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Abstract

Individual workstations, based on powerful personal computers, suggest
interesting possibilities for important advances in software development
environments. The use of personal workstations to support large software
development projects, however, requires interconnection via a local area net-
work to make it possible for the individuals working on large projects to com-
municate, cooperate and share resources. This paper describes the design of a
prototype distributed software development environment. The prototype is
based on the Odin software environment. Odin provides an integrated inter-
face to tools and makes it possible for users to easily define and add their own
tocls. The distributed nature of the environment is supported using the
Federation concept. This approach, originally developed for distributed data-
base systems, supports the sharing of information among autonomous data-
bases which do not necessarily share a common schema. The Federated
approach offers several advantages for software development environments. By
enabling each developer to specify the form and extent of his or her coopera-
tion, it is possible to allow a high degree of autonomy while simultaneously pro-
viding for cooperation among individuals working together on a project.
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1. Introduction

Individual workstations, based on powerful personal computers, suggest
interesting possibilities for important advances in software development
environments. These workstations are capable of supporting most, if not all, of
the functional activities of an individual developer including editing, compila-
tion, analysis and testing of small modules or programs, document preparation
and personal data management. Workstations also offer significant user inter-
face advantages over more traditional technology including high-resolution

graphics displays and non-keyboard input (such as a mouse or graphics tablet).

The use of personal workstations to support large software development
projects, however, requires interconnection via a local area network to make it
possible for the individuals working on large projects to communicate,

cooperate and share resources. This paper describes a project to construct and

evaluate a distributed software development environment (SDE). By "distri-
buted” we mean that the various functions of, as well as resources for, software

development are distributed over a network of workstations, one per developer.

The purpose of this project is to build an experimental prototype distri-
buted software environment in order to better understand the questions sur-
rounding such an endeavor and to gain insight into how the availability of such
an environment might affect the software development process. The prototype
environment is based on the Odin software environment [Clem8&4]. Odin pro-
vides an integrated interface to tools and makes it possible for users to easily

define and add their own tools to the environment.

The distributed nature of the environment is supported using the Federa-
tion concept [Heim82], [Heim81]. This approach, originally developed for dis-

tributed database systems, supports the sharing of data among autonomous

.



databases which do not necessarily share a common schema. In a Federated
system, cooperation replaces central authority and procedures are provided to
support the intiation, modification and termination of data as well as func-
tional tool sharing. Each member of the Federation specifies the information
that it is willing to export and the information that it wishes to import from
other members. The Federated approach offers several advantages for software
development environments. By enabling each developer to specify the form
and extent of his or her cooperation it is possible to allow a high degree of user
autonomy while simultancously providing for cooperation among iﬁdividuals

working together on a project.

2. Issues in Developing a Distributed SDE

Many of the issues which arise in developing a distributed SDE are those
which arise in constructing any software development environment. Others are
common to any endeavor involving a distributed software system. Here we

focus on those issues, many of which are related, which are unique to distri-

buted SDEs or which assume special significance in the construction of a distri-

buted software development environment.

While experience and intuition provide some guidance, the resolution of
these issues is by no means clear. Construction of a prototype will provide a
vehicle for studying these and other issues in the design of a distributed

software development environment.

2.1. Data Centering

We strongly believe that a software environment is most profitably viewed
as being an information utility which gathers, stores and maintains the large,

complex and interconnected body of information needed to construct and main-



tain a piece of software. Thus, an SDE is, in an important sense, an informa-
tion management system devoted to providing effective and up-to-date infor-
mation about an evolving software system to all those involved in creating,
managing and using that system. This view emphasizes the importance of
making all of the needed data readily available, and expresses the notion that

tools are simply the devices needed to create data, transform it and manage it.

If the environment is to be distributed, this view suggests that the central
issue is how the data is to be distributed, shared and kept up-to-date for the
effective exploitation of all users. In fact this issue is one of the most important
ones to which we are addressing this research effort. In this paper we propose
just such a scheme for data distribution and sharing. We are less concerned
with how tools are to be distributed. We suggest that most high-performance

personal workstations are completely adequate to host reasonable tool ensem-

s,

bles.

2.2. Extensibility

We believe that in order for any software development environment to be
user-friendly it must be extensible. There are so many different ways in which
users perform the variety of software development tasks, that it seems incon-
ceivable that one could produce a single, standard, canonical set of tools and
aids capable of comfortably and effectively supporting everyone. Even if that
were possible, we believe that users change the ways in which they get their
work done as they become more sophisticated about their work and their tools.
Thus, an environment which might seem satisfactory to a user at first, may
well seem constraining and confining to that same user after some extended use.
After a while, that user seems likely to regard such an inflexible, inextensible

environment as unyielding and unfriendly. Finally, a given individual may be
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involved in more than a single project at a time. These projects may have very
different requirements and it is unlikely that a single toolset will provide

optimum support in all situations.

In order for an environment to be considered friendly, and useful, over an
extended period it seems to us that the environment must be flexible and exten-
sible. In a distributed environment, the concept of extensibility takes on new
meaning. Here each individual user must be assumed to need to make altera-
tions and extensions to the environment’s toolset at his or her own individual
rate of speed and in his or her own individual way. Thus the distributed SDE
must be capable of supporting modifications and extensions to some original
toolset by each user, while still supporting effective communication and sharing

of data among all users.

2.3. Controlled Autonomy

We have assumed that each workstation is used by a single developer who
will want to control the way in which that Workstatif)n and:ts resources are
used. Thus, it seems important that each user be able (within the constraints
of the project) to determine the extent to which he or she is willing to share
resources. In particular, if a user chooses to operate autonomously, we believe
it 1s important that the user be able to do so. If two or more users agree that

they would like to share such items as tools and data, the environment should

support and facilitate that as well.

The need to offer autonomy requires that each workstation have its own
independent operating system, a basic, fully functional SDE and copies of all
tools required by all users of that workstation. In addition, autonomy requires
that each user be able to configure his or her individual environment to accom-

modate personal needs and/or tastes. It is desirable that each user be able to
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select the tools such as editors, formatters, etc. which he or she feels are most

productive.

The need to provide for varying degrees of sharing, on the other hand,
requires that it be possible for each user to define the form and extent of
cooperation offered to others sharing the overall environment, and that the
environment accommodate and facilitate this sharing. This requirement
implies that the distributed SDE support the sharing of data objects and police
attempts to alter shared objects so that only authorized users perform such
changes. The environment should also monitor changes to shared objects so
that those involved in sharing always have access to up-to-date versions. Sup-
port for the sharing of tools must assure that all users have access to tools that
they specify and require, but also allow some users to have access to tools to
which others may not have access, because they may not be aware of such tools

or may find no use for such tools.

In addition, as a range of sharing arrangements is to be supported, the dis-
tributed SDE must provide support for the negotiation of entering into, chang-
ing and withdrawing from such arrangements. Further, if a developer is
involved in two or more projects, it should be possible to adapt the environ-
ment to the requirements of each project. It should also be possible to perform
this customization rapidly, easily and without the need of intervention by a

system administrator.

2.4. Locality

Locality in this context refers to both the location of objects within the

system and to the specific node on which a process might be executed.

The location of objects (files) in a distributed SDE presents some interest-

ing questions. If objects are located only on the node which creates them,
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partitioning of the network will make those objects unavailable to some users.
On the other hand, if objects are allowed to migrate to other nodes, there may

be problems with consistency from node to node.

The possibility that a process may execute on any one of several nodes
opens the questions of which node is most appropriate and how such decisions
are made. For example, a remote node may request a file for editing using an
editor which actually edits a temporary copy of the file. In this case it may be
most appropriate to send a copy of the file to the remote node for editing and
replace the local copy when the session is completed. If the request is for an
object module derived from several source files, it may be better to perform the
compilation locally and send the object version to the remote node. This will

reduce the number of internode 1/O requests.

2.5. Transparency

Users cooperating on a project frequently need to communicate and access

data in each others’ directories. It should not be necessary for users of a distri-
buted SDE to have detailed knowledge of the structure of the network to
accomplish these tasks. Naming conventions should, insofar as possible, be
consistent with those provided by the environment on an individual worksta-

tion. Location and retrieval of files for use in constructing a software system

should be performed by the system with no intervention from the user.

2.8. Robustness

The environment as a whole should provide continuous service in the
event of failure by one or more nodes or partitioning of the network. In order
to continue working in cases of failure, each node must have its own indepen-

dent operating system, a fully functional environment and copies of all tools

g
.
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used by that node. These requirements have already been noted under "auton-
omy." In addition, it must be possible to preserve access to remote data in the

face of failures.

Since it is important to be able to access global objects in spite of failures,
we believe that a mechanism which relies on a file server is inadequate. We
have instead chosen an approach in which multiple copies of objects may exist
and copies may be provided by more than one source. This approach increases
the likelihood that an object will be available even if its primary provider is out
of service. Of course, the ability to replicate objects and access them from
more than one source raises questions of coﬁsistency and propagation of access
rights. As noted above, this issue is one of the most important ones addressed

by this project.

3. Related Work

A great deal has been written about software development environments

[Ivie77], [Hunk80], [Oste83], [Sand78], [Wass81]. Relatively little, however, has

been done in the area of distributed SDE’s. Although general purpose distri-
buted computing systems such as LOCUS [Walk83] or the Eden project [Jess82]
might support software development with the addition of the proper tools, that

is not their primary goal.

Three projects which are more directly related to the present work are

summarized below.

3.1. Jade

Jade [Witt83] is an experimental environment under development at the
University of Calgary. It is intended to support the design, construction and

testing of distributed software for both embedded and non-embedded systems.



Plans for the Jade environment include a variety of general purpose tools such
as editors, compilers, documentation facilities and source code control, as well
as tools specifically oriented toward the development of distributed software
systems. Support for distributed software includes: interprocess communica-
tion facilities (Jipe); simulation capabilities (using Simula); and non-procedural
specification and proof tools (using Prolog). There are also plans to include the
ability to perform animated simulation of systems using high-resolution graph-

ics terminals.

The Jade software is itself distributed, constructed as an extension to

UNIX'. The emphasis, however, is on support for development of distributed
software and the primary purpose of the distributed capabilities of Jade are to
support simulation and testing of distributed systems. While Jade terminals
will have some limited processing capability to support animg&ed simulations,
they are not planned as stand alone workstations and must be coﬁnected to the
Jade host computer. Thus, although Jade is supported bj a distributed system,
the software development environment which it provides is in reality both con-

ceptually and physically centralized.

3.2. Cedar

Cedar [Lamp83] is a distributed workstation environment used at Xerox
PARC’s Computer Science Laboratory. Cedar supports system development
using the Cedar language (derived from Mesa) and the Cedar system modeller
enables a developer to build a program by specifyiﬁg the modules to be used in
assembling the system (the "model™). When a new version of a module is

created, the modeller is informed by the editor and the new version is automat-

ically included in the working model. The modeller also provides the capability

*UNIX is a Trademark of AT&T Bell Laboratories.



of locating and retrieving files (modules) from remote nodes.

Cedar provides a true distributed SDE. Each user can have a personal
workstation and the Cedar system supports communication and sharing of
resources. The environment provided by Cedar is somewhat limited, however,
by the fact that the Cedar editor and compiler are necessary to inform the
modeller of changes in source modules and recognize Cedar binary modules.
While it is in principle possible to extend Cedar with the addition of other

tools, these tools will require modification to interface with the modeller.

3.3. DSEE

The DOMAIN Software Engineering Environment (DSEE) [Lebl84] was
developed at Apollo Computer to support softwaré development in a distri-
buted workstation environment. The DOMAIN system is a host/target
environment which provides a wide array of tools including source code control,
configuration management, task and advice management%and the ability to

monitor dependency relationships. The DSEE History Manag‘ﬂe’r;‘ﬁrovides source

code control, including parallel development on distinct branches, and informs
other instances of DSEE managers of the existence of new versions of objects.
The Configuration Manager enables a user to build a "system model” which
specifies the components of the system. The specific versions of the com-
ponents to be used are specified in a "configuration thread" which is bound at
the time that the system is assembled. Different versions or releases of a sys-
tem can be built by specifying different configuration threads. DSEE does not
require that a particular editor or compiler be used and third-party tools for
design, verification, and cross-machine development may be added to extend

the environment.



DSEE provides a powerful environment which supports software develop-
ment on a network of distributed workstations. The environment is extensible
via the addition of new tools, including those supplied by third-party develop-
ers. In order to obtain this extensibility, however, parts of DSEE were imple-
mented directly in the operating system. It is therefore necessary to have
detailed knowledge of the operating system to add a new tool. This makes it
likely that tools are likely to be added by system administrators or even the
operating system manufacturer rather than by individual users, making the
environment difficult to customize to accommodate individual needs, tastes or

styles.

4. Present Work

This project is addressing the issues described above by constructing a
prototype distributed SDE. This environment will be based on"an existing cen-
tralized environment augmented with capabilities borrowed from the realm of
distributed database management. It will enable users on sggéﬁ*ate nodes of a
network to communicate and share resources in a coh&olled fashion and it will
make it possible for each user to define and add their own tools. The Odin sys-

tem which forms the basis for this prototype and the Federated approach to

databases are described below.

4.1. Odin

Odin [Clem84] is a system developed to provide an extensible software
environment. While the Odin environment presently contains a number of
tools, Odin provides very few tools of its own. Those tools that are provided
(internal tools) are intended to support the addition of user-defined (external)

tools. Odin enables the user to extend a host file system through the addition
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of user-defined file types and operations on those types. This capability makes
it possible to integrate existing tools into Odin without modification. The basic
objects in the Odin system are files and tools are considered to be transforma-
tions or derivations that convert an object (file) of one type into an object of
another type. The results of derivations are maintained automatically by Odin
and the result of a derivation is available for satisfying subsequent requests.
An object-oriented command language is provided for manipulation of objects
and a specification language is provided to facilitate addition of new file types
and operations. A subset of Odin is presently being used as the command
interpreter and tool integration mechanism for the TOOLPACK/IST project

[Oste83].

The Odin file system recognizes two types of objects: simple and com-
pound. Simple objects in Odin correspond to host system ﬁles;while compound
objects are sets of files. The set of files that comprises the source code for a sin-
gle program is a compound object; the individual ﬁlés are simple objects.
Objects in Odin can be further classified into two subtypes: primitive and
derived. Primitive objects correspond to host system files. Derived objects are
files which can be produced from atomic objects (or other derived objects) via

the use of one or more tools.

Derivations in Odin are controlled using an internal directed graph, called
a "derivation graph,” which specifies how the various file types known to Odin
are related. Each node in the derivation graph represents a file type (denoted
by an extension such as .c or .txt) and each edge represents the tool required to
produce the object at its tail from the object at its head. If a needed object is
missing or obsolete, it is constructed from its constituents by application of the

appropriate tools as specified in the derivation graph. It is possible for the user

-11 -
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to specify the maximum amount of space to be occupied by Odin files. When
that size is exceeded, derived files are automatically deleted using a least-

recently-used strategy.

The specification language allows the user to easily extend the derivation
graph by defining new file types and their associated operations. A pretty-

printer might be specified as follows:

fmt "Result of C pretty-printer”
"pp <$(src_jn) >$(src_out)"
ic

In this example, fmt is the result of applying the pretty-printer. The string in
quotes on the first line describes this object. On the second line, pp is the name .
of the host system command which invokes the pretty-printer; "$(src_jn)" and
"$(src_out)" are replaced with the appropriate host system file names at run-
time. On the final line, "c¢" defines the type of file that is accepted as input to

"fmt."

The Odin command language provides two operationsmgyz‘; Odin objects:
display and transfer. The display command is invoked by simply naming the

object. For example,
example.c

would display the file named "example.c” from the current working directory.
example.c:run

would display the result of compiling and executing the file "example.c.”

The transfer command is used to copy the contents of one object into
another. The objects are separated by a right angle-bracket and the copy

occurs in the direction implied by the arrow. For example,

examplel.c > example2.c

-12 -



places a copy of "examplel.c" into "example2.c.”

An extension of the transfer command makes it possible to interface to

host system commands for use as "filters” or "editors.” For example,
example.c:fmt > :wc

would display the result of running the system command "wc" with the format-

ted version of example.c as its input while
example.c > :emacs

would invoke the host system editor "emacs" on "example.c.”

4.2. The Federated Approach

The Federation concept was first proposed in the context of database sys-
tems [Heim82], [Heim8&1], but the basic approach is also applicable to other dis-
tributed systems that share and exchange information. The Federated archi-
tecture has two principal features: substantial autonomy for components and
an integrated set of inter-component sharing facilities. Auﬁonomy is supported
by allowing each component to explicitly state which information it will share
as well as which information it will access. To support sharing among com-
ponents this architecture substitutes cooperation plus communication for the
global data manager plus subordinate components of traditional distributed

databases.

A Federated database is organized as a collection of components
representing individual users, applications, or information systems that wish to
share information. Each component has significant interior structure in sup-
port of the Federated architecture. In particular, each contains three data-

bases: the private database, the ezport database, and the tmport database.

-13 -
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The private database describes that portion of a component’s data that is
stored locally. The bulk of this information is devoted to describing the appli-
cation data available in the component’s own database. Much of this informa-
tion will always remain local, but some of it will be exported to other com-

ponents.

The export database specifies the information that a component is willing
to share with other components. This database is actually derived from the
private database. The two may, however, not be identical because it is possible

to export only a portion of the private database.

The import database is the complement of the export database. It
specifies the information that a component is using from other components.
Normally, importing the description of some object does not imply the physical
movement of that object to the importing component. When the object itself is
referenced, the importer requests the actual data from the exporter. Some-
times, that data may be referenced so frequently that it is copied over to the
importer for storage. This copy can be specified to have three degrees of con-

sistency vis-a-vis the original data:

(1) It can be frozen, in which case, it is never updated.

(2) It can be periodically updated. To do this, the importer must also specify
a policy that determines the frequency with which consistency is checked.
At the importer’s convenience, the exporter can be interrogated for
modifications.

(3) It can be kept as consistent as possible. In this case, any modifications by
the exporter are transmitted to the importer.

The import database is enlarged by a process of negotiation in which one
component coordinates its import of information with the exporter of that
information. A negotiation is a multi-step, distributed dialog between two
components. The dialog is represented by a specialized graph stored at each

component. The nodes of the graph correspond to actions by some component,

- 14 -
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and the edges are the allowed transitions. The negotiation is distributed in the
sense that the node actions are carried out alternately by the two components

involved in the negotiation.

The Federated architecture provides a novel model for distributing a
software environment. It seems natural that a collection of programmers desir-
ing to share programs and data files should control the sharing by setting up
individual components and by agreeing among themselves about which data
objects are to be shared and how they are to be shared. For example, some
objects might by mutual agreement be made public for all to see, but not
modify. Other data objects might be ceded to a coworker for modification.

Still other data objects would remain private and protected.

A major objective in designing a Federated software environment is the
identification of the objects to be shared. In Odin, the basic objects are atomic
files of information (source code, text, data) from which Odin can derive addi-
tional objects (files) by applying a sequence of tools. Both the atomic files and
the derivations are potentially shared. Thus, if Odin is to make use of
imported derived files, it must see not only the final derivation, but also the
derivation path itself. In a Federated environment, the private database of
each component would consist of the standard collection of atomic files and
Odin derived objects. The export database would specify those atomic files and
derivations that a component is willing to share with others. The import data-
base would contain the names of the corresponding set of exported files and

derivations actually used by a particular component.

5. Design

The architecture of the distributed SDE consists of four types of process

on each workstation. The relationships among these processes are shown in
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Figure 1.

(1)

(2)

5.1.

Odin interprets user requests and manages the local file system. The Odin
process may be invoked by the user or by a cohort process running on the
same node.

The coordinator process manages the local end of network transactions.
The coordinator may only be invoked by an Odin process running on the
same node.

The cohort handles requests from remote nodes and maintains databases
which identify global objects and keep track of which nodes have
requested a given local object. The cohort typically communicates with
remote coordinators and remote policy managers.

The policy manager provides an interface for initializing and maintaining
the import and export databases. The policy manager is invoked by the
user.

Databases

The Federated SDE uses four databases to control the sharing of informa-

tion and provide network transparency.

(1)

The ezport list contains a series of (object, importer) pairs and is main-
tained by the cohort. The coordinator uses this database to determine
which nodes have received an object so that chanves to global objects can
be propagated correctly. -

The permissions list contains triples which describe an object, an
importer, and the level of permission granted to the importer for that
object. The permissions list is maintained by the policy manager and is
consulted by the cohort to determine if a given request is valid.

The tmport list pairs global names with exporters. It is used by the coordi-
nator to determine which nodes export a given object. The import list is
maintained by the policy manager, the cohort, and the coordinator
depending on whether the information is provided by the user, received
from a remote policy manager (in response to object moves) or received as
the result of a broadcast request by the coordinator.

The translation table is used by the coordinator to translate local names
into global names when requesting an external object. It consists of (local
name, global name) pairs which are maintained by both the policy
manager (in response to user policy decisions) and the cohorts (when an
object is permanently moved from one site to another).

Together the export list and the permissions list make up the export data-

base needed for the Federated approach. The import list is the equivalent of

the import database. The translation table provides network transparency for
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the file system.

5.2. Odin

The principal functions of the Odin process are those described above.
Odin is responsible for interpreting commands from the user, performing
derivations on local objects and maintaining the local object database. If Odin
is unable to locate or derive an object, it passes the request to the coordinator
to see if the object (or an object from which it can be derived) is available from
another node. To insure that changes in global objects are visible to other
nodes, Odin is also responsible for informing the coordinator when changes are

made to shared objects.

In addition to the user-invoked Odin, each node may have one or more
Odin processes created by the cohort to satisfy requests from remote nodes.
These processes receive their commands directly from the coﬁart, perform the

required derivation and signal the cohort when the derivation is complete.

5.3. Coordinator -

Each node has one coordinator process which is invoked as needed by the
local Odin process. The coordinator is responsible for handling requests for
non-local objects. When a request is received from Odin, the coordinator must
translate the local name to a global one, consult the import list and poll
selected cohorts on other nodes to determine if the object (or a precursor) is

available.

When Odin requests a non-local object, the coordinator consults the
import database. If either the object or something that can be used to derive it
is in the database, the coordinator then transmits messages to cohorts on the

appropriate nodes. Responses from the cohorts indicate what objects are avail-
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able together with an estimate of the cost associated with providing them. If
only one node is able to fill the request, the coordinator simply requests the
object, stores it in the local file system and returns an OK status to Odin. If
more than one node can fill the request, the coordinator selects the node that
provides the least expensive means of obtaining the object. For example, if the
request is for an object-code module and one node can supply the compiled ver-
sion while another can supply only the source, the coordinator would send the
request to the node which can supply the object code. Once the object has

been received, the coordinator stores it and informs Odin of success as before.

If the requested object is not in the database, the coordinator broadcasts a
request for the object. If the object is available, the coordinator updates the
import list and proceeds as before. If the object is not available, a FAILED

status is returned to Odin.

When changes are made to global objects, the coordinator consults the

export list and notifies all affected nodes.

5.4, Cohort

The cohort is responsible for evaluation of remote requests. Requests are
divided into two parts. First, there is an information request to determine the
cost of obtaining an object. Second, the requester may ask for a particular

object.

When a derivation request for an object is received from a remote coordi-
nator, the cohort must determine how much of that request can be satisfied at

this node, and at what cost. There are two steps to this process:

(1) The cohort checks to see if the object or a precursor is available by invok-
ing a local copy of Odin. For each object in the derivation chain for the
desired object, Odin estimates the cost to construct that object. If the
cost is zero, then the object already exists. If the cost is infinity, then
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Odin is not capable of constructing that object.

(2) Given the Odin costs, the cohort consults its export database for each
object in turn to see if access has already been granted, and under what
policy conditions. This results in a modified cost function, which is
returned to the requesting node.

If the object itself is requested, the cohort transmits the object after
invoking an Odin to perform any necessary derivations. When an object is sent

to another node, the cohort also updates the export list.

5.5. Policy Manager

The policy manager process is the means by which the user specifies the
policies to be enforced vis-a-vis the Federation. There are four major policy

activities:

(1) The user may insert new elements into the translation table and the
import list by engaging in a negotiation with another user to obtain access
to some exported object.

(2) The user may modify his or her import list to change the preference order
for obtaining a given global object.

(3) The user may insert new elements into the permissions list by specifying
an object to be exported, the names of the nodes that may import it, and
the access rights to be granted to each of these nodes. Access rights may
be combinations of read, write, and resource-based constraints (such as
load_average).

(4) The user may negotiate the movement of an object from his node to
another node. This will result in further negotiations with the importers
of the moving object so that they may update their import lists and trans-
lation tables.

The user may perform these actions by invoking the policy manager pro-
/
cess. The manger converts commands into the appropriate modifications of the

system databases, possibly after negotiating with other users through the

remote cohorts.

The policy manager may also, at the request of the user, "move" an object
from one node to another. Such a request might be generated because a user no

longer wants to maintain an object in his or her file system but others still
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depend on that object. The "move" request might result in the object being
archived on a designated machine with large disk capacity or transferred to a
node belonging to another user. In either case, the policy manager would

update the local database and inform other nodes of the change.

8. Examples

To illustrate the possible operation of the Federated environment, we
present three example scenarios. In the first, we show how a user simply
accesses an imported object. In the second, we show how updates might occur.

In the third, we show how a node failure might be handled.

6.1. Example 1

Consider the situation where Node N1 wants to access its object named

"/tmp/a.out:run” To do this, the command
/tmp/a.out:run

is passed to Odin, which determines that it does not have tﬁe"'/tmp/a.out:run"
object or any of its precursors (e.g. "/tmp/a.out" ). As a result, Odin asks its
coordinator to obtain the object. The coordinator looks in the translation table
(Figure 2a) and finds that the prefix of the requested object is an alias for the
imported object "/root/x" at node N2. Using this global name, the coordinator
consults the import list (Figure 2b) to determine possible sources for the total
object ("//N2/root/x:run"). It finds that it has two choices, one for the whole
object, and one for its precursor. Using this information, the coordinator asks

both sources for the whole object.

On node N2, the cohort receives the request from NI for the object
"//N2/root/x:run."” The cohort first invokes a local Odin to determine the costs

of producing object "/root/x:run" and its precursors. Then the cohort consults
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the export database to obtain a modified cost for each object. These costs are
returned to N1. Similar operations are performed by N4, but it will only return

the cost of "//N2/root/x:run."

As a result of its requests, the N1 coordinator might get the following

information:

Node Object Cost
N2 /root/x 0
N2 [root/x:run 5
N4 [root/x:run 3

Suppose that N1 decides to ask N4 for "/root/x." It asks the N4 cohort for
the object, that cohort will ask its Odin to materialize the object, and then the
cohort arranges to ship the object back to the coordinator at N1. As the final
step, N1 accepts the object from N4 and informs its Odin that the object is

available.

68.2. Example 2

T

In this scenario, node N1 attempts to edit am external object. This

demonstrates both update and change notices.
Suppose that the user gives the command
/fse.doc > :emacs

to edit the local object "/fse.doc.” Odin then observes from its translation table
that "/fse.doc” is the local name for the file "/root/sys.doc” owned by the node
N2. In this case N1 needs to obtain modification permission from N2. Since
only the owner, N2, can provide edit permission, no other cohorts are con-
tacted. If N1 has cached a local copy of the file, then it only requests update
permission from N2. Otherwise, N1 simultaneously requests both update per-

mission and a copy of the object.
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When the cohort at N2 receives the modification request, it consults its
permissions list, and since the action is allowed, responds by granting permis-
sion (and transmitting the object if necessary). Eventually, the N1 coordinator
returns the modified object. Since the object has been altered, N2's cohort
must send a change notice to all of the importers of the modified object. It
obtains this list (nodes N1 and N6) from its export list (Figure 2d) and sends

appropriate messages to those nodes.

8.3. Example 3

The first two scenarios represent the normal sequences of events in the
environment. Sometimes exceptional conditions occur, such as when a node

fails.

In this example, node N1 asks node N2 for object "/usr/include/stdio.h"
but node N2 has failed. In this situation N1 has two alternatives. First it can
examine its import list to see if any other sources are available. If there are
none, it can broadcast to all nodes to ask for the object. Tﬁing;;’nsxvers (if any)
are then stored in the import list as alternative sources. Examining Figure 2b,
we see that no alternatives are listed. Thus, the coordinator broadcasts a
request for the object and if lucky, receives a response, say from N5. The coor-
dinator then modifies its import list to record the fact that N5 is also a source.
Finally, the coordinator at N1 sends a message to the cohort at N5 to obtain
the object. As a result, N1 can continue to function even though its primary

source, N2, Is not accessible.

7. Implementation

The prototype environment is being constructed on a network of Sun

Workstations under version 4.2 of Berkeley UNIX. The implementation is




being performed in two stages.

During the first stage, the existing Odin software is being combined with
parts of a distributed database that was implemented during the spring of 1984
[Heim8&4]. The distributed database provides many of the functions of the coor-
dinator and cohort. This phase will provide a basic environment for communi-
cating and sharing resources. All of the functions of Odin will be available so
that users will be able to add their own tools and, to a large extent, customize

their local environments.

Initially, requests for remote objects will be handled in a very simple
fashion. When an object is requested, the cohort will check to see if it is
present and, if so, inform the coordinator that it is able to supply that file.

Otherwise, the request will fail.

Software to support negotiation between the coordinator-and cohorts will
consist of a database management system built on the Federated model and a
simple programming language to enable a user to specify parameters for the

negotiations. Development of these components will proceed in parallel with

the initial integration of the existing pieces.

During the second stage the new negotiation subsystem will be combined
with the basic distributed SDE. A multi-window user interface will also be
added at this time to provide a convenient means of interacting with both Odin

and the negotiation subsystem.

8. Summary

We have described the design of a prototype distributed software develop-
ment environment. The system combines the user interface and extensibility of

the Odin environment with the novel data sharing capabilities of the Federated
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architecture. Users of this environment will be able to customize their local
environments by defining and adding their own tools. They will also be able to

specify both the form and extent of their cooperation with other users.

Construction of this environment will provide a vehicle for investigating
the issues surrounding the design and use of distributed software development
environments. Questions to be explored include: what are the trade-offs associ-
ated with various negotiation strategies; wh‘ich approaches to storing objects on
various nodes, moving objects and performing derivations are most effective;
and how will the availability of such an environment influence the software

development process.
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Figure 1. Process Diagram. KEYSTONE processes for two nodes are illustrated
together with intra- and inter-node communication paths and database access.
The Odin process in the dashed box indicates a copy of Odin which may be
invoked by the Cohort to satisfy a network request.
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LOCAL NAME GLOBAL NAME

/tmp/a.out //N2/root/x
/include/misc.h  //N2/usr/include/stdio.h
/fse.doc //N2/dennis/fse.nroff

Figure 2a. Translation Table at node N1.

OBJECT EXPORTERS
//N2/root/x N2
//N2/root/x:run N4
//N2/usr/include/stdio.h N2
//N2/dennis/fse.nroff N2,N6

Figure 2b. Import list at N1.

OBJECT PERMISSIONS
/src/ddb/ccs.c READ(N3,N6),WRITE(NS8)
/root/x READ(N1),WRITE(N1)
/root/x:run SAME AS /root/x .

/usr/include/stdio.h READ(*)
/src/ddb/ccs.cirun IF(load_average < 5) READ(N3,N86)
/dennis/fse.nroff SAME AS [root/x -

Figure 2c. Permission List at N2.

OBJECT IMPORTERS
[sre/ddb/ces.c N3,N6
/root/x N1,N4,N6
/dennis/fse.nroff N1,N6

/usr/include/stdio.h  N1,N5

Figure 2d. Export List at N2.

Figure 2. Example Databases
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