A SYNTACTIC DATABASE MODEL

by

Dennis Heimbigner

CU-CS5-283-84 December, 1984

Department of Computer Science
University of Colorado
Boulder, Colorado 380309

A SYntactic Database Model

Dennis Heimbigner
Department of Computer Science
University of Colorado
Boulder, Colorado 80303

ABSTRACT

This paper propeses an amalgam of compiler technology with relational database
techniques as a way to provide a database model that can easily handle recursive rela-
tionships. Such relationships are common in databases for VLSI, software engineering,
and text processing. This model is called the Syntactic Database Model. In this
model, the schema is represented by an attributed grammar and the database is a
parse tree conforming to the grammar. Sets of attributes are attached to the non-
terminals of the grammar. The grammar explicitly represents the recursive properties
of the data, and the attributes represent all other associated data. The model provides
for sharing of subtrees, update of the database, and computed relational attributes.
The paper describes the data model, a language for manipulating syntactic databases,
and some proposals for efficient storage of the database.

1. Introduction

A major thrust of current database research involves the application of database
technology to applications other than the traditional business-oriented ones. Some of
these applications include software engineering [Powell 83, Ceri 83], VLSI [Mcleod 83],
and text processing [Stonebraker 83]. We claim that all of these applications have a
need to represent a strong recursive property. In software engineering, recursion is in
the form of program dependencies. In VLSI, cells are composed of smaller cells. In

text processing, documents contain paragraphs, which in turn contain sentences.

This paper proposes an amalgam of compiler technology with relational database
techniques as a way to provide the structures and operations needed by such applica-
tions. The compiler technology (attributed grammars [Knuth 68]) provides the recur-

sion while a Relational database model provides the database manipulations.

2. Representing Recursive Relationships

Most attempts to apply databases to VLSI, software engineering, and text pro-
cessing applications have relied upon the relational database model as their primary
data structuring formalism. A number of deficiencies in the model have become
apparent in the process of designing these applications. In particular, relations have

difficulty in representing recursive relationships.

Often, one "object” in the database system is known to be a part of another
object. The fact that a document contains sections, sections contain paragraphs, para-
graphs contain sentences, and sentences contain words, is difficult to capture in a rela-
tional system. It requires a relation for each level and also some sort of link between
the levels. In the relational model, these links are usually represented by synthetic
identifiers that serve as logical pointers These kinds of explicit pointers would seem
difficult for users to understand. Object-based database models can provide some help
because the links, while present, are not so explicit. Still, we might argue that treat-
ing paragraphs, sentences, and words as objects is not much better than thinking

about sentence identifiers.

The transitive closure operation is closely related to the recursion property.
Given a recursive relationship for documents, it is natural to ask for all the sentences
in a document. In such recursive structures as documents this requires a transitive
closure, and this in turn requires a join sequence whose length may not be statically
bounded. Note that object models also suffer from a similar problem; usually they do

not have a built-in transitive closure operation.

The notion of recursive relationships can be used to represent a number of similar
properties. The "derives" relationship or "depends on" relationship is used in the
software engineering examples to represent the fact that one program is derived from

another. The "contains” relationship (for documents) is another recursive relationship

that could be modeled by the syntactic model of this paper.

3. A Syntactic Approach

In light of these problems of the relational models, it seems reasonable to consider
some alternative that embeds the recursion property in the model. Some attempts
have been made to do this to the relational model [Stonebraker 83, Powell 83], but
these attempts are awkward and tend to destroy the clean structure of the relational

model.

We propose to construct a database model around the notion of (modified)
context-free grammars. In this model, the schema is represented by an attributed
grammar and the database is a parse tree conforming to the grammar. Sets of attri-
butes are attached to the non-terminals of the grammar. The grammar explicitly
represents the recursion property of the data, and the attributes represent all other

associated data.

Our primary example will be a software engineering database of programs
(modeled after the Unix Make program [Feldman 79] or the Odin facility [Clemm 84]).
In our version of "Make", we assume that programs depend upon other programs, and
that these dependencies are modeled by the recursion property of our syntactic model.
Suppose that we have a set of programs, A through F, with the dependencies
represented in figure 1. This figure shows that program A depends upon programs B
and C. Similarly, program F depends on program C. In both cases, program C
depends on program D. We would like to represent this and other trees using a gram-

mar. For generality, this grammar must not refer to the actual programs in the pro-

ductions!. To do this, we encode the trees of figure 1 into equivalent linear forms:

A(B C(D)) and F(C(D)).

IActually, something like W-grammars would allow us to do it.
W-Grammars, however, are not computationally attractive.

B/ \

Ov—-Q
Q=

Figure 1. A Program Dependency Tree

Figure 2 shows a grammar for parsing this linear form. It shows that a database
is a project, which is in turn a sequence of programs. Each program specifies a {possi-
bly empty) sequence of other programs on which it depends. Figure 3 show the parse
tree that results from applying the grammar to the linear form of the database of pro-

gram dependencies.

3.1. Grammar Form

The particular grammar format used here is a variation on Unix YACC. A typi-
cal production in the grammar consists of a left side, which is the name of a non-

terminal symbol. The right side of the production is a collection of alternatives

project : progseq

program : progname (' progseq ')’
| progname

progseq : program

program progseq
progname : [*string of letters*/

Figure 2. Software Engineering Grammar.

project

progseq
program\ progseq
program
progname (progseq) progname (progfeq)
program progreq program
program
progname proghame (progseq) proguame (progseq)
program program
progname progname
A (B C (D)) F (C (D))
Figure 3. Software Engineering Database tree
separated by the symbol "|". Each alternative is, in turn, a concatenation of non-

terminals and constant strings in double quotes.

3.2. Database Form

The database at any moment corresponds to a possible parse tree produced by
applying the grammar to an ordered set of primitive objects (the leaves of a tree). For

the Make database, the objects are the names of files.

The leaves of the tree may be rather unconventional in that they need not be
strings. Rather, they could be any set of nested objects. In the case of the software
engineering database, they leaves might be the actual programs. It should be noted,

though, that most objects have some form of string identifier, and it is usually most

convenient to work with those identifiers rather than the actual objects. This conven-

tion will be followed in this paper.

4. Attributing the Parse Tree

The tree format alone is not powerful enough to easily represent all of the rela-
tionships that we might wish to store in a software engineering database. In the Make

database, we must store extra information such as the following:

1. the object file corresponding to some source file,

2. the modification and creation dates of source files,

3. the author for a given program,

4. the mail address of the program authors,

5. the result of executing the object file of a particular
source file.

Some of these attributes (1-3) can be considered to be direct properties of nodes of the

tree. Others (4-5), are either independent of the tree or indirectly dependent upon it?.

In order to handle attributes, and especially indirect attributes, we will augment

our tree database with a relational database system.

The two formats (trees and relations) are connected by "attaching” some of the
attributes to the nodes of the tree. This attachment is accomplished by defining some
special attributes whose domain is the instances of some non-terminal type in the
grammar. Each actual instance of the non-terminal in the parse tree is assumed to
have a unique id. Certain relations are defined to include such attributes, and these

relations connect the parse tree nodes to the other attributes in such a relation.

As an example, consider the tree in figure 4. It shows a partial parse tree with
some of the node identifiers in angle brackets. Figure 5 shows a particular relational
schema involving several attributes. Note that the schema contains relations involving

nodes (the program attribute), direct attributes (object-file and name), and indirect

2 The indirect attributes could become more direct at the cost of normalization.

project
progseq

program <programl>

progname (progseq)
program < program?2>

progname

A (B)

Figure 4. An Attributed Tree

attributes (addr). The OBJECT relation maps a program node (via its unique-id) to
the name of its corresponding object file. The AUTHOR relation maps program nodes
to author names. The LOCATION relation maps author names to mailing addresses.
Figure 6 shows a possible contents of the relations defined by the tree of figure 4 and

the schema of figure 5.

5. Querying the Syntactic Model

Given this combination of trees and relations, what kind of queries might one

ask? Some possibilities are as follows:

OBJECT(program,object-file)
AUTHOR(program,name)
LOCATION(name,addr)

Figure 5. Software Engineering Relations

AUTHOR program pame
program1l Smith
program?2 Smith

OBJECT program object-file
programl A.obj
program?2 B.obj

LOCATION name addr
Smith smith@boulder
Jones jones@tut

Figure 6. Relational Database Instance.

(1) Queries involving the recursive relationship, such as "retrieve all of the programs
depending upon program C," or "retrieve all of the programs upon which program

A depends.”

(2) Queries involving the direct attributes of various tree nodes, such as "retrieve the
author of program A, " or "retrieve the authors of all the programs depending

upon program C."

(3) Queries involving indirect attributes, such as "retrieve the mail addresses of all of

the authors of all programs depending upon program C.”

The first class of queries inv,olves traversals and transitive closures over the tree
alone. The other two classes involve not only the nodes of the tree, but also attributes
of those nodes. The last case additionally involves a join connection between immedi-
ate attributes (the author’s name) and an indirect attribute (the author’s mailing

address) via the LOCATION relation.

5.1. A Query Language

It is fairly easy to define a QUEL-like language to pose queries against the syntac-
tic model. We introduce a star operator ("*") to represent transitive closure along the
recursive relationship. In the queries below, the dot operator is overloaded to refer to
attributes of relation variables and also to children of node variables (such as pl or

p2). Using this notation, the above queries are translated as follows:

Retrieve the programs
depending on program C

Retrieve the programs
upon which
program A depends

Retrieve the author
of program A

Retrieve the authors
of the programs depending
upon program C

Retrieve the mail addresses
of all of the authors

of all programs

depending upon program C

range of pl is program
range of p2 is program
Retrieve pl where
pl.*p2 &
p2.progname = "C"

range of pl is program
range of p2 is program
Retrieve pl where
p2.progname = "A" &
p2.%.pl

range of pl is program
range of a is author
Retrieve a.name where
a.program = pl &
pl.progname = "A"

range of pl is program
range of a is author
range of p2 is program
Retrieve a.name where
a.program = pl &
pl.*p2 &
p2.progname = "C"

range of pl is program
range of a is author
range of | is location
range of p2 is program
Retrieve l.address where
l.name = a.name &
a.program = pl &
pl.*.p2 &

p2.progname = "C”"

8. Update in the Syntactic Model

Update in the syntactic data model is performed by specifying modifications to
the database tree. A parse tree is formed by expanding non-terminals by one of the
alternative definitions for that non-terminal. A modification (insertion or deletion)

involves replacing an existing expansion by one of its alternatives.

Consider the problem of modifying the example of figure 4 so that program A
depends upon program C as well as program B. In this example, the lowest progseq
node was expanded using the first alternative of the grammar. Adding a dependency
on program C may be accomplished by changing the expansion choice for progseq to
use the second alternative. This leads to the tree of figure 7a. In this new tree, there
is room to fit a new program under the extra progseq node. Once the alternate expan-
sion has been made, the user must provide the data (a program name in this case) to

complete the tree (figure 7b).

project
progseq

program

progname (progseq)

progseq
program
l
programe
A (B)

Figure 7a. Initial Stage of Update

10

project
progseq
program

progname (progseq)

Pr‘igseq
program program

rogname rogname
I=] o

A (C)

Figure 7b. Completion of Update

A key issue for update is deciding how to map from the old expansion to the new
one. There appear to be two choices: total reparsing and semi-automatic mapping.
The first method involves collecting the existing data which, when parsed, forms the
original subtree. This data is presented to the user for modification (typically by a
text editor) to include the new information. This new information is reparsed and the
new subtree set into place in the tree. In this case, it is not strictly necessary for the
user to specify the new expansio;l since it is automatically derived from the parsing

process.

The second method for handling the change involves providing rules for placing
the old subtree into some position in the new expansion and then asking the user to fill
in all the other slots. In the previous example, our rule would say that the the subtree
under the original program is moved to the program node in the new expansion, and
the remaining node (progseq) must be filled from user data. There are a number of

problems with this:

11

(1) There may be no completely consistent rules. In our example, the rule seems
obvious. But consider what would happen if the new program was to be placed
before the existing program (i.e., A(C,B)). In that case, the "obvious" rule would

not work.

(2) What if the new expansion provides for two or more new non-terminals and the
user only provides data for one of them. We could allow this and just use some
form of null data. But, each expansion represents an elementary constraint on

the data format, and it would seem unreasonable to allow the user to violate

those constraints3.

7. Extending the Syntactic Model

Two extensions to the basic model are introduced to increase the utility of the
system. These extensions are {1) derived attributes, and (2) automatic derivation of

joins.

7.1. Derived Attributes

It is often convenient to allow the values of some attributes to be calculated
(derived) from other attributes via arbitrarily complex functions. For example in the
Make database, it is reasonable to ask for the executable version of a program. This
entails compiling it and storing the result in some file. Effectively, the name of the

executable file 1s a derived attribute of the specified program node.

Derived attributes are defined in the system in terms of derived relations. A
derived relation is specified to have a functional or multi-valued dependency that
involves all of its attributes on one side or the other of its dependency. For example,

the relation EXECUTABLE(program, objectfile) has a functional dependency: program

% One might speculate on the possibility of syntactic normalization to limit updates,

12

- objectfile. A function in some ianguage is also attached to the relation. The func-
tion takes as input some set of values from the attributes on the left side of the depen-
dency, and calculates the values for the attributes on the right side. Thus, the func-
tion attached to the EXECUTABLE relation is designed to take a program attribute
as input and calculate the associated object file, whose name it returns as the value of

the objectfile attribute.

Tuples may be inserted into a derived relation with a dummy value occupying the
derived attribute position. The actual derivation is performed when the derived attri-
bute of a tuple is accessed. At this time, the function is invoked with the appropriate
inputs. The result it returns is stored in the derived attribute field as its current

value.

Two specialized forms of derived attributes correspond to the inherited and syn-
thesized attributes of grammar theory [Knuth 68]. It should be noted that inheritance
here is along the recursive relationship and is quite different from the subtype inheri-

tance of semantic models.

A synthesized attribute is one that is derived for a node in terms of the attributes
of the children of that node. The executable attribute (above) is also a synthesized
attribute since it is synthesized from the object files for all the files on which it

depends.

An inherited attribute is one that is derived for a node from the attributes of its
parent. Reference date is an example of inheritance. If a program is referenced, then

that may indicate that the files on which it depends are considered referenced also.

7.2. Automatic Join Derivations

It is convenient, though not essential, if a user can avoid specifying the join con-

ditions in his (or her) query’. The work on Universal Relations [Maier 83] has shown

13

that join sequences can be automatically determined. This concept is introduced into
this model to more closely mimic one of the capabilities of the real Make and Odin
programs. Odin can, for example take a request that says "give me the result of exe-
cuting the file test.c” and determine that it must actually compile test.c before it can
execute it to get the results. In the syntactic model, this corresponds to calculating

the following expression:

range of ¢ is COMPILED

range of e is EXECUTE

Retrieve e.result where
c.program.progname = test.c &
c.objectfile = e.objectfile

COMPILE is a derived relation with dependency program - objectfile, and EXECUTE

is a derived relation with the dependency objectfile - results).
Using the automatic derivation of joins, the query might be written more simply as

Retrieve results where
program = test.c

The only possible path (in this example, anyway) between program and results is
through the join of COMPILE and EXECUTE (which also obviates the need for the

range variables).

8. Storage Representations

The syntactic data model requires two major storage structures: the parse tree
and the attributes. With some modifications for derived relations, the storage for

attributes can be performed using a conventional relational database

Efficiently storing the parse tree is another matter. ‘Compilers normally do not
have this problem since the tree is usually small enough to fit in memory. The syntac-
tic model system, by contrast, must allow efficient random access, and in particular,

the storage structure must support transitive closure both up the tree (from child to

14

parents) and down the tree (from parent to children). In addition, the structure must

allow insertion and deletion of new subtrees.

8.1. Parse Tree Storage

We choose as our basic storage structure a pre-order listing of the nodes of the

parse tree!. The pre-order is actually stored in a linked list of blocks with multiple

nodes per block. New subtrees can be inserted anywhere in the tree by inserting new

blocks into the appropriate place in the linked list.

Each node in the tree contains the following information:

The node non-terminal type,

Pointers to its children,

Pointer to its parent,

Pointers to the limiting leaves of the subtree rooted at this node.

Given this structure, there are two obvious alternatives for computing transitive

closures in the form of the star operator.

(1)

Brute force search of all nodes may be used. This is most effective for downward
closure because only the subsection of the tree corresponding to a subtree needs
to be searched. This subsection is determined by the values stored in the parent
node of the subtree. Note that this is not effective for upward closures because it

is hard to separate sibling nodes from parent nodes.

Path following is effective for upward closure. Since each node points to its
parents, this sequence may be followed to find all parents of a node. Again,
notice that this is less effective for downward closure because all of the descen-

dant paths must be traced, which involves backtracking.

4We will specify pre-order, but the structure could equally well use post-order.

15

8.2. Storage for Inherited and Synthesized Attributes

As mentioned above, attributes will be stored as part of a conventional relational
database system. Inherited and synthesized attributes are treated specially. For
efficiency, it may be reasonable to store the derived value once it has been calculated
and recalculate when changes occur. This is handled by storing change bits with the
nodes to flag changed attribute values. When a node changes a synthesized value, it
sets a bit in its parent node. If, later, the parent’s value is to be extracted, the bit
serves as a signal that the value must be re-computed. Similar actions occur for inher-

ited attributes.

8.3. Subtree Sharing

In many situations, there will be duplicated subtrees in the parse tree. For exam-
ple in the Make database, any two programs that use a common third program will
have duplicated subtrees in the database. As a storage optimization, we allow the tree
to become a DAG by sharing these common subtrees. To do this, certain non-
terminals in the grammar are marked as sharable. For a sharable node, the user must
specify a key for that that kind of non-terminal. Each alternative of the non-terminal
must have a specified key, and in each case, the key must lead to a leaf that is a string

or can be converted to one.

When a database user alters the parse tree by expanding a node for a sharable

non-terminal, several steps occur.
{1) The user is asked for the key for the sharable node.
(2) The parse tree is searched for an existing node with a matching key.

(3) If the match is found, then the newly expanded node is equated to the matched

subtree and the user is informed that sharing is being used.

16

(4) If the match fails, then the expansion occurs normally.

Going back to the grammar of figure 2, we could mark the non-terminal "pro-
gram” as sharable. The occurrences of "progname” in the right side of the definition of
"program” would be marked as the key for sharing. Looking again at figure 3, we can
see that it has a subtree that can be shared ("C(D)") because two of its nodes have a
common key value, namely the string "C". Figure 8 shows the result of applying shar-
ing to the tree in figure 3. The dotted line represents the link formed as a result of

subtree sharing.

Although sharing may save storage space, it also causes a number of problems in

the implementation.

project
progsw\
program ‘ progseq
program
progpame (progseq) progname { progseq)
program progseq - -
—
program™ -
progname progname (progseq)
proglram
progname
A (B o (D)) F (C (D))

Figure 8. Example of Subtree Sharing

17

(1) If the key of a shared node is changed, then what should be done? Should the
tree be duplicated (i.e., unshared) or should it be left as is? We assume the tree is

left as is, and the user is provided with a way to explicitly "unshare” a node.

(2) If the shared node has inherited attributes, then it may inherit conflicting values
from its parents. In this case, we need some rule for deciding the inheritance.
For example, reference date inheritance could be resolved by choosing the later of
the two dates. In general, this must be handled by a user specified decision pro-

cedure.

9. Related Work

The principal source for this work is the author’s previous work on a syntactic
interface to external databases (the system is called Diverse) [Heimbigner 84a] and on
syntax-directed databases (SDDB) [Heimbigner 84b]. Among its many features,
Diverse attempted to extract data from external databases by parsing their text out-
put. The SDDB attempted to provide a relational interface to text files by parsing the
text and storing, into the tuples, appropriate pointers into the text. The syntactic
model represents another attempt to combine syntactic structures with database tech-

nology.

Most other attempts to handle recursion have tried to force everything into a sin-
gle structure (relations). Two specific examples are the document database systems

[Stonebraker 83], and the software environments [Powell 83, Linton 84, Ceri 83].

In this paper, we argue that relations are not useful for recursive relationships.
Rather, we propose the use of two complementary structures: trees and relations. Of
course, trees do not have a good reputation as database models. This is principally
because they are identified with IMS style databases, which are notoriously compli-

cated. As compiler writers have shown, (parse) trees can be as formal and useful as

18

relations for structuring information.

Syntax directed editors [Teitelbaum 81] and data structure editors [Fraser 81]
were perhaps the first example of the use of syntactic structures to represent informa-
tion. In this case, it was a partially constructed program. In some sense, the work
reported here may be viewed as an attempt to generalize such editors and extend them

to a database framework.

Mention should also be made of some attempts to provide nested relations (non
first normal form) (see, for example, [Jaeschke 82]). Such systems have concentrated
more on multi-valued fields rather than recursion, and have not attempted to use syn-

tactic methods.

Finally, the syntactic model owes a debt to the Odin project for providing a
specific example of the utility of recursive relationship and the utility of automatic

derivations.

10. Future Work

The first step is to actually implement a syntactic database system. This is being
carried out in two steps. First, the interface is being implemented and a standard rela-
tional database is being used to provide storage. The second step will be to provide
direct storage for the parse trees. as discussed in section 7. Beyond the implementa-
tion, it will be important to apply the system to some software environments problems
to verify its utility. We would expect to draw on the Odin system work and the Tool-

pack project [Osterweil 83] for examples.

References

19

[Clemm 84]

[Ceri 83]

[Feldman 79]

[Fraser 81]

[Heimbigner 84a]

[Heimbigner 84b]

[Jaeschke 82]

[Knuth 68]

[Linton 84]

[Maier 83]

Clemm, G. M., "ODIN - An Extensible Software Environment,”
University of Colorado, Department of Computer Science Techni-
cal Report CU-CS-262-84, 1984.

Ceri, S. and Crespi-Reghizzi, S., "Relational Databases in the
Design of Program Construction Systems”, SIGPLAN Notices
18(11):34-44 (November 1983).

Feldman, S. 1., "Make - A Program for Maintaining Computer
Programs”, Software - Practice and Ezperience, 9(2):255:265
(April 1979).

Frase, C. W. and Lopez, A. A., "Editing Data Structures”, ACM
Transactions on Programming Languages and Systems 3(2):115-
125 (April 1981).

Heimbigner, D. M., "Towards an Integrated Environment for Ac-
cessing External Databases”, Proceedings of the Second ACM-
SIGOA Conference on Office Information Systems, Toronto, Ca-
nada, 25-27 June 1984.

Heimbigner, D. M., "A Syntax-Directed Database System",
University of Colorado, Boulder, Department of Computer Sci-
ence Technical Report CU-CS-289-85, February, 1985.

Jaeschke, G. and Schek, H. - J., "Remarks on the Algebra of Non
First Normal Form Relations”, Proceedings of the ACM Symposi-
um on Principles of Database Systems, 29-31 March 9182, Los
Angeles, CA, pages 124-137.

Knuth, D. E., "Semantics of Context-free Languages”, Mathemati-
cal Systems Theory 2(2):127-145.

Linton, M. A., "Implementing Relational Views of Programs”,
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
tng Symposium on Practical Software Environments, 23-25 April
1984. Available as SIGPLAN Notices 19(5):132-140.

Maier, D. and Ullman, J. D., "Maximal Objects and the Seman-
tics of Universal Relation Databases”, ACM Transactions on Da-
tabase Systems 8(1):1-14 (March 1983).

20

[McLeod 83]

[Osterweil 83]

[Powell 83]

[Stonebraker 83]

[Teitelbaum 81]

McLeod, D. and Narayanaswamy, K., Database Week: Engineering
Design Applications Proceedings of Annual Meeting, San Jose,
California, 23-26 May 1983.

Osterweil, L. J., "Toolpack - An Experimental Software Develop-
ment Environment Research Project,” IEEE Transactions on
Software Engineering, vol. SE-9, no. 6, pp. 673-685, 1983.

Powell, M. L. and Linton, M. A., "Database Support for Pregram-
ming Environments”, Database Week: Engineering Design Applica-
tions Proceedings of Annual Meeting, San Jose, California, 23-26
May 1983, pages 63-70.

Stonebraker, M., Stettner, H., Lynn, N., Kalash, J., and Gutt-
man, A., "Document Processing in a Relational Database Sys-
tem”, ACM Transactions on Office Information Systems,
1(2):143-158, April 1983.

Teitelbaum, T. and Reps, T., "The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment”, Communications
of the ACM 24(9):563-573 (September 1981).

21

