The Smallest Automaton Recognizing The Subwords of a Text

A. Blumer
J. Blumer
A. Ehrenfeucht
D. Haussler
M. T. Chen
J. Seiferas

CU-CS-300-84

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

THE SMALLEST AUTOMATON RECOGNIZING

THE SUBWORDS OF A TEXT
by

A. Blumer*, J. Blumer*, A. Ehrenfeucht,
D. Haussler*, M.T. Chen** and J. Seiferas***

CU~-CS-300-84 April, 1984

University of Colorado, Department of Computer Science,
Boulder, Colorado.

*Department of Mathematics and Computer Science, University
of Denver, Denver, Colorado 80208.

**Department of Comptuer Science, University of Nanjing,
People's Republic of China.

***Department of Computer Science, University of Rochester,
Rochester, New York 14627.

The Smallest Automaton Recognizing the Subwords of a Text

by
A. Blumer, J. Blumer, A. Ehrenfeucht*, D. Haussler,

M. T. Chen**, and J. Seiferag**#*

Department of Mathematics and Computer Science
University of Denver

Denver, Colorado 80208

*Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80302

**Department of Computer Science
University of Nanjing

People’s Republic of China

**Department of Computer Science
University of Rochester

Rochester, New York 14627

Part of this work was done while author M. T. Chen visited the University of Rochester.
Authors A. and J. Blumer and D. Haussler gratefully acknowledge the support of NSF grant
IST-8317918, author A. Ehrenfeucht the support of NSF grant MCS-8305245, and author J.
Seiferas the support of NSF grant MCS-8110430.

All correspondence to D). Haussler.

Abstract

Let a partial deterministic finite automaton be a DFA in which each state need not have a
transition edge for each letter of the alphabet. We demonstrate that the smallest partial
DFA for the set of all subwords of a given word w, |w/!| > 2, has at most 2]w| — 2 states
and 3/w| — 4 transition edges, independently of the alphabet size. We give an algorithm

to build this smallest partial DFA from the input w on-line in linear time.

Introduction

In the classic string matching problem for text, we are given a text w and a pattern
string z and we want to know if z appears in w, iLe. if z is a subword of w. Standard
approaches to this problem involve various methods for preprocessing z so that the text
w can be searched rapidly ([Aho 75], [Boy 77], [Knu 77]). Since each search still takes
time proportional to the length of w, this method is inappropriate when many different
patterns are examined against a fixed text, e.g. for repeated lockups in any fixed textual
database. In this case, it is desirable to preprocess the text itself, building an auxiliary
data structure that allows one to determine whether z is a subword of w in time propor-
tional to the length of z, not w. Data structures with this property {known as "suffix
trees’" or "compact position trees”, earlier as "PATRICIA trees”) k‘zavé been developed
80}, [Si 77,78,80,83], [McC 78], [Pra 73], [Wei 73], [Mor 88]) and used in a wide
variety of pattern matching applications, in addition to the classic string matching prob-

lem given above {e.g. [Apo 79,80,83,84], [Rod 81], [Tan 81]).

Clearly, a deterministic finite automaton (DFA) that recognizes the set of all subwords
of w would serve as an auxiliary index for w in the above sense. We can also allow this
automaton to be partial, i.e. such that each state need not have a transiticn on every
letter. We demonstrate the feasibility of this apprecach by exhibiting a partial DFA that
recognizes the set of subwords of w and has less than 2|w]| states and 3|w/| transition
edges (independently of the size of the alphabet of w). This DFA can be built in linear time
for any fixed alphabet size by an algorithm that operates on-line in the strong sense that
the DFA is correct after each letter is processed. As all states of this automaton are
accepting, it can be viewed as a directed acyclic graph, which we call the Directed Acyclic

Word Graph, or DAWG ([BluB83]). Crochemore has pointed out that with a different

assignment of accepting states, this DFA is the smallest automaton for the set of all
suffixes of w {[Cro 84c]). While it is not the smallest automaton for the subwords of w,
with some additions and modifications to the DAWG construction algorithm, we derive an
algorithm that builds the smallest partial DFA for this language. This algorithm also runs
in linear time, and is on-line in the strong sense. These automata can be used in place of
suffix trees or compact positicn trees in most of the applications of these data structures
cited above, and have additional desirable properties that in some cases make them more

useful ([Cro 84b], [Blu 84a]).

The algorithm that builds the DAWG (or, with a linear postprocessing phase added, the
smallest DFA for all suffixes of a word) can be viewed as an extension of earlier algorithms
used to build the compact position tree {[Wei 73], [Pra 73], [Sli 77]). The linear bound on
the running time is obtained by employing auxiliary pointers that, if reversed, form a
structure equivalent to the compact position tree of Weiner for the reverse of w. In con-
trast, the goal of Weiner's algorithm is to buiid the compact position tree for w, which it
does by processing w from right to left, maintaining auxiliary pecinters that form part of
the DAWG for the reverse of w. Pratt’s algorithm can be seen as an intermediate step
between Weiner's algorithm and ocurs, since it is closely patterned after Weiner's algo-
rithm, but is designed to build a structure that forms part of the DAWG for w by process-
ing w from left to right, maintaining the compact position tree as an auxiliary structure

.

as in our algorithm. Slisenko’s algorithm is essentially the same as Pratt's, but more ambi-
tious applications lead tc an extra measure of additional structure. A more detailed com-
parison of our algorithm with earlier algorithms can be found in [Che 83,84], where it is
given from Weiner’'s point of view. The approach taken in this paper follows that used in
[Tan 81], where a graph closely related to that of [Pra 73] is constructed. Modifications to
the DAWG algorithm needed to construct the smallest DFA for the subwords of a word have

been given independently by Crochemors {[Cro 84a]), who also gives precise bounds for

this latter DFA

Notation

Throughout this paper, £ denotes an arbitrary nonempty finite alphabet and I*

denotes the set of all strings (words) over £. The empty word is denoted by A. w will

always denote an (arbitrary) word in £* and @ a letter in £. |w| denotes the length of w.
If w = zyz for words z,y, 2 € 2% then y is a subword of w, z is a prefiz of w, and 2 is a
suffiz of w. In addition to the standard terminology for finite automata, we use the term
partial DFA (for the alphabet Z) for a deterministic finite automaton in which each state
need not have a transition for every letter of . (Lack of any transition needed for a word
signifies rejection of that word.) The smallest partial DFA for a given language is the partial
DFA that recognizes the language and has the smallest number of states. (Uniqueness fol-
lows from Nerode’s theorem [Ner 58, Hop 72].) As usual, an equivalence relation = on I* is

right invariant if for any z,y, 2 € £% z =y implies that zz = yz.

Section 1. The Directed Acyclic Word Graph

We begin with a brief loock at some aspects of the subword structure of a fixed, arbi-
trary word w. In particular, for each subword vy of w, we will be interested in the set of
positions in w at the ends of occcurrences of . This is essentially the same approach
taken in [Tan 81].

Definiiion. Letw =a, - a, (@, ..., @, € Z) be a word in £* For any nonempty ¥ in
L%, the end-sef of y in w is given by end—sety,(y) = {1 : ¥ = aj_jy|+1 "+ &]. In particular,
end —set,(A) = {0, 1,2, ..., n{. We say that z and vy in Z* are end-equivalent (on w) if
end —set,, (z) = end—set, (y), and we denote this by z =, y. We denote by [z], the
equivalence class of z with respect to =, . The degenerate class is the equivalence class of
words that are not subwords of w (i. e., words with empty end-set).

For illustrations of these definitions, see Figure 1.
The following lemma summarizes some obvious properties of end-equivalence.

Lemma 1.1,
(1) End-equivalence is a right-invariant equivalence relation on Z*.
(ii) If two words are end-equivalent, then one is a suffix of the other.
(iii) Two words zy and ¥ are end-equivalent if and only if every occurrence of ¥ is immedi-
ately preceded by an cccurrence of z.
(iv) A subword z of w is the longest member of [z] if and only if either it is a prefix of w,
or it occurs in two distinct immediate left contexts (i. e., both axr and bz occur, for

some distinct a, & € X).

We see from Lemma 1.1 that there are really three ways to look at the nondegenerate
equivalence classes of =, . We can look at them as the set of distinct end-sets for the sub-
words of w, as a partition of the subwords of w, or as a set of canonical members of this
partition, formed by taking the longest word in each equivalence class. For the latter
viewpoint, we will say that the longest member of [z] (canonically) represents the
equivalence class [z].

Taking advantage of right invariance, we can consistently define a (partial) deter-

ministic finite automaton as in Nerode's well-known construction ([Ner 58, Hop 79]).

Definition. The Directed Acyclic Word Graph (DAWG) for w is the (partial) determinis-
tic finite automaton D, with input alphabet Z, state set {{z], | z is a subword of w], start
state [A]y, all states accepting, and transitions {{z], % [za], | z and za are subwords of
wi.

Dy, is lllustrated for the word w = abcbe in Figures 2a and 2b. Since the states of D, are
exactly the nondegenerate classes of =,, , we shall use the terms "state” and "class" inter-

changeably throughout the remainder of this paper.
Lemma 1.2. Dy, recognizes the set of all subwords of w.

Proof. This follows directly from Nerode's theorem, since the union of the
equivalence classes that form the accepting states of [, is exactly the set of subwords of
w. "

It is easily verified that J, is not always the smallest partial DFA for the subwords of
w (see Section 3 and Figure 4). However, as we will show below, worst case size bounds for
D, are not significantly higher than those for the smallest DFA. In addition, the correspon-
dence between the states of D, and the end-sets of the subwords of w is useful in some
applications ([Blu 84a]), and makes the on-line line algorithm for D, scmewhat simplier
than that for the smallest automaton. As a result, we will approach the construction of the
smallest automaton for the subwords of w by first developing an on-line algorithm for D,
and then meaking the necessary modifications to this algorithm needed to build the smal-

lest DFA.
A close relative of), is also of some interest from a theoretical point of view.

Definition. Let S, denote the partial DFA defined as D, except that the only accept-

mg states are those equivalence classes that include suffixes of w (i. e., whose end-sets

include the position |w |).

-

Proposition 1.1. (Crochemore) For any w € £*, S, is the smallest partial DFA that

recognizes the set of all suffixes of w.

Proof. By design, the set of all suffixes of w is the union of the equivalence classes
that are accepting states in S,,. Hence S,, recognizes the set of suffixes of w, by Nerode’s
theorem ([Ner 58, Hop 79]). To prove minimality (again by Nerode’'s theorem), we need
only note that, for any =,y € L% z =, vy if for all z € £* zz is a suffix of w exactly when

yz is a suflix of w. =

We now derive bounds on the maximum number of states and edges in the automaton
D,,, in terms of the length of w. For this and for the development in Section 2 of an algo-
rithm to construct Dy, it will help to look at the {(nondegenerate) states from the end-set
point of view. If two strings’ end-sets meet, then one of the strings must be a suffix of the
other, so that one of the end-sets must be a superset of the other. Therefore, the
(nonempty) subsets of {0, 1, 2, ..., |w|} that are end-sets form a subset tree T(w) (see
Figure 3a).

Lemma 1.3 If z canonically represents an equivalence class medulo =, , then the

children of [z], in T{w) are those classes [az], for which a € ¥ and cz is a subword of w.

Procf. The children of [z], correspond to the maximal proper subsets of
end —set,, (z) that are end-sets. Any such end-set must be end —set,,{vz) for some nonnull
word v. As a canonical representative, z is the longest subword with its end-set; so we

already get the children for [v | = 1. =

It follows from Lemma 1.3 that when w begins with a unique letter 7(w) is isomorphic
to the compact position tree of Weiner for the reverse of w ([Wei 73]), except that its

edges are uniabeled. This is illusirated in Figures 3a and 3b.

Lemma 1.2 For |w/| > 2, D, has at most 2|w| — 1 states, and this upper bound is
achieved if and only if w = ab™ for somea, b €%,a £ b.

Froof. In the special case that w is of the form a® for n > 2, T{w) is a simple chain
of n + 1 <2n -1 nodes. In the remaining case, we show that 7(w) has at most |w| non-
branching nodes (nodes of degree less than 2), and hence at most |w| — 1 branching

nodes, for a total of at most 2|w| — 1.

By Lemmea 1.3, any branching ncde in T(w) occurs in at least two distinct left con-
texts. By Lemma 1.1 (part (iv)), the only possible other (nonbranching) nodes are the
[w] + 1 prefixes of w. Since w is not of the form a”, however, one of these prefixes, the
null one, appears in two distinct left contexts and so, by Lemma 1.3, is nof a nonbranching

node. This completes the proof of the upper bound.

To reach the upper bound, we need |w| — 1 branching nodes. This generates at least
|w] leaves. Since only the |w/| nonnull prefixes of w can be nonbranching nodes, they
must all be leaves, and every internal node must have exactly two children. In particular,
the one-letter prefix of w must be a leaf; so, by Lemma 1.3, that first letter cannot occur
elsewhere in w. Since the null string (the root) can have only one other child beside the
one-letter prefix, only one other letter can occur, and w must be of the form ab™. Con-
versely, it is easy to verify that the subwords of ab™ do in fact generate 2(n + 1) — 1 dis-

tinct end-sets for any n = 1, to complete the proof. =

Lemma 1.5, For |w]| = 2, there are at most [w| — 2 more edges than nodes in the
transition graph of J,,.

Fraosf. Note that the transitions of D, form a directed acyclic graph with one source
{([A]w) and one sink ([w]y). Every state of D, lies on a path from the source to the sink,
and the sequence of labels on each such distinct path forms a distinet nonempty sufiix of

w.

Any such directed acyclic graph has a directed spanning tree rooted at its source, so
focus con one. Being a tree, it will have one fewer edges than nodes; so it remains only to

show that at most |w| — 1 edges of Dy, are left out of the spanning tree.

With each edge of D, not in the spanning tree, we associate one of the |w| nonempty
suflixes of w. We obtain that suffix from the labels on a directed path going from the
source, through the spanning tree to the tail of the omitted edge, across the omitted edge,
and finally on to the sink in any convenient way. Distinct omitted edges are associated
with distinct nonempty suffixes, because they are associated with distinct source-to-sink
paths. (The paths differ in the first edge traversed outside the spanning tree.) One
source-to-sink path lies entirely within the spanning tree, so its nonempty suflix is not
assigned; therefore, the number of assigned nonempty suffixes is bounded by |w]| — 1, and

so is the number of edges not in the spanning tree. *

Combining Lemmas 1.4 and 1.5, we obtain the following result.

Theorem. 1.1. For |w| > 2, the Directed Acyclic Word Graph for w (and hence the
smallest partial DFA that recognizes the set of suffixes of w) has at most 2|w]| — 1 states

and 3|w| — 4 transition edges.

~ Proof. The bound on the number of states is directly from Lemma 1.4. Straightfor-
ward combination of Lemmas 1.4 and 1.5 yields a slightly too weak bound of 3|w| — 3 on
the number of transition edges. We noted, however, that the bound in Lemma 1.4 can be
improved by at least 1 except when w is of the form ab”™, in which case [, has only
2|w]| = 1 transition edges. In either case, therefore, the bound can be improved by at

least 1. =

It is readily verified that our upper bound on the number of transition edges is

achieved whenw = ab™c¢c for n = 1 and distinct letters a, b and c.

Section 2. On-line algorithm for D,

We now consider the problem cf constructing 2, in an on-line fashion, processing the
letters of w from left to right. At each stage of our construction, the automaton will be
correct for the prefix of w that has been processed. This also gives an algorithm to con-

struct S, since the accepting states of S, can be marked in a final step, when all of the

The work that needs to be done for each new letter that is processed can be described
by analyzing the difference between the set of nondegenerate equivalence classes of = ,
representing the states of J,, and those of =,, , representing the states of D4, for an

arbitrary word w and letter a. The following definitions will be needed.
Definition. tail(w) is the longest suffix of w that occurs more than once in w.
For example, tail(abcbe) = be, tail{cea) = aa and tail{aad) = A

Definition. Let w = w yw, with wy, wy, ¥y €&*,y # A This occurrence of ¥y in w is
the first occurrence of y in a new left contezt if y occurs at least twice in w,y and there
exists a € ¥ such that every occurrence of ¥ in w,y except the last one is preceded by a.

By convention, A never occurs in a new left context.

For example, if w = abecbe then the second occurrence of bc is the first occurrence of
bc in a new left context. This is not true if w = bcbe, since we must have all previous
occurrences of bc preceded by some letter (which must also be the same letter in all

cases).

The following lemma summarizes the modifications that must be made to update the

nondegenerate classes of =, tothose of =y .

Lemma 2. 1.

(i) wa always represents an equivalence class in =,, , consisting of all subwords of wa
that are not subwords of w.

(ii) For any subword z of w, if z represents an equivalence class in =, then z represents
an equivalence class in =,, . The members of this class are the same in both cases,
unless z =, tail(wa) and fail (wa) appears for the first time in a new left context. In
this case [z], is split into two classes in =.,, with words longer than tail{wa)
remaining in [z]y, and others going into a new class [tail{wa)],,, represented by
tail (wa).

(ili) There are no equivalence classes in =,, beyond those given in (i) and (ii).

FProof.

(i) wa, being a prefix of itself, will always represent an equivalence class in =,, . The
members of this class will be subwords of wa whose end-sets include only the last pesi-
tion in wa, which are exactly the new subwords of wa, not already cccurring in w.

(ii) Any word that is either a prefix of w or occurs in two distinct left contexts in w will
also do so in wa. Hence if z represents an equivalence class in =, then it represents
an equivalence class in =y, . '

We now consider the circumstances under which [z], # [Z]ue. It is clear that
every word in [Z]y, must also be in [z], since the positions of w are a subset of those
of wa. Hence we need only consider the case when thereis ay € [z], that fails to be
in [z],q. Let ¥ be the longest such word in [z],. By Lemma 1.1(ii), z = uwby for some
u €L* and b €L Since ¥ € [z],, ¥ occurs in w and every cccurrence of ¥ in w is
preceded by ub. Since we also have ¥ £ [z]y, ¥ must occur as a suffix of wa, not pre-
ceded by ub, If by is a suffix of wa, then by =, z and by =,, ¥, contradicting the
maximality of y¥. Hence cy is a suffix of wa for some letter ¢ # b. Since cy ‘cannot

occur in w, it follows that ¥y = teil{wa) and tail (wa) appears for the first time in a new

left context. Furthermore, ¥ and all its suffixes in [z], will occur as suffixes of wa,
while words in [z], longer than vy will not. Hence [z],, will be split into ‘two classes in
=.q , One represented by y = tail(wa) containing itself and the shorter words, and
the other represented by z containing the remaining words. The result follows.

(iii) By parts (i) and (ii), all of the subwords of wa have been accounted for. Hence there

can be no other equivalence classes. =

To allow efficient update of D, to [,, we annotate D, with two additional types of
information, which are maintained throughout the construction. First, each transition
edge is designated as either primary or secondary. A transition edge labeled a from the
class represented by z to the class represented by vy is primary if za =y, otherwise it is
secondary. Second, each state except the source has a pointer called a suffiz pointer that
points to the parent of the state in the tree T(w), introduced in the previous section. For
any word z that represents an equivalence class in =, , the suffizx chain starting at z,
denoted SC(z), is the sequence of classes that form the path from z to the root of T{w).
[SC(z)| denotes the length of this sequence.

The following conseguences of these definitions are easily verified.

Lemma 2.2.

(i) For any word z that represents an equivalence class in =, , SC{z) partitions the
suffixes of z into | SC{z)| classes. In particular, if z = w then the equivalence classes
of all suffixes of w can be located (in order of decreasing length of suffix) by traversing
the chain of suffix pointers from the sink of 7, back to the source of J,.

(ii) If w # A, The suffix pointer of the sink of D, points to [tail (w)]y,

(iii) The first class encountered by traversing the chain of suffix pointers from the sink of
Dy, back to the source of D, that has an a-transition (if any) must have an a-transition
to [fail(we)],. If no a-transition is encountered, then @ occurs only once in wa, and

hence foil(wa) = A, =

Thus the addition of suflix pointers allows us to locate the one class in [, that may
need o be split when updating O, to Dy, (Lemma 2.1(ii)). The primary versus secondary
designation of transition edges allows us to tell whether or not this class needs to be split,

as demonstrated in the following.

Lemma 2.3 Let tail{wa) = za. Then z represents an equivalence class in =, and
tail (wa) appears for the first time in a new left context if and only if there is a secondary
transition edge from [z], to [za]y in Dy,.

Proof. Since za = tail(wa), z is a -suffix of w and za occurs in w, implying that z
occurs at least twice in w. If every occurrence of z in w is preceded by the same letter b,
then bza occurs twice in wa, contradicting the maximality of tail(wa). Hence z
represents an equivalence class in =, by Lemma 1.1(ii). Since za occurs in w, there
must be an a-transition edge from [z],, to [za],. This edge is secondary if and only if za
does not represent [za],. By Lemma 1.1(ii) this happens only when every occurrence of
za in w is preceded by the same letter, i.e. if and only if za is occurring for the first time

in a new left context as tail{wa). =

The strategy of the algorithm for updating D, to D,,, along with its annotatiens, is to
create a new state for the class represented by wa and then traverse the suflix chain from
the sink of [, putting in the necessary a-transitions to the new state until a state on the
chain is found that already has an a-transition. This transition will lead to [fail(wa)],. If
the transition is primary, then no moere work needs to be done save the addition of a new
suffix pointer from the new state to [fail(wa)], (= [tail(wa)]u). Ifit is secondary, then
[tail{wa)],, must be split into two states, and all of the transitions and suffix pointers that
need to be modifled can be located by examining the old transitions and suflix pointer
from [iwii (wa)],, and by continuing to traverse the suflix chain toward the source of [,.
A special case arises when no state with an a-transition is encountered on the suffix chain

from the sink of D,,. However, in this case no split needs to be performed, and the process-

ing is analogous to the case where there is a primary edge to [tail (wa)],,.

The linear time bound for the algorithm depends critically on the fact that the suffix
chain is traversed from the sink toward the source, so that states on this chain near the
source which are not involved in the update are not visited. Any method which visits all
states on this chain in every update (e.g. a method like that in [Maj 80] for updating posi-

tion trees) would accumulate O(n?) time in the worst case {e.g. on the string a™).

To illustrate some stages of construction, a sequence of D, for
w = abc, abeb, abcbe, abebed is illustrated in Figure 4. These are compared to the

corresponding smallest automata for the same languages, discussed in the next section.

We now give a detailed description of the algorithm to build J,, and a proof of its
linear time bound. The algorithm is given below as three procedures, builddawg, update,
and split. Builddawg is the main procedure, which takes as input a word w, builds [, by
processing w cn-line letter by letter, and returns the source. After each letter is pro-
cessed, [, and all its annotations are correct for the prefix of w up to this point. With
each new letter, builddawg modifies the current D, by calling the procedure update, giv-
ing updafe the letler to be processed and the current sink state.

Update takes this information and in step 1 (see below) creates a new state, the new
sink for D, which forms the new equivalence class represented by wa {(Lemma 2.1(i)).
Transition edges labeled o and pointing to this state must come from all states containing
suffixes of w that do not have a-transitions in J,, since this new state represents the class
of strings that occur only as a suffix of wa. The primary edge from [w], (the sink of D,)
is added in step 1, before the algorithm enters the while loop in step 3. The while loop sets
currentstate to states containing successively shorter suffixes of w at each iteration
{(Lemma 2.2(1)). Thus, in step 3b case 1, the lack of an a-transition edge leads to the addi-
tion of the remaining transition edges tc the new sink. Clearly these must be secondary

edges.

When the first transition edge labeled a is found from a suffix of w, this edge leads to
[tail{wa)], (Lemma 2.2(iii)). If it is prﬁnary, then no further changes need to be made to
the equivalence classes of =, and hence o their transition edges and suffix pointers
{Lemma 2.3 and Lemma 2.1(ii)). Step 3b case 2 handles this case by simply setting
suf fiznode to [tail (wa)l, (= [fail(wa)lu,), causing a break from the while loop. If it is
secondary, then [fail(wa)], must be split. The call to the function split in step 3b case 3
handles all of the updates to the equivalence classes of =, necessitated by this split (as
given in Lemma 2.1(ii)), including those changes to the associated transition edges and
suffix pointers, and returns a peinter to the new equivalence class for tail{we). Thus in
either case, the variable suf fizstate becomes set to [fwil(wa)],, and we break out of the
while loop. A special case occurs when no state on the suffix chain has an a-transition
edge. In this case the loop stops because it has reached the source, which is the
equivalence class of A = toil{wa) (Lemma 2.2(iii)). Since A can never occur for the first
time in a new left context, no further classes or transition edges need to be modified. In

step 4, suf fizstate is set to the source, which is [tail(wa)],, in this case. Finally, the

suffix pointer of the new sink is set to point to [tail{wa)},, (Lemma 2.2(ii)) and the new

sink for the fully updated structure is returned.

Split takes the class that contains the subword z such that zao = tail(wa) (parent-
state) and the class that contains tail(wa) (childstate), and "splits” childstate, adjusting
all affected transition edges and suffix pointers. It begins in step 1 by creating newchild-
state, which is [fail (wa)]ye. Since newchildstate is represented by toil{wa) and parent-
state is represented by z, there must be a primary a-transition from parenistate to
newchildstate (Lemma 2.3). This is installed in step 2. Step 3 adds the edges that come
out of newchildstate, which clearly must be copies of the edges out of childstate, with the
exception that they are all secondary, since newchildstate contains only the shorter words
from [tail (wa)],, (Lemma 2.1(ii)). Steps 4 and 5 make appropriate adjustments to the
suffix pointers, as is easily verified. Finally, the edges coming into childstafe must be par-
titioned, so that those coming from classes whose elements are shorter than fail(wa) now
point to newchildstate. These classes clearly contain only suffixes of z, and are therefore
in the suffix chain of parentstate. The redirection of these edges is handled in step 7,

before [tail(wa)l,, is returned in step 8.
Algorithm 1.

builddawg {w)
1. Create a state named source and let currenisink be source.
2. For each letter a of w do:
Let currsntsink be update {currentsink, a).

3. Return source.

update (currentsink, a)
1. Create a state named newsink and a primary edge labeled a from currenisink to
newsink .
2. Let currenistate be currenisink and let suf fizstaie be undefined.
3. While currenisiate isn't source and suf fizstate is undefined do:
a. Let currenistale be the state pointed to by the suffix pointer of currenistate.

b. check whether currenistale has an outgoing edge labeled a.

2

1. If currentsiate does not have an outgoing edge labeled o then create a
secondary edge from currentstate to newsink labeled a.

2. Else, if currentstaie has a primary outgoing edge labeled a, then let
suf fizstate be the state to which this edge leads.

3. Else (currentstate has a secondary outgoing edge labeled a),
a. Let childstate be the state that the outgoing edge labeled a leads to.
b. Let suf fizstate be split (currentstate, childstate).

4. If suf fizstate is still undefined, let suf fizstate be source.

5. Set the suffix pointer of newsink to point to suf fizrstate and return newsink.

split (parentstate, childstate)

1. Create a state called newchildstate.

2. Make the secondary edge from parenistate to childstafe into a primary edge from
parentstate to newchildstate (with the same label).

3. For every primary and secondary outgoing edge of childstate, create a secondary
outgoing edge of newchildstate with the same label and leading to the same state.

4. Set the suffix pointer of newchildstate equal to that of childstate.

5. Reset the suffix pointer of childstate to point to newchildstate.

8. Let currentstate be parentsiate.

7. While currentstate isn't source do:
a. Let currenistfate be the state pointed to by the suffix pointer of currenistate.
b. If currentstate has a secondary edge to childsfate, make it a secondary edge to

newchildstate (with the same label).

c. Else, break out of the while loop.

8. Return newchildstate .

We now establish an upper bound on the time required for Algorithm 1.

Lemma 2.4. If z represents a class in Dy, with a primary a-transition edge leading to
a class represented by y, then |SC(y)| = |SC(z)| —k + 1, where k is the number of

secondary edges from states in SC(z) to states in SC(y).

Proof. Since the edge from x toy is primary, ¥ = za. Since y ends in a, every class
in SC(y) must have an incoming a-transition except the source of D,,, which lies at the
end of SC(y). Further, for any such class on SC(y) all incoming a-transitions must be
from classes containing suffixes of z, which in turn must lie on SC(z). Exactly one incom-
ing a-transition will be primary for each class in SC(y), the others will be secondary.

Since each class in SC(z) can have only one a-transition, the result follows. =

Lemma 2.5. The execution time for Algorithm 1 is linear in the length of w for any w

over a fixed finite alphabet X.

Proof. We will assume that appropriate data structures are employed for states, transi-
tions and suffix pointers of [, such that all of the basic operations on these structures,
including creating new states and transitions, redirecting transitions and finding transi-
tions frem given states on given letters can be accomplished in constant time. Since the
size of the alphabet is constant and the automaton is deterministic (l.e. there is at most
one transition from a state for each distinct letter), this is trivial: we can use a simple
linked list of transitions for each state. Thus each of the individual steps in update and

split take constant time, with the exception of the while loops.

Consider a single call to wupdate{currentsink, a), returning newsink, where
currentsink = [w], and newsink = [waly,,. Let the total number of times the bodies of
these loops are executed during this call be k, not counting the final pass that causes the
exit from each loop. For each such iteration of either of these loops, a secondary edge is
installed in Dy, from a state on the suffix chain of [w], to either [wa J,q or [tail{we)lyq,
both on the suffix chain of [wa], (Lemma 2.2(ii)). Hence [SC{wa)| < |SC(w)| —k + 1in
Dy by Lemma 2.4. In the special case when [fail (wa)], lies on the suffix chain of [w], in
D,, and the update of D, involves splitting this class, | SC{w)!| in Dy is equal to | SC{w) !
in D, plus one. Otherwise |SC(w)| is the same in D, and [D,,. Thus in any case,

| SC{wa)| in Dy is less than or equal to | SC(w)]| in D, minus &k plus two.

Each time update is called from builddawg, currentsink = [w], in D, before the call
and currentsink is set to [wa]y in Dyg after the call, for some w and a. The suffix chain
of currentsink has length one for the first call to update at the beginning of construction,
never has zero length, and by the above argument can grow at most two states longer in

each call to update. Since the length of this chain decreases by an amount proporticnal to

the number of iterations of the while loops in updafe and splif on each call, this implies
that the total number of iterations of these loops during the entire construction of D, is
linear in the length of w. Since all other steps of the algorithm take constant time for

each letter processed, it follows that the algorithm is linear in the length of w. *

Theorem 2. 1. For any w over a fixed finite alphabet I, both D, and 5, can be built in
time linear in the length of w.

Sketch of proof. The above descripticn of Algorithm 1 indicates how it can be shown
that this algorithm correctly constructs [, on-line. Further details can be found in [Blu
84b]. Hence D, can be built in linear time by Lemma 2.5. To build 5, we simply need to
mark the classes of D, that contain suffixes of w as accepting states, letting the other
states be non-accepting. Since all of these classes lie on the suffix chain from the sink of
D,, to the source (Lemma 2.2(1)), it is a simple matter to mark them, and clearly requires

at most time proportional to the length of w. =

Section 3. The smallest automaton for the set of all subwords

We now have an algorithm that builds J,, on-line in linear time. Next, we turn our
attention to the smallest partial DFA that recognizes the set of all subwords of w, which we
will denote M.

In sowe cases, My, can be considerably smaller than J,. For example, if w = ad7,
a,b €% andn = 1, then D, achieves the previously given upper bound of 2|w| — 1 states
(with 2|w| — 1 edges), while ¥, has only |w| + 1 states (and only |w| + 1 edges). On the
other hand, ifw = ab®c¢, a, b, ¢ € ¥ and n = 1, then it is easily verified that D, = H,, and
this automaton has 2|w| — 2 states and 3|w| — 4 edges as mentioned in Section 1. The

following theorem asserts that this is the worst case.

Theorem 3.1. If |w]| > 2, M4, has at most 2/w| — 2 states and 3|w| — 4 edges, and at

least |w| + 1 states and |w| edges.

Proof. For the upper bound, note that by Lemma 1.4, for [w| > 2 D, has 2{w| — 1 states
only when w = ab™ for some a, b € L. As mentioned above, #, is small in this case. For
all other w of length greater than 2, D, has at most 2|w| — 2 states and 3|w| — 4 edges

by Theorem 1.1, hence My, is bounded in this manner as well.

The lower bound follows from the fact that #M,, accepts a finite language and so must
be acyclic. Thus there must be at least a state for each letter in w and a start state,
yielding a total of at least |w|+1 states. Similarly, there must be an edge for each letter

in w. The string a™ is a case where this bound is tight. =

By examining the differences between D, and #,,, we derive a way to modify Algo-
rithm 1 to produce an an algorithm that builds M,,, again on-line in linear time. To begin,

we look at how the states of M, differ from those of D,

Definifion. Let =',, denote the canonical right invariant equivalence relation on the
set of all subwords of w, i.e. z ='y, v if and only if for all 2 € I*, zz is a subword of w if and
only if yz is a subword of w. For any word z, [z], is the equivalence class of z with
respect to ='y.

By Nerode's theorem ([Ner 58, Hop 79]), M, has one state corresponding to each
equivalence class determined by =',, with the exception of the degenerate class {which is
the same as the degenerate class of =,). Further, since the equivalence classes deter-
mined by =, are right-invariant, each equivalence class [z]y, (i.e. each state in #,) is

Tam ~f e e PRTR - Saoo@o R] = {3 a0 bl 33t R S TR
the union of cne or more equivalence classes determined by =, (Le. the identificalion o

£
L

one or more states in D,). A state corresponding to an equivalence class [z],, that does

not contain the longest member of [z], is called a redundant state.

The following definition and lemma give us a more precise characterization of the

redundant states of D,,.

Definition. stem(w) is the shortest nonempty prefix of tail(w) that occurs (as a prefix
of tail{w)) for the first time in a new left context. If no such prefix exists, then stem(w) is

undefined.

For example, stem(abchc) = b, but stem(aba), stem (abc), and stem (abcdbebe) are

undefined.

Lemma 3. 1.
(i) z represents a redundant state in D, if and only if stem(w) is defined and z is a prefix
of tail{w) such that |z | = |[stem(w)].
(ii) If w =uzy where zy = tail{w) and z represents a redundant state in D, then
z = tail{ux) and z occurs for the first time in a new left context as fail {(uz). .

(iii) Any two distinct redundant states in D, are contained in two distinct states in M,,.

e

)

Hence any state in #,, contains at most two states in D,,.
Proof.
If part: Let stem(w) be defined and let z be a prefix of tail{w) such that
|z| = |stem(w)]|. Clearly z occurs as a prefix of tail (w) for the first time in a new left
context. Assume that every prior occurrence of z is preceded by the letter a. Since z
is not always preceded by a, az is not in [z],, and hence z represents [z],,. We will
show that z ='), axr. Assume to the contrary that there exists a 2 € L* such that zz is
a subword of w but azz is not. Consider the leftmost occurrence of zz in w. Let
w = ulz.rz'uQ for this occurrence. Let w = wzw,, where tail{w) = zwq. If |u;] < |w,]
then u, must end in a, contradicting our assumption. However, if |u,| = |w,| then
zzuy is a suffix of fail (w), and thus this cannot be the leftmost occurrence of zz. This
contradiction implies z =y, ax. It follows that [z], is redundant.

Only if port: Let y be the longest word in [z],. Since [z], is redundant,
|y| > |z]|. Since z ='y, ¥, for any z € L*, zz is a subword of w if and only if ¥z is a
subword of w. [t follows that the leftmost occurrence of ¥ in w ends in the same posi-
tion as the leftmost occurrence of z in w. Hence z is a proper suffix of ¥, l.e. ¥ = uazx
for some v € £* a € I, and the leftmost occurrence of z in w is preceded by a. There
must be an occurrence of z in w that is not preceded by a, otherwise z =, az, con-
tradicting the fact that z is the longest word in [z],. Consider the leftmost
occurrence of z in w that is not preceded by a. Let w = wirwg for this occurrence.
Let & be the last letter of w,. Since zw; is a subword of w and z =y, ¥, Yw;s is a sub-
word of w. Hence azw; is a subword of w. It follows that zw; occurs at least twice in
w. However, since this was the leftmost occurrence of z that was not preceded by a,
it cannot be the case that bzw; occurs more than once in w. Thus zw; = tail (w) and
hence z is a prefix of tail{w). Further, since this was the first occurrence of z not
preceded by a, z is appearing for the first time in a new left context, and so stem (w)

is defined and |z | = |stem(w)].

(ii) This follows easily from (i).

(iii) Let =z and y represent two distinct redundant states in D, and assume |y| = |z]|.

Then by (i), z and y are both prefixes of tail(w), hence y = zu for some nonempty
word «. Consider the leftmost occurrence of z in w. Let w =wzw, for this

occurrence. It is clear that zw; is a subword of w but 4w, (= zuw;) cannot be a sub-

word of w. Thus we cannot have r =',, ¥ and hence z and ¥ are members of two dis-

tinct states in M. *

By the above lemma, every redundant state in D, can be uniquely associated with a
nonempty prefix of tail (w) as described above and no two redundant states are contained
in the same state in #,,. Thus if & is the number of states in M,, and ~ is the number of
~states in Dy, then # = N —([toil(w)| — |stem(w)| + 1) when stem (w) is defined, other-
wise M = N and hence M, = D,,. Since stem(w) is defined only when tail(w) cccurs for
the first time in a new left context, there are many cases when 4, = J,. One simple case

is when the last letter of w is unique, since in this case fail (w) = A

Lemma 3.1 allows us to identify when redundant states are created by Algorithm 1.
Specifically, by part (ii), the conditions that lead to a redundant state in [, are precisely
those conditions that lead to the "splitting” of an equivalence class in step 3b case 3 of
procedure update in Algorithm 1 (Lemmas 2.1 and 2.3). Furthermore, the two states
formed by the splitting of a state in 7, remain combined as one state in M, as w grows,
so long as the conditions of Lemma 3.1(i) hold, i.e. so long as the corresponding redundant
state in [, remains redundant. Thus to modify Algorithm 1 so that it builds #,,, we need
to postpone the splitting of these states during the construction as long as the conditions
of Lemma 3.1(i) hold. To do this, we need to know when the addition of a new letter a to w
causes redundant states in), to cease to be redundant in Dy,. At this pcint, the states of
My, thal represent two states of i, must be belatedly "split” for My, to be correct. The
conditions under which redundant states of J, cease to be redundant in Dy, are given by

the following lemmas:

Lemma 3.2. Assume fail{wa) = fail (w)a. Then if D, contains one or more redundant
states, [tail{wa)l, is redundant and for all other strings z, z represents a redundant
state in [, if and only if z represents a redundant state in D,. Otherwise D, , has at
most one redundant state, that state being [tail{wa}],,, which is redundant if and only if

tail(wa) appears for the first time in a new left context.

Proof. By Lemmaea 3.1, when [, contains one or more redundant states, stem(w)
must be defined. In this case redundance of [tail (wa)], and the status of all other states
follows immediately from the fact that stem(w) = stem{wa). When D, does not contain

any redundant states, then stem(w) is undefined. Since tail (wa) = tail (w)a, stem (wa)

will also be undefined, unless fail (wa) occurs for the first time in a new left context, in

which case stem (wa) = tail (wa). The last part of the lemma follows. *

Lemma 3.3. If tail(wa) # tail(w)a, then whenever z represents a redundant state
in Dy, z no longer represents a redundant state in Dy,. In this case Dy, always has at
most one redundant state, that state being [tail{wa)],,, which is redundant if and only if

tail (wa) appears for the first time in a new left context.

Proof. Since tail(wa) # tail{(w)a, teil (wa) must be a suffix of fail(w)ae, not begin-
ning at the first letter of tail (w)a. Hence any prefix of fail(wa) except tail (wa) itself is a
subword of fail{w) with an occurrence in fail{w) not beginning at the first letter of
tail(w). Since there is a previous occurrence of fail{w) in w, any proper prefix of
tail{(wa) has appeared before in the same left context as tail{we), and cannot be occur-
ring for the first time in a new left context. Hence by Lemma 3.1, O, has no redundant
states unless fail(wa) appears for the first time in a new left context, in which case
tail (wa) represents the only redundant state in Dy,. Since tzil (wa) starts in a later posi-
tion than fail (w), tail (we) cannot appear for the first time in a new left context both as a
suffix of 1a and as a prefix of fail (w). Thus, foil{we) cannct represent a redundant state
in both D, and D,,. Hence whenever z represents a redundant state in 0, z no longer

represents a redundant statein Dy4. ®

The on-line algorithm for J,, is easily modified to give an on-line algorithm for ¥, by
waiting to "split” the redundant states until the point when they cease to be redundant.
Lemmas 3.2 and 3.3 tell us that the only time when the redundant states of [, cease to be
redundant is when fail (w)a # tail{wa). This condition can be recognized by the fact that
[tail(w)], has no a-transition, which is checked during the first iteration of the while loop
in step 3 of procedure update in Algerithm 1. At the point when tail(wa) % tail{w)a, all
redundant states of J,, cease to be redundant, and the refinement of the equivalence
classes of), that was not done for #,, must now be implemented for #,,. This requires a
little bookkeeping in order to save the information needed to create new states until when

they cease to be redundant.
We introduce several new global variables to Algorithm 1 to perform these bookkeep-

ing functions. The first, splits, refers to the number of prefixes of fail{w) that are of

length equal to or greater than the length of stem{w); that is, the number of redundant

states in the corresponding D,,. parent refers to the state that will have a primary transi-
tion edge leading to the newly created state [stem(w)] when it ceases to be redundant.
children is a queue consisting of the states in #,, that contain redundant states in D,,; that
1s, the states that will be belatedly "split” when these states in J,, cease to be redundant.
oldsuffiz is a queue containing states that were newsink at the time when the correspond-
ing state in children became redundant. It is necessary to keep track of these, because
when thcse states "split” the suffix pointers will need to be readjusted to point to the newly
split off states.

We now give a description of Algorithm 2, the algorithm to build #,, (see below). Some
stages of construction for w = abecbded are illustrated in Figure 4 and contrasted with the
corresponding stages of Algorithm 1. Like Algorithm 1, Algorithm 2 is composed of three
procedures, buildma, update, and splif. Buildma is identical to duilddawg, except that it
has an additional step to initialize the global bockkeeping variables splifs, children, and
oldsuf fiz. Split is also identical to the corresponding procedure in Algorithm 1, except
. that it sets one additional suflix pointer. This is the suffix pointer from the first state
popped off the queue oldsuf fiz. It corresponds to the suflix pointer that is set in step 5

in the procedure updafe in Algorithm 1.

The version of updafe in Algorithm 2 incorporates the most significant changes from

Algorithm 1. Like the version of update in Algorithm 1, update takes the current sink state

L
states on the suffix chain of [w]', are traversed and an a-transition to the new sink state

w]y,) and the letter a, and creates the new sink state for Mue. As in Algorithm 1, the

is added from each state encountered that does not already have an a-transition. This

occurs in step 3b, case L

When the first state on the suffix chain is reached, if case 1 of step 3b is encountered
some additional processing takes place. This first state is [tail{w)],, so lack of an a-
transition from this state indicates that fail{w)a is not a subword of w, and hence
tail(w)a # toil (we). Thus, by Lemma 3.3, all redundant states in D, cease to be redun-
dant and the corresponding states in M,, must be belatedly split. In part a, all the states
containing redundant states from D, are refined using the subroutine split. The variable
splits is used to count them, the queue children is used to locate the states that must be

refined, and the queue oldsuf fir is used to locate states whose suffix pointers must be

readjusted. After this operation, the variable splils is set to zero, indicating that there
are no states of M, that contain redundant states of J,. At this point the structure is
essentially the same as the partially updated structure for D, that would be present at
the corresponding point in step 3b case 1 of Algorithm 1. This special processing is inhi-
bited when case 1 arises for subsequent states in the suflix chain of [w]y since splits is

set to zero.

When a state with an a-transition is found. this transition will lead to tail (wa)]'ye. It
then becomes necessary to determine whether this state contains a redundant state from
the corresponding Dyg. This is done in step 3b, cases 2 and 3, and is also analogous to the

processing performed in the corresponding steps in Algorithm 1.

In step 3b, case 2, update checks to see if it is the case that [tail(wa)]y, does not
contain a redundant state from D,,. This is indicated by spli{s having a zero value, and
the a-transition to [tail (wa)]y, being primary. When splits is zero, this criterion reduces
to the same one applied in the corresponding step of Algorithm 1 to check if [tail (wa)]y
does not need to be split. When splifs is nonzero at this point in updafe, it must be the
case that tail{wa) = tail{w)a. Otherwise the special processing described above wouid
have occurred on the first iteration of the while loop that traverses the sufiix chain, set-
ting splits to zero. Since a value of one or more for splifs also implies that there is at least
one redundant state in D, [toil(wa)]yu is redundant in this case by Lemma 3.2. Hence

{tatl{wa)]' e always contains a redundant state of Dy, when splifs is greater than zero.

In step 3b, case 3, update handles the case when [fail(wa)]'y does contain a redun-
dant state from J,,. This is indicated by a nonzero value of splits, or by a secondary edge,
i.e. the negation of the above condition for case 2. In this case, splits is incremented to
reflect the addition of a new state in M, that contains a redundant state in D,q. The
appropriate states are added to oldsuf fiz and to children for later use when the redun-
dant states may cease to be redundant. If stem{w) is undefined, then stem(wa) is
tail (wa) and parent is given the value [tail (wa)] yq.

Finally, in step 5, update sets the suflix pointer of the new sink for #,, to point to

[tail{(wa)]'y, and returns the new sink state it creates.

A description of Algorithm 2 in pseudocode is given below. Note that the variables

source, children, parent, oldsuf fiz, and splifs are global to all three procedures.

Algorithm 2.

buildma (w)
1. Initialize the global queues children and oldsuf fiz to be empty, and set the value of
splits to O. \
2. Create a state named source and let currentsink be source.
3. For each letter a of w do:
Let currentsink be update {(currentsink, a).

4, Return source.

update (currentsink, a)

1. Create a state named newsink and a primary edge labeled o from currentsink to
newsink .

2. Let currenisiate be currenisink and let suf fizstate be undefined.

3. While currenitstale isn't source and suf fizstate is undefined do:
a. Let currenistafe be the state pointed to by the suffix pointer of currentstate.
b. check whether currenistofe has an outgoing edge labeled a.

1. If currenisfate does not have an outgoing edge labeled a then:

a. For 1 = 1 to splits, remove topchild and fopsuf fiz from the front of the
queues vch’ildre'n and oldsuffixr respectively, and let parenf{ he
split (parent, topchild, topsuf fiz).

b. If the "for” loop above was exescuted, let currentstate be parent and set
splits = 0.

c. Create a secondary edge from currentstate to newsink labeled a.

2. Else, if splits is 0, and currentstate has a primary outgoing edge labeled a,
then let suf fizstate be the state to which this edge leads.
3. Else (splits > O or currentstatz has a secondary outgoing edge labeled a),

a. Let suf fizstate be the state that the outgoing edge labeled a leads to.

b. Increment the value of splits.

c. If splits is 1, let parent be currentstate.

d. Add suf fizstate to the end of the queue children and add newsink to
the end of the queue oldsuf fiz.

4. If suf fizstate is still undefined, let suf fizstate be source.

5. Set the suffix pointer of newsink to point to suf fizstate and return newsink.

split (parentstate, childstate oldsuf fizstate)
1. Create a state called newchildstate.
2. Make the secondary edge from parentstate to childstate into a primary edge from
parentstate to newchildstate (with the same label).
3. For every primary and secondary outgoing edge of childstate, create a secondary
outéoing edge of newchildstate with the same label and leading to the same state.
Set the suflix pointer of newchildstate equal to that of childstate.
. Reset the suffix pointer of childstfate to point to newchildstate .
. Reset the suffix pointer of oldsuf fizstate to point to newchildstate. t

. Let currentstate be parentsiaie.

[IS B S (NN

. While currenistate isn't source do:

a. Let currentsicte be the state pointed to by the suffix pointer of currentstate.

b. If currentstate has a secondary edge to childstate, make it a secondary edge to
newchildstate (with the same label).

c. Else, break out of the while loop.

8. Return newchildstate .

Theorem 3.2, The smallest DFA for the set of all subwords of a word can be built on-

line in linear time.
Sketch of proof.

The above description of Algorithm 2 indicates how it can be shown that this algorithm
correctly constructs i, on-line. Except for bookkeeping functions, every operation per-
formed by Algorithm 2 is an operation performed for the corrésponding word by Algorithm
1, although often these operations are‘ performed in a different order. The linear time
bound follows from this fact that the only new operations performed by Algorithm 2 are
those involved with the extra bookkeeping. This bookkeeping is bounded by the number of
splits that are delayed in Algorithm 2, which must be linear since Algorithm 1 is linear

{Lemma 2.5). =,

Section 4. Further Research

One possible direction for further research is to try to find an on-line linear- time
algorithm that builds the smallest partial DFA for the subwords of a finite set of words. A
natural extension of the DAWG constrﬁction algorithm to finite sets of words is given in
[Blu 84a]. This gives a partial DFA for the subwords of the finite set, with size bounds simi-
lar to those given in Theorem 1.1. However, the relationship between the DAWG and the
smallest partial DFA is more problematic in this case, and there are no obvious

modiﬁcatic';ns that would allow it to construct the smallest DFA on-line in linear time.

Continuing further along this line, we might consider constructing the smallest DFA
for the subwords of an arbitrary regular language, perhaps given as a partial DFA itself.
However here we run into a roadblock, because it can be the case that the regular
language has a DFA of size n, but the smallest DFA for the subwords of the language has
O(2™) states. A simple example is the language {2 + b)"a(a + b)*c, where a, b and ¢ are
distinct letters. Here every word of length n over the letters ¢ and b falls into a different
equivalence class with respect to the canonical right invariant equivalence relation for the
subwords of the language, so the smallest DFA for the subwords has at least 27 states,

while the DFA for the language itself has only 2n + 3 states.

Other lines of research relate to implementations of the algorithms given here. Prob-

h

lems arise when building DAWGs or smallest DFA for very large texts due to the size of the
data structure for the automaton, which may be many times larger than will fit in the
main memory of the machine. Here we would like two things. The first is a gocd estimate
of how large the automaton is expected to be for a given size text. We have some results of
this type for random texts in the case when all letters are independent and equiprobable,
which we hope to present in a future paper. The second thing is a good method for dealing
with the disk "thrashing” problem when the automaton is too large to fit in main memory
and must be built using secondary storage. This is a problem that plagues algorithms for

compact position trees and their relatives as well (see [Maj 80]). As yet we have made no
progress in this direction.

Finally, one might consider applications of these automata to other text processing
problems beyond the simple string search mentioned in the introduction. Several possibili-

ties along these lines are briefly discussed in [Blu 84a].

2.4

Acknowledgement

We would like to thank Ross McConnell for much help with the version of this paper
presented at ICALP-84 and for helpful discussions and programming effort in the early
stages of this investigation. We would also like to thank Hermann Maurer for his comments

on [Blu 83], which led us to look at smallest automata for the subwords of a word.

References

[Aho 75] Aho, Alfred V. and Margaret J. Corasick; "Efficient string matching: an aid to
bibliographic research,” CACH, v. 18, no. 6 {June 1975) 333-340.

[Apo 79] Apostolico, A.; "Some linear time algorithms for string statistics problems,”

Publication Series IlI, 176 (Instituto per le Applicazioni del Calcolo "Mauro
Picone", Rome, 1979) 28pp.

[Apo 80] Apostolico, A.; "Fast applications of suffix trees,” in: D. G. Lainiotis and N. S.
Tzannes, eds., Advances in Control (D. Reidel Publishing Co., Hingham, MA,
1980) pp. 558-387.

[Apo 83] Apostolico, A. and F. P. Preparata; "Optimal off-line detection of repetitions
in a string,” Theoretical Computer Science, v. 22 (1983) 297-315.

[Apo 84] Apostolico, A.; "The myriad virtues of suffix trees,” Proceedings of the NATO
Advanced Research Workshop on Combinatorial Algorithms on Words, Mara-
tea, Italy (June 18-22, 1984).

[Blu 83] Blumer, A, J. Blumer, A. Ehrenfeucht, D. Haussler, R. McConnell; "Linear Size
Finite Automata for the Set of all Subwords of a Word: An Qutline of Results,”
Bul. Euro. Asso. Theor. Comp. Sci., 21 (1983) 12-20.

[Blu 84a] Blumer, A., J. Blumer, A. Ehrenfeucht, D. Haussler, R. McConnell; "Building a
Complete Inverted File for a Set of Text Files in Linear Time,"” Proc. 16th ACH
Symp. Theo. Comp., (May 1984) 349-358.

[Biu 84b] Blumer, J.; "Correctness and linearity of the on-line directed acyclic word
graph algorithm,” University of Denver Department of Mathematics and Com-
puter Science Technical Report MS-R-8410. ‘

[Boy 77] Boyer, R.S. and J.S.Moore; "A fast string searching algorithm,” CACH, v. 20,
no. 10 (Cctober 1977) 7682-772.

[Che 83] Chen, M.T. and J. Seiferas; "Efficient and elegant subword-tree construction,”
Univ. of Rochester 1983-84 C.S. and C.E. Research Review, 10-14.
[Che 84] Chen, M.T. and J. Seiferas; "Efficient and elegant subword-tree construction,”

Proceedings of the NATO Advanced Research Workshop on Combinatorial Algo-
rithms on Words, Maratea, Italy (June 18-22, 1984).

[Cro 84a] Crochemore, M.; "Optimal factor transducers” Proceedings of the NATO
Advanced Research Workshop on Combinatorial Algorithms on Words, Mara-
tea, Italy (June 18-22, 1984).

s

[Cro 84b]
{Cro 84c]
Hop 78]
[Knu 77]
[Maj 80]
[McC 78]
[Mor 88]
[Ner 58]

[Pra 73]
[Red 81]
[Sl 77]

[Sli 78]

[S1i 80]

[Sli 83]

[Tan 81]

[‘;Vei 73]

Crochemore, M.; "Linear searching for a square in a word,” presented at the
11th Int'l. Collog. on Automata, Languages, and Programming, Antwerp, Bel-
gium (July 16-20, 1984)

Personal communication.

Hopcroft, J. E. and Ullman, J. D., /niroduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, Massachusetts, 1979.
Knuth, Donald E., James H. Morris, and Vaughan R. Pratt; "Fast pattern
matching in strings," S/AM J. Comput., v. 8, no. 2 (June 1977) 323-350.
Majster, M. E. and Angelika Reiser; "Efficient on-line construction and correc-
tion of position trees,”" SIAM J. Comput., v. 9, no. 4 (November 1980) 785-807.

McCreight, Edward M.; "A space-economical suffix tree construction algo-

" rithm,” JACH, v. 23, no. 2 {April 1978) 262-272.

Morrison, Donald R.; "PATRICIA - Practical Algorithm To Retrieve Information
Coded In Alphanumeric,”" JACH, v. 15, no. 4 (October 1968) 514-534.

Nerode, A., "Linear automaton transformations,” FProc. dmer. Math. Soc., 9
(1958) 541-544.

Pratt, V. R., "Improvements and applicaticns for the Weiner repetition
finder,” unpublished manuscript (May 1973, revised October 1873, March
1975).

Rodeh, Michael, Vaughan R. Pratt, and Shimon Even; "Linear algorithm for
data compression via string matching,’ JACH, v. 28, no. 1 (January 1981) 18-
24.

Slisenko, A. 0., "String-matching in real time,"” Preprint P-7-77, The Steklov
Institute of Mathematics, Leningrad Branch {(September 1977) (Russian)

Slisenko, A. 0., "String matching in real time: Scme properties cf the data
structure,” Mathematical Foundations of Computer Science 1878 in: Proceed-
ings, 7th Symposium, Zakopane, Poland, 1978, Lecture Notes in Computer
Science 84 {Springer-Verlag, Berlin, 1978) pp. 493-4096.

Slisenko, A. 0., "Determination in real time of all the pericdicities in a word,”
Soviet Mathematics - Doklady 21, 2 {March-April 1980) 392-395.

Slisenko, A. O., "Detection of periodicities and string matching in real time,”
Journal of Soviet Mathematics 22, 3 {June 11, 1983) 1316-1387; translated
from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matema-
ticheskogo Instituta im. V. A. Steklov AN SSSR 105 (1980), 82-173

Tanimoto, Steven L.; "A method for detecting structure in polygons,” Patfern
Recognition, v. 13, no. 6 (1981) 389-324.

Weiner, P.; "lLinear pattern matching algorithms,” JEFF 14th Annual Sympo-
sium on Switching and Automata Theory (1973) 1-11.

W

end-set (bec)
w

1]

he

a b c b ¢
01 2 3 4 5

= end-set (¢)
W

i
0

nce bec

Figure 1.

{

3,

5

Figure 2a. Dw with classes denocted by end-sets

abchbe,
bebe, chce

Figure 2b. Dw with classes given explicitly

Figure 3a.

T(w) superimposed on DW

20

becba

Compact position tree for the reverse of w

primary edges —_—
secondary edges — = — - splits = 0
tail = X

stem is undefined

splits = 1
tail = b
stem = b

splits = 2
tail = bec

stem = b

abchbc Mabcbc

splits = 0

tail = X

stem 1s undefined

Dabcbcd

M
abcbed

Figure 4. Illustration of Algorithms 1 and 2 for w = abcbed

