bonuses)
(taxes)
(net-pay))
(constraints
(sum (salary = bage-pay + bonuses))
(sum (net-pay = salary - taxes))))

==> earnings

Note that in this example of the constraint aspect, the same constraint {sus} is used with two different
patterns.

4. Classes and their Methods

By sending the new message to the object class, classes are generated. These classes can now themselves
understand messages, especially those messages that generate instances from them.

The messages that are understood by the classes are defined in c1ass.

4.1 The make Message

(ask <¢class> make: <instanced with:
(¢slot>» = <valued)
L)

With the meke message new instances are created and provided with a name through which they can be
addressed. At the same time, the different slots are filled with their (default) values. This assignment of
values 1s not required.

{ask person make: donald with:
(birthday = , (ask date instantiste: (year = 1921)
(month = december)

(day = 22)))
(father = ,frank)
(mother = ,maris))
==y donald

(ask fictitious-creature make: donald-duck with: (father = ,disney))

== donald-duck

ObjTaik 83 Primer 25

4.2 The instantiate Message

(ask <class> instantiate:
(¢slotd = value)
L)

Through this message, instances without names are created. This message only makes sense for tem-
porary objects, or when the created object is used as a value in the slot of another object (so that it can
be referenced).

(ask person make: frank with:
(birthday = , (ask date instsntiate:
(year = 1820)
(month = february)
(day = 200)))

==» frank

4.3 The addslot Message

(ask <class? addsloy: ¢slotd <filler-descriptiond ...)

The addslot message joins another slot to a class.

(ask person addslot: age (defsult 0))

==) age

4.4 The describe Message

With the describe message, the filler descriptions of a slot can be returned.

(ask <class> describe: €slot’)

(ask person describe: age)

=z (age (default 0))

4.5 The replace Message

ObjTalk 83 Primer 26

(ask <class> replace: ¢slotd® ¢filler-description?)
(ask <class» replace: <slotd <key®)

¢keyword> ::= default coref

With the replace message, existing filler-descriptions can be replaced or deleted. To delete a filler-
description, just give the keyword of the filler description.

(ask person replace: ags default)

=23 age

4.6 The delslot Message

(ask €class? delslot: <slotd)

¢slotd> 1s deleted.

(ask person delslot: ags)

== age

4.7 The addmethod Message

(ask <class> addmethod: <method-pame> <filter? = <body>)

Finally, methods are added to a <ciass>. From this point on, all instances of <class> understand the new
message.

(ask person addmethod: parents => (list {ask self mother)
(ask gelf father)))

==> parents

4.8 The delmethod Message

(ask <classd delmethod: <(method-named)

The method with the name <method-name> is removed from the list of methods in ¢classes.

ObjTalk 83 Primer 27

(ask person delmethod: parents)

=z) parents

5. Instances and their Methods

Instances are produced by sending a make or instantiate message to classes. These instances understand all
methods defined in their class. However, they can also react to messages that are defined in the super-
classes of their class, since these methods are passed in the inheritance hierarchy. We have said that the
class object is the root of the inheritance hierarchy. This means that the methods in object are understood
by every instance.

The methods defined in object will now be described.

5.1 The init Message

(ask <instance> init:)

During instantiation of every instance, this message is sent to the instance. The corresponding method
insures that DEIFAULTS, etc., are assigned. The user has the ability to extend the init method in order
to create an initializing method.

As an example, we want to extend the init method so that during every definition of an object a counter
is incremented.

(ask object addmethod: init: =»=> (incr object-counter)
(ask self imit:))

==» init:

5.2 The viewed-as Message

(ask <instance? viewied-as: <(class> <messaged)

This message selects a specific perspective through which the referred to instance should be viewed. It is
only meaningful when using multiple superclasses.

ObjTalk 83 Primer 28

(ask class new: vehicle
(methods (task =} ’transportation)))

==)» yehicle

(agk class new: toy
(methods (task => 'play)))

==> toy

(ask class new: auto
(superc vehicle toy))

== auto

(ask auto make: fancy-car)

==) fancy-car

(ask fancy-car viewed-as: toy task)

==> play

(ask fancy-car viewed-as: vehicle task)

==> transportation

5.3 The kill Message

(ask Cobject> kill:)

<object> is deleted.

(ask kurt kill:)
==> kurt
(ask kurt age)

error: no object kurt

6. Slot Access Methods

For every slot of a class, there implicitly exists a slot access method that is activated by a message of the
form:

ObjTalk 83 Primer

(ask <object? <slot> <messaged)
In this access method, further branching is achieved on the basis of the <nessage>.

The slot access can also be made to a slot at the end of a slot path. The messages then have the form:

(ask <object> <slotl> <slot2y ... <slotn¥ <{messaged)

This is an abbreviated form for:

(ask ... ,(ask ,(ask <objecty <slotid)
<slot2»)
. ¢slotn> <messaged)

8.1 Slot Inquiry

(ask <objectd> <glot?)

returns the value of <slot>.

(2sk mike age)

==» 38

(ask , (ask mike father) age)
==> 60

(ask miks father age)

==> 80

6.2 Slot Assignment

(ask <object? <slotd = {valued)

assigns <slot> the value <value>.

(ask mike age = 38)
==) 38
(ask mike father age = 70)

==>» 70

ObjTalk 83 Primer 30

8.3 Value Deletion

(ask <objectd <slot> forget:)

deletes the value from <slot>. N

(ask mike age forget:)

==> age

6.4 Filler Description

(agk <object> <slot> describe:)

returns the filler description of ¢slot>.

(ask mike sex describe:)

==% (gex (default 'female))

6.5 Coreferences

(ask <object? <slot> == <Cobject2> <eslot2?)

makes the two slots of the two objects "coref* to each other. That is, they will always have the same
value.

{(ask mike father == , (ask mike brother) father)

7. The Objects class and object

The foundation of ObjTalk consists of the classes object and class. The definition of these objects with
their slots and methods describe the behavior of the base system.

7.1 The Object class

class realizes the different aspects with the slots superc, descr, methods, corefs, and constrainte. The default
value for superc is (object). By the slots descr and methods, initializing functions are called that transform
the slot descriptions and methods into an internal structure. The methods with filters were described in
Chapter 4. The method bodies consist of complicated functions.

ObjTalk 83 Primer 31

(ask class renew: class
(superc object)
(descr (constraints (default nil))
(corefs (default nil))
(supsrc (default (list object))
(if-changed
(instead
(lambds (<supercd}
(mapcar (function object-of) <supercd)))
(after
(lambda (<superc®)
, ! (hisrarchis = , (mkhierarchie ,!superc))}}))
(descr (default (list nil))
(if-changed
(instead mkdescr)
(after
(l1ambda (descrs)
(or (get ,ldescr °pname)
(putprop
descr
*(”, (uconcat ®<some_® ,ipname ®3%))
*pname))))l
(methods (default (list nil)) (if-changed (instead mkmethods)))
(subclasses (default nil))
(instances (default nil))
{pname '"<some_classd*
(it=-changed
(after
(lambda (name)
(let ((exnams (exploden name)))
(and (> {car exname) 98)
(¢ (car exname) 123)
, i {unique~nams =
, (readlist
(cons (~ (car exname) 32)
(cdr exname}))})))I)))
(methods (slots: => get-all-slots)
(redefining~form: =» sysredefinec)
(remake: ,?¢obj> =>=> sysremake}
(remake: ,7<obj» with: ,*<msg® =>=) sysremake)
(renew: ,7¢obj> ,*»<alist> =>=} gysrenew)
(init: ,*<msgsd => sysinitc)
(new: ,?¢obj>:atom ,*<alisty =» sysnew)
(kill: => syskille)
(addslot: ,?<newslotd:atom ,*<nesdescrd =3 sysaddslot)
(repslot: ,?<¢newslot?:atom ,*<newdescr? =) sysrepslot)
(delslot: ,7<oldslotd:atom => sysdelslot)
(replace: ,%<¢oldslotd:atom ,*<neswdescr> =» sysrepl)
(make: ,?¢obj>:atom with: ,#*<msgs> =» sysmake)
(make: ,?<obj>:atom =» sysmake}
(addmethod: ,?¢name>:atom ,*<method-rest?® => sysaddmethodc)
(delmethod: ,?<cldslotd:atom =» sysdelmethodc)
(repmethod: ,?<name>:atom ,*<method-restd =» sysrepmethodc)
(describe: ,?<oldalotd:atom => sys??c)
(instantiate: ,*<msgs> =) sysinstwith)))

=) class

ObjTalk 83 Primer

7.2 The Object object

object is the only class that has no superclass.

(ask class renew: object
(superc)
(descr (pname "®<some_object>®)
(msthods (get: ,#<msgs> =>=> getmultiple)
(set: ,*<msgs? =»=» setmultiple)
(redefining-form: =) sysredefinei)
(show: => (cdr (boundp ’'pname)))
(super: =» (class-of self))
(edit: =>
(or (getd 'adite) (load ’editor))
(eval (car (edite (ask self redefining~form:) nil nil)})))
(pp: =>
($prdf (ask self redefining-form:) 0 0)
(terpri $outport$)
(terpri $outport$))
(eval: ,?¢expr> => syseval)
(init: ,*<msgs> =» sysiniti)
(kill: =>» syskill)
(viewed-as: ,%<¢class? ,*<megd => sysviewed)))

=2) object

8. ObjTalk Syntax

General form:

(agk <objectd <messaged)

Messages to classes:
(ask €class> addmethod: <name> <filterd =} <body>)
(ask €class® addsliot: <slotd <filler~description3)
(ask <class> delmsthod: <name?)
(ask <classd delslot: <slotd)
(agk <class> describe: <slot?)
(ask ¢class> instantiate: <¢slots-with-valued)
(ask <class> make: <object? with: ¢slots~with-value>)
(ask <class> new: <classd

(superc <class® ...)
(descr <slot-description® ...}

ObjTalk 83 Primer 33

(methods <method> ...)
(corefs <corefd ...)
(constraints <comstraint® ...))

<slot-description> ::= (<slotname> <filler-descriptiond ...}

<¢filler-description? ::= (default <s-expression?)

(coref <pathd ...)

(if-changed (before <¢function?)
(instead <function3)
(after <functiond})

(if-forget (befors <function?}
(after (functiond))

(if-nesded <function?®)

<method> ::= (<method name> <filter slement> ... <type> <method body>)
<type> ::= = | ==»

<filter element® ::= <constant?® | <element variabled |
¢segment variable® | <class variabled

<element variabled ::= ,7<symbold | ,?<symbold:<predicated

{segment variabled ::

,*<symbol> | ,?<symbold:<predicated
<¢class variabled ::= ,&<symbold:<class>
<method body» ::= <{s-expression® ... | <functiond

(ask <class» replace: <¢slot® <fillsr-descriptiond)

Messages to objects:
(ask Cobject> <slot> <slotpathd <message>)
<messaged> ::5 <empty» | = <valued | forget: | describe: |
== <object? <slot?
(ask <objectd kill:)
(ask €object> viewed~as: <class> (messaged)
(ask <objectd pp:)

(ask <objectd edit:)

