DOE Form IR-427 U.S. DEPARTMENT OF ENERGY

(1/79)
UNIVERSITY-TYPE CONTRACTOR AND GRANTEE RECOMMENDATIONS
FOR DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT
See Instructions on Reverse Side
1. DOE Report No. 3 Title

CRITICS: An Active Approach to Tools and Environments

2. Contract No.
DE-FG02-84ER13283
4, Type of Dacument {"X" ane)
X a. Scientific and technical report
{Jb. Conference paper:
Title of conferance

Date of conference

Exact location of conference

Sponsoring organization
CJc. Other (Specify Thesis, Translations, etc.)

n

. Recammended Annguncement and Distribution (“X” ane)
(Xa. 00E's normal annauncement and distribution procedures may be followed.
{Ib. Make available anly within DQE and to DOE contractars and other U.S. Gavernment agencies and their contractors.

8. Reason for Recommended Restrictions

7. Patent Information
Oaes this information product disclose any new equipment, pracess or material? [JYes [JNo

Has an invention disclasure heen submitted to DQE covering any aspect of this infarmation product? If so, identify the DOE (or other) disclosure
number and to whaom the disciosure was submitted. [JYes [INo

Are there any patent related ohjecticns to the releass of this information product? if so, state these cbjections.
Leon J. Osterweil, Professor and Deborah Baker, Assistant Professor
8. Submittad by Name and Pasition (Please print or type)

University of Colorado, Department of Computer Science
Organization

e — | Wenfi s~

e \

FOR DOE USE ONLY

8. Patent Clearance {"“x" ane)
{Ja. OQE patent clearance has been granted by responsible DOE patent group.
{(Jb. Repart has heen sent ta respansible JOE patent group for clearance.
[Tc. Patent clearance not required.

CRITICS AN ACTIVE APPROACH
TO TOOLS AND ENVIRONMENTS

by

Deborah A. Baker and Leon J. Osterweil

CU~CS~285~84 December, 1984

University of Colorado, Department of Computer Science,
Boulder, Colorado.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

NOTTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States

nor the Department of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or their em-—
ployees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, con-
pleteness, or usefulness of any information, apparatus, pro-
duct or process disclosed or represents that its use would
not infringe privately-owned rights.

Critics: An Active Approach to Tools and Environments

Deborah A. Baker and Leon J. Osterweil

Department of Computer Science
Campus Box 430
University of Colorado at Boulder
Boulder, Colorade 80309

Abstract

This paper describes the notion of software critic tools. A critic analyzes an object
(such as a program) for compliance with one or more design rules or guidelines, but,
unlike more traditional software tools, a critic is active, rather than passive, in nature.
Critics approach the problem of controlling the complexity inherent in, and the
voluminous information produced during, software development by furnishing power-
ful analytic feedback to the user automatically, easily and efficiently. This paper
defines the notion of a critic, and also discusses issues involved with the implementa-
tion and definition of critics. The implementation issues also raise certain architec-
tural considerations which seem to be of considerable importance to tool and
environment architects.

Keywords

Software engineering, tools, static analysis, software environments.

This work is partially support by National Science Foundation grant # DCR-8403341
and Department of Energy grant # DE-FG02-84ER13283.

1. Introduction

There has been continuing strong interest in creating tools and toolsets to support the
software development process and in particular to aid in coping with the complexity
inherent in producing large software. Initially software tocl development efforts
focussed on the creation of increasingly large, sophisticated and powerful tools. As
such tools were made available in increasing quantity and diversity, it rapidly became
apparent that some guidelines for their use and coordination were essential to the
effective exploitation of the tools. Considerable previous work in the area of software
development methodologies suggested that one way to effectively coordinate tool use
and application would be to construct a set of tools capable of sharply and effectively
supporting a single specific software methodology. The continuing absence of agree-
ment and consensus about which development methodologies are superior continues to
discourage and frustrate those who would focus their tool development efforts on nar-
row support of a particular methodology. Instead tool developers have concentrated
on building integrated collections of tools coordinated and integrated according to a
variety of innovative strategies and aimed at providing power and flexibility. These
innovative integrated toolsets are generally referred to as software development
environments. They represent an excellent vehicle for experimentation with tosls, tool
combinations, and development methodologies, while also serving as experimental
objects themselves.

Our research has recently focussed on creating and experimenting with a tool integra-
tion strategy, called Odin [Clemm 84], which emphasizes flexible, modular, extensible
tools, and the importance of a central repository of objects which are the products of
these tools and their constituent parts. This integration strategy has been used to
create a specific software development environment, called Toolpack/IST [Osterweil
83]. This early work has lead us to believe that it is useful to center environments
around a collection of data objects and to construct toolsets out of small modular
pieces. We have also come to realize that these sorts of environment architectures
make 1t all too easy for the user to create large collections of large data objects. This
large mass of data then unfortunately becomes an obstacle to clear insight and under-
standing of the software rather than an effective vehicle to this insight and under-
standing.

Thus we have become increasingly interested in the creation of aids to the process of
inferring and distilling more concise knowledge from larger bodies of software informa-
tion. These aids are properly thought of as modular tools themselves, but they differ
from the other sorts of tools in our environment in two ways. First, their primary job
is not the creation of new information, but rather the summarization and distillation
of existing information. Thus they resemble a class of tools which we have earlier
referred to as wiewers. More importantly, however, these tools are significantly
different in that they seem to us to be more effective when invoked automatically
rather than explicitly by the user. For this latter reason, we refer to these automati-
cally invoked tools as active tools, to contrast them to our earlier tools which operate
passively, only when explicitly invoked. Because these tools have an analytic flavor as
well, we believe it is appropriate and suggestive to refer to them as critics.

We believe that, as tools and tool configurations become increasingly complex and
powerful, they will increasingly have to become more active and self-critical of their
own actions and products. Thus we are increasingly persuaded that it is time to study
the potential for converting existing passive tools into active critics and for synthesiz-
ing combinations of analytic capabilities into critic environments. This paper describes

the notions of active tools and critics. It also discusses some issues raised by the need
to effectively and efficiently implement critics. This in turn leads to consideration of
architectural issues raised by the need to create environments increasingly centered
upon effective support for critics as a focus of the environment’s user interface.

2. Critics

A software critic is an active analytic software development tool. A critic applies one
or more design rules or rules of thumb to programs, designs or specifications as they
are being developed or after they have been completed. We say that a critic animates,
or embodies, its rules. In the following paragraphs the active nature of critics and the
rules critics embody will be discussed in more detail.

Traditional software tools, whether they exist individually (such as Lint [Johnson]), as
part of a tool suite (such as Toolpack [Osterweil 82, Osterweil 83]), or as part of a
development methodology (such as the tools associated with SREM [Bell 77] or
PSL/PSA [Teichroew 77}), are intended to be explicitly invoked; furthermore, tradi-
tional software tools are intended to operate on the particular object or set of objects
named, implicitly or explicitly, upon invocation. An active software tool is dis-
tinguished from traditional passive tools in two respects. First, active tools are
itinerant, automatically identifying and processing all objects in an information repo-
sitory which are in their purview. They do not have to be given instructions specifying
which objects they are to process. Second, active tools operate without being expli-
citly invoked. These characteristics define what is meant by the term active: an active
tool does not need to be explicitly invoked nor does it have to be told which objects
are in its purview.

Critics are active tools whose processing is aimed at analyzing, abstracting, summariz-
ing, or otherwise digesting and interpreting data which has presumably been generated
by the actions of other tools.

The goal of providing critics is to help users effectively absorb and cope with the
masses of information which software tools are becoming increasingly able to make
available. Critics seem able to do this by making analysis of programs, specifications,
designs, and other objects practical and efficient in routine use. Critics address this
goal in several ways. First, because it is not necessary to explicitly invoke a critic, the
use of such a capability should be quite convenient. In addition, because critics are
not invoked explicitly, their processing need not be completed and results returned to
the user immediately. Instead it is expected that critic tools will, once started, execute
in the background while the user addresses his or her attention to the processing of
passive tools. Thus the critics would execute the fastest while the user was using pas-
sive tools the least -- presumably during periods of contemplation. As a result, critics
would deliver their analytic and summary results to the user some time after
significant changes had been made, but presumably not during periods when the user
is making rapid changes using passive tools.

Critics can embody rules ranging from simple to complex. A trivial example of a critic
tool is one that would warn of a procedure whose source text became too long to list on
one or two pages. Such a design critic embodies the folk rule of thumb concerning
length of procedures. In this case the critic would be a trivial piece of code whose exe-
cution could readily be triggered any time a procedure was edited. Critical feedback
to the user would be almost immediate.

A more interesting example of a critic would be a tool for enforcing the design rule for

a distributed Ada! program mandating that a task should not call one of its own
entries. (While not prohibited by the rules of the language, any task that calls one of
its own entries will immediately deadlock [ALRM].} A critic embodying this rule
would be harder to construct, requiring lexical, syntactic and some semantic analysis
of Ada tasks. Thus the user of such a critic should not expect that the critic would
give instantaneous diagnostic feedback when the error was committed. Instead the
critic would, at some point after the code for the task had been completed, initiate its
analysis, reporting the observed viclation of the design rule, presumably after the user
had begun to do other work with passive tools. It is important to note that, because a
critic is an active tool, the user does not control when the critic initiates or completes
its analysis. As a result the user is not required to wait until the eritic has completed
its analysis before proceeding. Conversely, the user is not assured that once he or she
proceeds all critical analyses have concluded and that it is therefore safe to assume
that he or she has not committed any violations of critic-enforced rules. This suggests
the desirability of giving the user some amount of power to specify at least the policy
or strategy under which critics are to be applied. Presumably critics should execute as
rapidly and automatically as possible, but without being intrusive, obstructionist or
meddlesome. For example, a critic should not annoy the user with diagnostic feedback
while the user is in the middle of carrying out a complex, multistage editing procedure.
Comnsideration of ways in which the user might be given this power seems to imply
important toolset architectural considerations which will be discussed later in this

paper.

The power and value of critics can perhaps first start to be seen in considering the
conversion of classical data flow analyzers into critics. Data flow analyzers are tools
which statically examine the structure of a program or design specification to deter-
mine whether or not it is possible for a given sequence of events to occur when execu-
tion proceeds along any path through the code or design (eg. see [Fosdick 76]). One
example of such a data flow analyzer is the Dave system [Osterweil 76] which is capa-
ble of examining a Fortran program to determine whether or not it is possible for the
program to reference an uninitialized variable (a violation of langnage semantics) or to
ignore the value of a previously defined variable (a "dead variable” -- not an error, but
a cause of concern). Experience has shown that the existence of these data flow
anomalies in a program is often an indirect indicator of serious structural problems in
a program. Thus this type of analysis is considered to be quite useful and desirable
and very much the sort of feedback which we believe a critic should deliver. Unfor-
tunately, this sort of analysis entails a great deal of computation because in order to
be correct it must be done thoroughly, often entailing the analysis of long chains of
invoked procedures. Here too it seems that this sort of capability is best thought of as
a critic, as the tool which carries out this analysis must be itinerant, deciding for itself
which bodies of code and data objects must be found and analyzed. Further, past
experience has shown that it is often impractical to use this capability in routine code
development and testing contexts because the analysis can take unexpectedly long
amounts of time to complete.

A critic whose job was to enforce a data flow rule would carry out its analysis in the
background while the user might be working with passive tools. The user would not
be required to wait until the critic had completed its work before proceeding. This is
important because the critic could be programmed to optimize its analysis in a variety
of ways, thereby making it difficult to predict how long its analysis might take.

1 Ada is a registered trademark of the US Governmens, ADA Joint Program Office.

Rather than having to risk waiting an unpredictable length of time for the critic to
finish, the user would simply go on whenever he or she were so inclined. The critic
would have its own agenda in the sense that it would know, for instance if it embodied
data flow rules, which invoked procedures needed to be analyzed in order to carry out
needed interprocedural analyses. Thus it would not need to be directed at specific
bodies of code. It could be made sufficiently clever to recognize when previous ana-
lyses had yielded reusable data and when such data needed recomputation. In particu-
lar it could be made sufficiently clever to recognize when the user had gone on and
made changes which had invalidated partial analytic results. As a result, the critic
might be forced to thrash a bit if the user were actively making large and pervasive
changes. In the absence of such a situation, however, the critic would be free to com-
mandeer processing time and resources as made available by user inaction, and
attempt to remain reasonably close to the user's work with its analyses. The most
appealing aspect of this scenario is that the user would not have to decide when he or
she was ready to commit to the potentially lengthy data flow analysis process and
when to run the risk of not carrying out analysis in order to save time. Instead the
user would simply assume that the analysis was constantly being carried out. Current
analytic results could be obtained simply by suspending all changes until the analyzer
caught up to the user.

This last example suggests that critics could be made even more powerful. Rather
than considering that a critic must be restricted to evaluating an object or objects pro-
duced by only a single tool it should be clear that a critic could just as easily carry out
analysis of sets of objects produced by an ensemble of tools. In fact it seems reason-
able to suggest that the job of a critic might best be described as the construction and
analysis of a large knowledge structure requiring the execution of diverse tool capabili-
ties. From this perspective we see the possibility of subsuming many currently passive
tools as components of active tools and slowly changing the character of some current
passive environments into increasingly knowledge-driven active environments,

The examples given to this point were critics of code. The notion of critic can be
extended to any objects for which there are design rules or guidelines. For instance,
design critics could exist for the specification of an abstract data type (say as Anna
[Luckham 84] annotations to an Ada package being designed). Such design critics
could embody certain completeness criteria for abstract data types [Cline 83].
Discriminatory completeness, for instance, ensures that a type includes operations for
differentiating between objects of the type. For distributed programs, further com-
pleteness criteria could, for example, incorporate the guideline that updates to a
shared variable require exclusive access to that variable [Taylor 83, Taylor 80].

The notion of a critic could also be exploited by tools other than those for the develop-
ment of software. In an office environment, critics could embody various guidelines for
ordinary text. Each time a paragraph were finished, the words could be checked for
correct spelling and the sentences for readability.

The results of a critic (like the results of a static analysis tool such as Dave) serve as a
warning that a possible design flaw is present in the code, design, specification or other
object examined. The software engineer (designer, specifier, or programmer) could
choose to heed or to ignore this advice based on his or her insight into the problem at
hand.

As stated earlier, we believe that the notion of a critic might well be an important
organizational hub of the user’s interface to a software development environment.

The architectural ramifications of deciding to give it such prominence are worth con-
sidering. Before proceeding to this consideration it seems important to relate our
notions to other tool and environment research efforts.

2.1. Related Work

There are existing environments that incorporate some active components. Our work
differs from these previous uses of active components primarily in the extent to which
active components are used and the roles they are intended to fill. The programmer’s
assistant of Interlisp [Teitelman 81] and the programmer’s apprentice [Waters 82] are
active agents. The programmer’s assistant, together with the DWIM (Do What I
Mean) facility of Interlisp, correct spelling errors a programmer might make and allow
a programmer to undo or redo operations. The programmer’s apprentice keeps track
of details and thereby assists the programmer in building, documenting and modifying
a program.

The DOMAIN Software Engineering Environment {(DSEE) is a distributed workstation
environment [Leblang 84]. Whenever a new version of some piece of information is
created, the history manager on the network node where the update occurred sends a
message to other nodes. This is an active method of providing source code control.

In the PECAN system, multiple views of the same object are possible [Reiss 84]. For
instance, a programmer might have accessible views of the syntax, the symbol table,
and a Nassi-Schneiderman chart. If, for instance, the syntax view is changed with the
syntax directed editor, the other views are automatically updated to conform to the
change. Thus, each of the current views are kept up-to-date without explicit interven-
tion from the user.

Syntax directed editing is, of course, a form of active analysis [Teitelbaum 81] where
the analysis that is performed is syntactic. Language based environments, such as the
Cornell Program Synthesizer and Magpie, often proved incremental compilation,
which is also a form of active analysis [Reps 83, Delisle 84].

In the Odin system, sentinels can be set into action whenever an object of a certain
type is changed [Clemm 84]. A sentinel may correspond to an arbitrary semantic con-
straint; a program is provided for each sentinel and embodies its constraint. Sentinels
are similar to policies [Cooprider 78].

Certain interactive systems have been built with active components. One such system
with an active help subsystem is the BISY text editor [Fischer 84]. This system moni-
tors a user and gives advice when the user accomplishes tasks in a suboptimal manner.
The help system consists of plan specialists, each of which corresponds to a complex
activity that can be done more or less optimally. Care is given to give help unob-
trusively (i.e. not too frequently and only for tasks that the user has repeatedly done
in a suboptimal way).

2.2. Example
We give an example in this section of how a collection of critic tools can assist in the

development of a program. Issues dealing with the specification and implementation
of critics will be addressed in following sections. We will assume here that critics can

actually be specified and implemented. Critics can be developed for any guideline, and
in particular, for programs written in any programming language.

We will assume for the following scenario that a large software system is being
developed in a critics environment. An exhaustive list of the critics that are active for
this scenario is not important. It suffices that the system is developed under the criti-
cism of the data flow and other sorts of critics that have been mentioned as examples
elsewhere in this paper.

A programmer wishes to make a change to an interface in a large software system. A
great deal of care must be taken because of the possible consequences of the change.
There is very little help that is currently offered a programmer in this situation.

A program can be inspected manually for the possible consequences of a proposed
change. But such manual inspection is time-consuming, tedious and error-prome. A
tool that locates occurrences of objects in a program (such as a cross reference tool or
even a text editor) provides minimal support for locating sites of potential problems.
But such a locating tool provides no assistance in performing analysis to determine the
presence or extent of problems due to the proposed change. Furthermore, such a tool
must be used in such a way as to locate all references to the object under its own name
as well as any aliases it might have (as might occur via a renaming declaration or gen-
eric instantiation in Ada [ALRM]).

Existing analysis tools can provide help for the actual analysis task. There are, unfor-
tunately and as noted above, several problems with existing analysis tools that render
them less than ideal. The Dave data flow analysis tool [Fosdick 76, Osterweil 78], for
example, is a large, monolithic tool. While its data flow results are useful in discover-
ing problems with interfaces, there i3 no way to direct the attention of the Dave tool.
It always produces an entire analysis of a program. It doesn’t use results from its pre-
vious runs to reduce the amount of analysis it must do. Since data flow analysis is
complicated, the programmer might wait for an unreasonably long period of time for
the analysis, and then have to distill the desired information from Dave’s voluminous

output.

Contrast the above scenario with the critics scenario. In a critics environment, the
programmer would make the change to the program and go on to do useful work. The
critics would analyze the program and prepare critical reports. The programmer could
evaluate the critical reports at leisure and decide whether the change was acceptable.
Since critics do incremental analysis, the actual amount of analysis will be reduced. If
there were no previous data flow anomalies in the program, the critic could restrict its
attention to the modified portions of the program.

3. Architectural and Implementation Considerations

From the foregoing discussion it should be clear that a critic cannot be implemented as
an independent tool, but must instead be considered to be a component of a larger col-
lection of tools or tool functions. In the simplest case, a critic might be considered to
be a semiautonomous part of a large and complicated tool or tool system. For
instance, the garbage collection function of a large system is an active tool capability
{although mnot a critic). Thus a critical capability might be imbedded in a larger
software tool or system in a fashion analogous to the way in which a garbage collector
is imbedded in a string processing system. Alternatively the critical capability might

be implemented as a tool or tool fragment which is a component of an organized tool
system or environment,

In either case, to be of practical use, critics should be as unobtrusive as possible and as
efficient as possible. If a critic is not perceived by the user to be efficient, it will be con-
sidered a drain on resources, and is likely to be turned off, perhaps permanently. How-
ever, the animation of some rules involves elaborate, and therefore time-consuming,
analyses. Thus, producing critics might appear to contradict the goal of doing so
eficiently. Many of these rules, however, will require the same preparatory analyses of
the program (or specification, etc.) before the primary analysis can begin. For
instance, most analyses of programs will need the results of lexical analysis, syntactic
analysis and some semantic analysis. If each critic were implemented as an individual,
monolithic tool, these pre-analyses would be performed by each critic. This would
lead to gross inefficiency of the set of critics as a whole, as each critic recomputes
results that exist in the system but that are not accessible to it. If we can perform
such preliminaries once, and allow the various critics to share the intermediate results,
we should gain quite a bit of efficiency over individual, monolithic analyses. This
strongly suggests that critics are best implemented as cooperating capabilities, prefer-
ably even coordinated with the processing of the passive tools whose products they
analyze,

Although this could be effected by imbedding critical capabilities within a single large
tool such as an intelligent editor, it seems to us preferable to implement critics within
the context of a less tightly integrated family of tools such as a loosely coupled
environment. The Odin environment integration architecture offers one example of an
architecture which seems to facilitate the efficient integration of critics as outlined
above. Odin strongly encourages the user of an Odin-integrated tool environment to
think of the environment as a repository of objects created by tools and tool frag-
ments. Thus the Odin command language is best thought of as a language for request-
ing the creation of the objects which tools can build. In Odin, there is a specification
language in which each type of object is described as being derived by the application
of a sequence of tool fragments. A pretty-printed program, for example, is produced
from the source program and the results of lexical and syntactic analysis. The Odin
command interpreter has as its job assuring that the objects which a user requests are
created as efficiently as possible through the effective reuse of previously created and
retained intermediate objects. Using the Odin framework, then, complex critics could
be specified as tools which build upon any number of objects produced as the results of
the acticns of other tools and tool fragments. In an ideal situation a critic tool might
merely draw upon the results produced by other active or passive tools.

While this approach clearly offers the advantages of convenience, flexibility, extensibil-
ity and efficiency, it still i1s not necessarily an efficient enough approach to assure that
the critic will be able to keep up with changes being made to the information in the
environment in which it works. This will be the case especially if the amount of infor-
mation or rate of change were large or if the critic embodied a complex rule. In this
case, the critic would labor in the background some distance behind the changes being
made by the users, until the users slowed their pace of changes, focused their attention
on an unrelated object, or perhaps suspended their work (e.g. at the end of a working
day). At that time, the critic or critics would be able to catch up and perform their
analyses on the more static data repository. Their critical reports would be lodged in
the data repository and brought to the attention of the relevant users.

A critic that embodies the rule of thumb concerning length of subprograms would

more or less continuously monitor the lengths of the source text of subprograms as
they were developed and updated. This is a straightforward task; the critic could give
essentially instantaneous feedback to programmers were this guideline to be violated.

A critic that embodies the guideline that an Ada task should not call one of its own
entries is not as straightforward as the previous example. It would require scanning,
parsing and some semantic analysis, and for that reason would probably lag some dis-
tance behind the code writer in its diagnostic feedback. As noted above, these prelim-
inary analyses might be available to the critic as the results of earlier processing by
other tools. If, for example, the Ada code were created by an intelligent editor the cri-
tic could begin its analysis by examination of a parse tree, or even a decorated parse
tree, which would reduce the time lag for critical results. The more complex a rule a
critic animates, the more likely it is that the critic will lag behind. In the case of a cri-
tic embodying a data flow rule, the time lag could quite significant. Here the critic
might have to reanalyze large numbers of procedures that directly and indirectly
invoke a lower level procedure which had been altered.

This issue of efliciency and rapid response seems to be central in considering architec-
tural alternatives for implementing critics. The foregoing indicates that critics can
embody rules which may require extensive preparatory analysis of unexpectedly wide
ranging procedures. Under these circumstances it seems prudent to offer users control
over how often critics are called upon to carry out their analyses. Certainly critics
embodying complex rules ought not to be automatically invoked after every keystroke.
Thus it seems that if critics were imbedded in intelligent editing systems there ought
at least to be some user control over how often critic rules were to be applied. Some
early experience with intelligent editors already indicates, for example, that critics
embodying static semantic rules ought to be suspended until after the user has com-
pleted a multi-line editing procedure embodying a non-trivial change. Certainly it is
possible to create an intelligent editor which embodies the ability to define and imple-
ment arbitrarily complex critic rules and to specify the rate at which the rules are to
be applied. It seems to us that such a system would necessarily have to be imple-
mented as a loose confederation of smaller analytic capabilities all driven by an
interactive editor and an intelligent scheme for reuse of intermediate analytic results.
We regard this as being functionally equivalent to the Odin-based approach we have
already described.

The issue of whether the most effective user interface is the one presented by an intel-
ligent editor or by a looser tool confederation, such as is suggested by Odin, is one well
worth exploring, but does not seem central to investigation of the power and desirabil-
ity of the notion of critics. On the other hand the issue of how to control the
effectiveness of critics through control of granularity of application seems central.

A critic can be defined to work at any level of granularity. For instance, a critic whose
rule concerns programs could work on an entire program, a subprogram, a block, or a
statement at a time. A critic whose rule concerns regular text could work on an entire
document, a section or chapter, a paragraph or a sentence at a time. However, if the
level chosen is either too fine or too coarse, the resulting critic is not as useful as it
might otherwise be. For programs written in a block structured language, for exam-
ple, a block seems to be the right granularity. A critic on whole programs has too
coarse a level of granularity. Such a critic could lag considerably behind the editing
changes, because it could not begin until the entire program were written. A critic on
individual statements has too fine a level of granularity. Such a critic would be an
annoyance because the number of its reports (equal to the number of statements) is

likely to be large. Such a critic may also find relatively many of its results becoming
obsolete as a program is edited. In contrast, a critic on blocks would begin its work
earlier than a program critic, and would give more immediate feedback. On the other
hand, it would begins its work later than a statement critic, and would give less, more
relevant feedback.

A critic must do its work in an unobtrusive manner. A critic whose level of granular-
ity is too fine will, most likely, waste resources and will frequently annoy users with
small results that are likely to change. A critic whose level of granularity is too coarse
will not give feedback as often and immediately as is desirable. Proper levels of granu-
larity will be discovered for critics on various objects as the critics are developed and
used.

Critics may be most useful, and in fact may work best, for large programs. Complex-
ity increases with program size, so it is during the production and maintenance of
large programs that analysis itself is most useful. Furthermore, it is during the pro-
duction {or maintenance) of a large software system that the active mature of critics
will provide the most leverage. When a system is composed of many objects (subpro-
grams, modules, data types and so forth), it would be easy to neglect requesting the
analysis of each object. It would be easy to neglect reanalysis when appropriate.
These problems are compounded when a group of people are involved with a single
project.

4, Specification of Critics

Software engineers and programmers need and/or perform many analyses of their pro-
grams, specifications, and designs every day. Some of these analyses have tool support
(syntax analysis by compilers). Other analyses are done visually if at all (data flow
analysis tools exist but are not used routinely). A goal of producing critics is to make
analysis readily available and relatively efficient so that analysis will be commonly
used as a conceptual lever against complexity. One approach to providing a user com-
munity with critics would be to handcraft individual critic fragments. However, pro-
ducing a large collection of critics would be a very time consuming task; furthermore,
any given collection of critics will certainly not contain all useful analysis. A second
approach is to use specifications of critics either interpretively or to generate critic
fragments.

The specification of critics has several important aspects. The specification of the
rules themselves is, of course, a central issue. The design rules animated by a critic
must be relatively easy to specify. Equally important are the specification of the
applicability (what objects are criticized) and granularity of each rule, the
specification of report frequency (interaction of critic and user) and the activation and
deactivation of critics (setting a critic into action and turning it off).

Central to the task of designing a critic specification language is to design a notation
for specifying the rules themselves. Some thought has been given to this problem. It
appears that rules often prohibit or endorse sequences of events [Taylor 84]. For
instance, a set of data flow rules might include "each variable, x, must be defined
before it can be used,” and "each assignment to a variable, x, must be followed by a
use of x before another definition of x." A set of rules concerning stacks might include
"each call to Pop must be preceded by a call to either Push or IsEmpty? with no
intervening call to Pop”. Of course, some design rules, such as the rule of thumb

10

concerning length of subprogram source text, do not describe sequences of events, The
specification language must allow the statement of these design rules as well.

In addition to design rules, a critic specification language must allow the specification
of several other types of information. Each design rule is applicable to a certain kind
of object. The specification language will supply a method of specifying the number
and types of the arguments to a critic. Hach design rule will best work at a certain
level of granularity (as discussed in section 3). The specification language will provide
a method of specifying the level of granularity for each design rule.

The specification language discussed so far is one that would be used by the creator of
critics. Some aspects of the specification of critics are best left to the control of the
eventual user. Thus, there must also be a language whereby a user can control the cri-
tics. One aspect of the specification of control that must be included concerns fre-
quency and medium of critical reports. Critics could report their findings immedi-
ately, at specific times during the day, via messages left in a mailbox or on demand.
Critical reports could appear on a terminal or workstation screen, as automatically
produced hard copy, or in a mailbox. Since choosing the most suitable frequency and
medium of critical reports depends on the style of each particular user, these control
aspects seem appropriate for a user profile.

A second aspect of the specification of critics that should be under the control of the
user is the activation and deactivation of individual critics. While the essence of cri-
tics is that they are zealous assistants working in the background to bring timeliness
to the analysis of software objects, there are legitimate reasons why critics should be
turned off. A member of the office staff might be typing a paper in a language not
understood by the text critics. Rather than have the spelling critic reject every word,
for instance, it would be best to turn that critic off.

5. Conclusions

Software production is a complicated activity, and results in a number of complicated
objects. While analysis tools are promising as an approach to the control of this com-
plexity, they have never become commonly used.

Critics are active, incremental, analysis tools. Both features that distinguish critics
from more traditional software tools are intended to provide a user with a great deal of
analytic power in a relatively effortless fashion. An analytic tool that works in the
background makes it possible for a user to continue doing useful work rather than
waiting for requested analytic results. An analytic tool that works in an incremental
fashion can give more immediate feedback concerning possible preblems.

At the University of Colorado, we are at work on a prototype implementation of a cri-
tics environment. This environment will be based upon the Odin integration strategy.
The prototype version will include a minimal set of critics. From this prototype, we
will see the impacts made to the Odin architecture by the addition of active tools.
Depending on the impacts seen, this may lead us to a different architecture for future
versions. Future additions include an improved user interface and a language for
specifying granularity, activation and deactivation times and report frequency.

Our future plans include a metacritic or analyst that looks at the reports of many cri-
tics and draws conclusions.

11

Acknowledgments

We wish to thank J. C. Browne for encouraging us to investigate active tools. We
have also benefited greatly from discussions with users and implementors of intelligent
editors, as these discussions have helped us to focus more effectively on the importance
of the issue of granularity in considering how best to implement critics,

12

References

[ALRM] Ada Joint Program Office. Ada Programming Language Reference Manual,
ANSI/MIL-STD-1815A-1983, 1983.

[Bell 77] Bell, T. E., Bixler, D. C., and Dyer, M. E., "An Extendable Approach to
Computer-Aided Software Requirements Engineering,” IEEE Transactions on Software
Engineering SE-3, 1 (January 1977), pp. 49-60.

[Clemm 84] Clemm, G. M., "ODIN - An Extensible Software Environment Report and
User’s Manual”, University of Colorado at Boulder, Computer Science Department
Technical Report CU-CS-262-84, (May 1984).

[Cline 83] Cline, A. K., and Rich, E., "Building and Evaluating Abstract Data Types”,
University of Texas at Austin, Computer Science Department Technical Report TR-
83-26, (December 1983).

[Cooprider 78] Cooprider, L. W., "Representation of families of Software Systems”,
Ph.D. Dissertation, Carnegie-Mellon University, 1978.

[Delisle 84] Delisle, N. M., Menicosy, D. E., and Schwartz, M. D., "Viewing a Program-
ming Environment as a Single Tool", Proceedings of the Software Engineering Sympo-
stum on Practical Software Development Environments, Pittsburgh, (April 1984), pp.
49-56.

[Fischer 84] Fischer, G., Lemke, A., and Schwab, T., "Active Help Systems" in Green,
T., Tauber, M., and van der Vee, G. (editors) Proceedings of the Second European
Conference on Cognitive Ergonomics - Mind and Computers, Springer Verlag, Heidel-
berg - Berlin - New York, 1984.

[Fosdick 76] Fosdick, L. D., and Osterweil, L. J., "Data flow analysis in software relia-
bility™, Computing Surveys 8, 3 (September 1976}, pp. 305-330.

[Johnson] Johnson, S.C., "Lint, A C Program Checker", UNIX Programmer’s Manual.

[Leblang 84] Leblang, D. B., and Chase, Jr., R. P., "Computer-Aided Software
Engineering in a Distributed Workstation Environment", Proceedings of the ACM
Symposium on Practical Software Development Environments, Pittsburgh, (April 1984),
pp. 104-112

[Luckham 84] Luckham, D. C., and von Henke, F. W., "An Overview of Anna, a
Specification Language for Ada,” Proceedings of the Conference on Ada Applications
and Environments, St. Paul, (October 1984), pp. 116-127.

[Osterweil 76] Osterweil, L. J., and Fosdick, L. D., "DAVE - A validation, error detec-
tion and documentation system for Fortran programs”, Software Practice and Experi-
ence 6, (1976), pp. 473-486. ‘

[Osterweil 82] Osterweil, L. J., "Toolpack - An Experimental Software Development
Environment”, Proceedings of the Sizth International Conference on Software Engineer-

ing, Tokyo, (1982}, pp. 166-175.

[Osterweil 83] Osterweil, L. J., "Toolpack - An Experimental Software Development

13

Environment Research Project”, IEEE Transactions on Software Engineering SE-9, 6
(November 1983), pp. 673-685.

[Reiss 84] Reiss, S. P., "Graphical Program Development with PECAN Program
Development Systems”, Proceedings of the ACM Symposium on Practical Software
Development Environments, Pittsburgh, (April 1984), pp 30-41.

[Reps 83] Reps, T., Teitelbaum, T., and Demers, A., "[ncremental Context-Dependent
Analysis for Language-Based Editors", ACM Transactions on Programming Languages
and Systems 5, 3 (July 1983), pp. 449-477.

[Taylor 84] Taylor, R. N., and Osterweil, L. J., "Analysis and Testing Based on
Sequencing Specifications”, Proceedings of the 4th Jerusalem Conference on Informa-
tion Technology, Jerusalem, Israel, (May 1984).

[Taylor 83] Taylor, R. N., "A General-Purpose Algorithm for Analyzing Concurrent
Programs", Communscations of the ACM 26, 5 (May 1983), pp. 362-376.

[Taylor 80] Taylor, R. N., and Osterweil, L. J., "Anomoly detection in concurrent
software by static data flow analysis”", IEEE Transactions on Sofiware Engineering
SE-6, 3 (May 1980), pp. 265-278.

[Teichroew 77] Teichroew, D., and Hershey III, E. A., "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information Processing Sys-
tems", IEEE Transactions on Software Engineering SE-3, 1 (January 1977), pp. 41-48.

[Teitelbaum 81] Teitelbaum, T., and Reps, T., "The Cornell Program Synthesizer: A
syntax-directed programming environment," Communications of the ACM 24, 9 (Sep-
tember 1981}, pp. 563-573.

[Teitelman 81] Teitelman, W., and Masinter, L., “The Interlisp Programming Environ-
ment", Computer 14, 4 (April 1981), pp. 25-34.

[Waters 82] Waters, R. C., "The Programmer’s Apprentice: Knowledge Based Program
Editing", IEEE Transactions on Software Engineering SE-8, 1 (January 1982), pp. 1-12.

