ON FINITE AUTOMATA WITH A UNISON WORKING TAPE

by

A. Ehrenfeucht* and G. Rozenberg**

CU-CS-278-84 September, 1984

All correspondence to the second author.

*Department of Computer Science, University of Colorado Boulder, CO 80309

**Institute of Applied Mathematics and Computer Science, University of Leiden,
Leiden, The Netherlands

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

ABSTRACT.

In this paper we consider the machine model which consists of a 2-way finite
automaton equipped with a working tape. This working tape works in unison
with the input tape of the 2-way finite automaton in the sense that the moves of
heads of both tapes are always of the same type: either both heads remain at
the same place or both heads move to the left or both heads move to the right.
As usual the input tape head is only reading while the working tape head is a

read-write head.

The main result of the paper states that adding to a 2-way finite automaton
a unison push-down tape does not extend the recognition power - i.e., such an
automaton recognizes regular languages only. As a corollary of this result one
gets directly: {1) the Shepherdson result that two-way finite automata recognize
only regular languages and (2) the Bichi result {even its extended Greibach-

Kratko version) that regular canonical systems generate only regular languages.

We also discuss a couple of extensions of the "unison push-down' model and
in particular we show that even equipping a 2-way finite automaton with a unison
stack tape (i.e. the nondestructive reading within the push-down tape is allowed)

still leaves are with regular languages only.

INTRODUCTION.

A finite automaton (fa) constitutes the most fundamental machine model in
the theory of computation. By removing various constraints on the way finite
automaton operates and/or adding to it various types of storage one gets many

other (if not all) models of {sequential) computation {see, e.g., [6] and [12]).

One of the earliest studied extensions of the fa model is a 2-way finite auto-
maton where the reading moves on the input tape can be both forward (to the
right) and backward (to the left). It was proved by M. Rabin and J. Shepherdson
([13], see also [9]) that 2-way finite automata are not more powerful than ordi-
. nary {1-way) finite automata. On the other hand various other models were stu-
died where a fa is equipped with an additional storage tape(s) like e.g. counter,
push-down, stack, etc. Most (if not all) of these extensions are increasing the
accepting power of the basic fa model - languages ('far’') beyond regular can be
generated in this way. Also, analogous machine models where these types of the
additional storage are added to a 2-way fa were studied in the literature: 2-way
push-down automata or 2-way stack automata are examples of such machines
(see, e.g., [6]). In most cases adding a given type of an additional storage to a
2-way fa turns out to be more powerful than adding the same type of storage to

an ordinary {1-way) fa.

Often adding a number of different types of storage {(tapes) to the fa model
leads to a too powerful model: one can accept all recursively enumerable
languages. Therefore various restricted ways of using auxiliary storages were
studied in the literature: e.g., the heads scanning two different types of storage
tapes were moving synchronously (in unison) and/or at the beginning of a com-
putation one of the storage tapes would be "preset” by a specific content - and

so it would become a ""checking tape"” (see, e.g., [2], [3], [5]).

In this paper we continue this "constraining-the-use-of-a-storage-tape' line
of reasoning but now we require that the input tape and the storage (working)
tape move in unison. We impose this restriction on the 2-way fa model using

various types of working tape.

The central result of this paper (proved in Section 3) states that 2-way
finite automata equipped with a unison push—down tape accept regular languages
only. This result clearly generalizes the Rabin-Shepherdson theorem and more-
over we show how the result by Buchi ([1], see also [4], [7] and [11]) that regular
canonical systems generate regular languages only can be easily obtained from
our theorem (see Section 4). In Section 5 we discuss other unison extensions of
the 2-way fa model and among others we show that adding a unison stack to a 2-

way fa still leaves one with regular languages only.

PRELIMINARIES.

We assume the reader to be familiar with basic automata and formal
language theory (see e.g. [6] or [11]). We use mostly standard notation. Perhaps

only the following notational matters should be pointed out.

‘N denotes the set of natural numbers. For a set 4, 24 denotes the family of
its subsets and #A4 denotes the cardinality of A. To make our notation simpler
we will often notationally identify a singleton set with its element; i.e., if 4 = {a}
then we may write @ rather than {aj.
For a word z, |z| denotes its length. If z € Z* for an alphabet X,
z=a,a, " a, for some n=>1 and g, € for 0<1i1=<n, then i(n)=aq; for
0<i<n. Adenotes the empty word. For a letter a, a® denotes the 1-way (to
the right) infinite word consisting of a’s only.
For an equivalence relation E, ind(F) denotes its index. Given an alphabet X
and a language K C E*, Fx denotes the Nerode equivalence relation (see, e.g.,
[6]) defined by: for z,y €%, zExy if and only if for each v € X" (zu € K if and
only if yu € K).

The following result by A. Nerode (see, e.g., [6]) provides a fundamental

characterization of regular languages.

Proposition 1. A language X is regular if and only if Ex is of finite index. =

We will use I{RE), L{CS) and L{FEG) to denote the classes of recursively

enumerable, context sensitive and regular languages, respectively.

2. General Model.

Our general model may be depicted as follows.
Figure 1.

At each point of a computation the common head sees the same position at both
tapes: the input tape and the working tape both of which are 1-way infinite tapes
- see Figure 1. Depending on the current state (g) the automaton decides to

change its state to g' {(may be equal to g), to change the currently observed

symbol on the working tape to bi' {may be equal to b;) and to change the position
of the common head either to the left (to the position (i—1)) or to the right (to
the position (i+1)) or to stay stationary (i.e., to remain at the i’th position).
Thus the "input part of the common head" is read - only while the "output part
of the common head' is read-and-write. The automaton may never go to the left

beyond the left-end-marker §. In the "initial situation":
Figure 2.

the automaton is in its initial state (g) and reads the first cells of the tapes
{that is the cells immediately to the right of the left-end-marker cells containing
#) - for some 7 =0 the first 7 cells of the input tape contain symbols from the
input alphabet (hence the word a, - - - @,) and all other cells (n =) are blank
(i.e., they contain the blank symbol), while all the cells on the working tape (to
the right of the § cell) contain blank symbols only. The word o, - g, is
-accepted by the automaton if in a finite sequence of moves the automaton

enters the O’th cells (i.e., the & cells in one of its accepting states):

Figure 3.

The language of the automaton consists of all words accepted by it.
Formally this model is defined as follows.

Definition. A 2-way automaton with a unison working tape, a 2faut for short,
is a system
A={(AZ, @, F, qu, 8), where
Ais a finite nonempty alphabet, called the input alphabet (of A),
2 is a finite nonempty alphabet, called the working alphabet (of A),
4 is’ a finite nonempty set, called the set of states (of A),
F C @ is called the set of accepting states (of A),
gin € @ is called the initial state (of A),
6 is a (partial) function from (AU{B, $))x(ZUB, 8})xQ into pEUIS BIxI-10+1}x@
satisfying the condition: if (y', n, ¢') € 6(z, ¥, ¢) then
(i) y'=8ifandonlyifz = $ifand onlyif y = 8, and
(ii) z = & impliesn = +1.

0 is called the transition function (of A). =

Remark.

(1) Symbols B and § are special reserved symbols in the sense that they will be
used in the same way in all faut’s we will consider (and so they will never be
included in either the input or the working alphabet of a utfa). The symbol B
stands for "blank"” and the symbol § for the "left end marker”.

(2) Our conditions on 6§ make it sure that § plays only the role of the left-end-
marker. We have found it convenient to require that if a move on § is needed,
then it is the "bounce-to-the-right”" move; in general one could allow stationary

moves on § (i.e., in (2) above n = 0 would also be allowed).

(3) The elements of (AR, $)x(SUIB, 8])xQ are called situations (of A) and
the elements of (Ex{B, $})x{—1, 0, +1]xQ are called actions (of A); hence § is a

function from situations into sets of actions. ™

Definition. Let A= (A, I, @, F, g, 6) be a 2faut.
(1) A configuration (of A) is a four-tuple T ={a, ., m, g), where a € 84" B,
Be 3 B, m=0andq € @; 7is called initial if ¢ = g, m = 1 and = $5° and
T is called accepting if either « € $AYB®, g € Fandm =0or a = $§B8% g € F and
m = 1. We use input (7) to denote w € A" such that a = $wB®, work(T) to
denote z € £* such that 8 = $2B8%, pos (1) to denote m and st(7) to denote q.
() Let T=(a, 8, m,q), 7 =(a, f,m', g') be configurations. We say that 7

directly yields 7' (in A), written 7 | 7, if o = « and there exists an action

(y1.m1.,q1) € 6(m{c), m(B), ¢) such that

i) m'=m+n,,

(i) ¢' =g, and

(iii) m(B') =y, and, for alln € N, n(f') = n{B) whenevern # m

(We also say that the action (y,, 7, q,) is used in directly yielding 7' from 7.)
(8) A computation (in A)is a sequence i = Tg, Ty, ..., T ,» L = 1, of configurations
such that

(i) either I = 0 and input (15) = work (7o) = A or I = 1 and input (7o) # A, and

(ii)ifl =1, then T g Ty foral 0<i=<i-1.
I+1 is referred to as the length of 1 and denoted by lg (w).
We say then that 7o yields 7; (in A) and write 7¢ F—: T.

Each pair (7;, Ti+1), 0<1 <[-1is called a step of u {or more precisely the i'th
‘step of) and if the action A4 is used in directly yielding 7 from 7 then we say
that A is used in the i'th step of u. The state st(7,) is called the last stafe of u

and denoted by Ist (w).

If 7¢ is initial, input(7g) = w and 7, is accepting then we say that w is a
w—accepting compulation.
(4) The language of A, denoted L(A), is the set

{we A¥: there exists a w-accepting computationin A{. =

Remark. Note that the A-accepting computation is of length 0 and then

qin €F. b

The class of languages of all 2 faut's is denoted by L{2FAUT).

Since it is obvious that each Turing machine can be simulated by a 2faut,

we have the following result.

Theorem 1. L{RFAUT) = L(RE). =

3. PUSH-DOWN WORKING TAPE.

In this section we consider a special case of the 2faut model, where the
working tape is a push-down tape. We demonstrate that such automata define
regular language, only.

Definition. A 2faut A= (A, Z, @, F, qin, 8) is called Sway finite automaton
with a unison push-down tape, a 2faupd for short, if, for each situation (z, y, q)
and each action (¥, n, ¢'), (y'.n, q") € 8(z, v, ¢) implies that
(1) z # 8 and

() y'=FBifandonlyifn = —1. =

The class of languages of all 2faupd’s is denoted by L{2FAUPD).

We prove now the central theorem of this paper.

Theorem 2. L{2FAUPD) = L{(REG).

Prool.

Clearly IL{REG) C L{(2FAUPD).

Hence to prove the theorem it suffices to show that L{2FAUPD) < L(REG).
This will be accomplished by demonstrating that for each 2faupd A the Nerode
relation £y is of finite index.- the result follows then from Proposition 1.

Let A= (A Z, @, F, qin, 6) be a 2faupd.

First we need a number of auxiliary notions.

For g € @, A(g) is the 2faupd (A, Z, @, @, q, 6).

For C € @%@, Ac is the 2faupd (A L, @, F, qun, 6¢), where &, is defined as
follows:

_for a situation (x, Y, q)

(y,n,q) iz #PFBand(y,n,q')ecdézy.q),
be(z,y,q9)={(B,~-1,q") ifz=B,y=Fand(g,q')<€C,
undefined otherwise.

10

Forw € A*, R{w) = {C C @%@ :w € L{A)].

Forw € A°,
Gw = {{g, ¢') € @xQ: there exists a w-accepting computation w in A(g) such

that Ist{(u) = q'l.

Now we prove two lemmas,

Lemma 1. For each w € A" and each u € A, wu € L(A) if and only if
G, € R(w).

Proof of Lernma 1.

Let w € A* and let u € A*.
(i) Assume that wu € L(G) and consider a wu-accepting computation-
H=T0, Ty oo Ty INA
We note that if 1,7 €{0, ..., m} are such that 1<i,7<m
pos(7;) = |w|+1, st(r;) = q, pos(7;) = |w]|, st(7;) = ¢' and pos (1) = |w| +1 for
alli <k <7, then(g, ¢') € Cy. Consequently w € L(Ag,) and so G, € R{w).
(ii) Assume that G, € R{(w), hence w € L(Ac,).
Let g = 7, ..., T, be a w-accepting computation in Ac,.

If u is such that, for all 0< j <m, pos(r;) < |w]|, then u is actually a wu-
accepting computation in A; consequently wu € L(A).

Otherwise we construct a wu -accepting computation ¢ in A as follows.

The first element pg of ¢ is ($wuB®, 85 1, qi). Leti;,j;€{1, ..., m—1] be
the smallest indices such that pos(7y,) = |w|+1, j; >y, pos(7;)) = |w| and for
all i, <k <j, pos(m)=|w|+1 (we call 7q, ..., Ty, the first inside block of u

and Ty, Tj,-; the first outside black of).

Now we choose a u-accepting computation «; in G(st(nl)) such that

Ist(k,) = st(7;,) and construct the initial part of ¢ as follows. The first (i,+1)

11

steps of ¢ are obtained using the sequence of actions from the first 1, steps of
(hence the sequence of actions from the first inside block) and then the next
(Ig (1)—1) steps of ¢ are obtained by using the sequence of actions from the

steps of x;.
In this way we have "converted" the initial portion 715, ..., Tj,-1 of ¢ to an ini-
tial portion pg ., ..., Py +ig(c,)—1 Of ¢
We iterate the above procedure in such a way that in the remaining portion
.of u we distinguish again its first inside and its first outside block (hence the

"second inside block of u#'"" and the "second outside block of x'') and convert

them into portions of ¢ as above. This iteration is repeated as long as possible.

Finally let = be the largest index such that pos(r._;) = |w|+1,
pos(7,) = |w| and for all T <k <m, pos{T,) < |w|. The sequence of actions
from the last {lg(u)—7) steps of ¢ is the sequence of actions form the last
(lg (u)—r) steps of . In this way we have obtained a computation ¢ in A which is

clearly a wu-accepting computation in A; consequently wu € L{A).

Thus assuming that G, € R{w) we get wu € L(A).

The lemma follows now from (i) and (ii). ®

Lemma2. For each w;, wg € A%, if R(w,) = R(wp), then w By mw,.
Proof of Lemma 2.
Let w,, wy € A%,

- Assume that B(w;) = R{w,).

Then, for eachu € A*, G, € R{w,) if and only if C, € R{w,),
and so by Lemma 1
for eachu € A", wu € L{A) if and only if wau € L(A)

and consequently w, B gywe. ™

12

Now we proceed with the proof of Theorem 2 as follows.

First of all we notice that for each w € A*, #R(w) < 2°%, where e = #§. Con-

sequently, by Lemma 2 (and taking into account the empty word - note that in
2?

Lemma 2 only nonempty words are considered) we get ind(Eyy) < 2% +1. Now

the theorem follows from Proposition 1. =

\
i
“2;

13

4. COROLLARIES.

In this section we demonstrate that two quite basic results from automata

theory can be obtained as direct corollaries of Theorem 2.

The first of these results is the classic result by Rabin and Shepherdson

([13], see also [9]) concerning the power of two-way automata.

Corollary 1. The class of languages accepted by R-way finite automata

equals the class of regular languages.
Proof.

This follows directly from Theorem 2 and the observation that a 2-way finite
automaton is essentially a 2faupd A= (A, Z, @, F, ¢in, 6) such that #¥ = 1 and,
for each situation (z,y, g) and each action (¥, n,q"), if (y". n,q") €z, y, q),
then z = B implies n = —1. (Also, in the original definition of a 2-way finite auto-
maton it is required that the automaton "goes off" the right end of the input

tape - however it is easily seen that this difference is insignificant). *

Our second corollary concerns regular canonical systems first considered
by E. Post {[8]) and then investigated in depth by R. Blchi ([1]). Regular canoni-
cal systems are quite fundamental in automata theory (see, e.g., [5] and [11])
and recently they were shown to be very basic in building up a unified theory of

grammars and automata ([10]).

First we recall the definition of a regular canonical system - our formulation
follows the one from [5] (see also [11]), which is somewhat more general than
the Buchi formulation ([1]).

Definition.

(1) A (left-)regular canonical system is a quintuple G = (Q, &, U, V, P), where Q

is a finite nonempty alphabet, ® ¢ (), U, V C 0" and P is a finite set of produc-

14

tions of the form {(w, z) where w, z € 0",
(2) For words o, B € 0", directly derives 8 in G, written = B, if there exists

a production (w, z) in P such that & = a'w and § = «'z; we say that a derives g

* + +
in G, written « -—E> B, if either a = for :-“—é} g where =C:;-> is the transitive clo-

sure of :? .

(3) The language of Gis the set

*
L(G)=§x€<§* Tu =G;‘>:m)forsomeu€Uand'u €V =

Remark. (1) We consider here left-regular canonical systems, while [1], [5]
and [11] consider right-regular canonical systems where a production (w, 2) is

applied in the fashion wa'? zo' (rather than a'w ? o'z as in the above

definition). As easily seen (and remarked already in [1]) this does not matter as
far as the generative power of systems is concerned. (2) What we call the
language of G is in [1] referred to as the language produced by G and in [11] as
the language generated by G Obviously the reasoning analogous to the one

below {the proof of Corollary 2) goes also for what is referred in [1] and [11] as

the language accepted by G. ®

Corollary 2. Let G ={(Q, &, U, V, P) be a regular canonical system. If U, V

are regular, then L{G) is regular.
Proof. (sketch)
A 2faupd A; accepting L({G) is constructed as follows.

A word z € Q% is placed on the input tape. Ag starts by generating an arbi-
trary word w € U on its push-down tape (A; "remembers” U in its state struc-

ture).

15

From this moment on A iterates the following procedure. It chooses (non-
deterministically) a production m; = {(w; , 2;) and checks whether w is a suffix of
the current push-down tape word (it starts with yo =u). If not, then A; gets
“stuck'’; if yes then it replaces the (erased) suffix w by the word z - let ¥, be the
so obtained word on the push-down tape. Now starting with ¥, the above step
{choosing a production 7y and trying to apply it) is repeated yielding (if Az have
not got "stuck’) ¥, on the push-down tape. In this fashion the sequence of words

Yol =u), Y1, Y2, ' is produced on the push-down tape.

At any point after a y; is obtained, i = 0, A¢ may choose to switch to the
"V-checking mode". That is, Ag goes down the push-down tape checking whether
or not it contains a suffix from V {this is easily done because A; "remembers” V
in its state structure). If not A; gets stuck; if yes (let v be the "found" suffix
from V), then A; (after erasing v 'while checking") switches to the "input-
checking mode"”. That is A; checks whether or not the word on the push-down
tape is identical to the word on the input tape (hence w). If not, then A; gets

stuck; if yes then Ag goes oﬁ the input tape to the left and accepts.

Clearly x € L{Ag) if and only if z € L{G).

Now if A € L(G), then the above construction is modified in the obvious way
so that A€ L{Ag). Conseqﬁéntly, for each a€Q", o< L{Ag) if and only if

a € L{G).

Hence, by Theorem 2, L(G) is regular. ®

Remark.

One may generalize (right—)regular canonical systems by allowing produc-
tions of the form K, » K, where R,, R, are regular languages. Such a produc-
tion can be applied to a word « if a has a suflix in F;. If a production R, » K,

can be applied, then one chooses a suffix in /F; and replaces it by a word in 5.

16

The language of such a generalized system is defined as in the case of

(right—)regular systems.

It is easily seen that also these systems are easily simulated by Zfaupd’s
(actually the simulation technique is very closed to the one from the proof out-
lined above). Thus also such generalized systems generate only regular
languages providing their "start” and "end" sets are regular. {One may notice
here that proving directly in the framework of regular canonical systems that so

generalized regular canonical systems generate regular languages only is quite

cumbersome), ®

17

5. OTHER TYPES OF WORKING TAPES.

In this section we consider other (than push-down) types of working tapes

working in unison with a 2-way finite automaton.

Perhaps the most natural generalization of a 2 faupd model is to attach to a
2-way finite automaton a stack tape - that is a push-down tape on which it is
allowed to go inside the push-down tape {without erasing top symbols) providing

that such an entry is '"'read-only” (see, e.g., [8]).
Such a model is formalized as follows.

Definition. A 2faust A= (A 2, @, F, g4, 6) is called a 2way finite automa-
ton with a unison stack tape, a 2faust for short, if the following holds.
(1) @ =@ Ugr with @pN\Qr = P, qin € @p and F C @p; elements of @p are
called push-down sfafes and elements of @ are called reading stales.
(3) Let (z,y.g) be a situation and (y',n,q’') be an action such that
(y'.n,q)€d(z,y,q). Then
(2.1) (Bouncing off the left end marker)
Ifx =8 theng € §pandn = +1.
(2.2) (Switching form push-down to reading states)
fge@pandg' € @r, theny # B,y ' =y andn = 0.
(2.3) (Reading)
Ifg,q'€ @p, theny # Bandy' =y.
(2.4) (Switching back to push-down states)

If g€@ and g'€ @p, then y=F, y'=F, n=0 and moreover, also

(y.n,g)ed(z,y,q)forallz' €A UB. ®

Remark. We would like to make the following comments about the above
definition.

(1) The states of @ are divided into push-down states (@p) and reading states

18

(@r). The states from @p are as the states of a 2faupd, the state from @ are
reading only states. Each accepting computation starts in @p (g € @p) and
ends in @p(F C @p).

(2.1) The only way not to get stuck on the left-end-marker # is to enter it in a
reading state - then the only action possible is to bounce off to the right in a
reading state. (The reader may see now a motivation behind our choice of con-
ditions on reading # in the definition of a 2faupd.)

(2.2) Switching from a push-down state to a reading state can happen only if the
top of the stack is different from B. Such a switch léaves the head in the same
position and does not change the top symbol of the stack.

(2.3) The reading happens only inside the stack (i.e., not on the blank symbol)
and it leaves the symbols of the stack unchanged.

(2.4) Switching back to a push-down state may happen only at the top of the
stack when the top is blank. Such a switch leaves the head in the same position,
the top symbol (B) unchanged and it does not depend on the current symbol on

the input tape (i.e, Awill switch from g to ¢' independently of the current input

symbol.). ®

The class of languages of all 2faust’s is denoted by I{2FAUST).

We will demonstrate that 2faust’s define regular languages. This will be
done by a "reduction” we will show how for every 2faust one can construct a
2faupd deflning the same language. The basic technical notion used in such a

reduction is the notion of the leaving record {of a 2faust A).

Intuitively speaking, given a 2faust A= (A, Z, @p UGr, F, qin, 8) its leaving
record Oy provides for each pair (w € A*B* z € 2*) with |w]| = |2 the set of
pairs from @pX&» such that:

if (g1, g2) is in Op{w, z), then there is a computation u =79, Ty, ..., 71, L = 1,

with 7o = ($wB”, 82B%, |w|, q,), 7, = (BwB¥, 82B°, |w|+1, q2) and

19

pos{T)<|w|forall0=<k <.
Thus starting in Tp on the last position (letter) of w and z in the reading state g,
A may perform a computation in which it will leave for the first time w and z (to

the right) in the reading state g,.
This is formally defined as follows.
Definition. Let A= (A, Z, &, \U&Qr, ¥\ Qin, 6) be a 2faust. The leaving record

(of A), denoted @, is the function from (A*B*)X(Z*) into @rx@r defined as fol-
lows. Forw € A"B* andz € 7

(1) @A A) is the set of all pairs (g;,92) € @ex@e such that
(8, +1, 92) €6(8, 8, q1).

{3 Itw cA*BY, 2 €5* and |w| = |z |, then @a(w,z) is the set of all pairs
(g1, 92) € @rxgr such that there exists a computation & =79, 7y, ..., T, such
that 7o = (BwBe, 828, |w]|, q,), pos(r) = |w]|+1,st(r,)=qgs and for all
0=<k =1, pos(me) < |wl.

(3) 04(w,2z) is undefined in all others cases. ®

Perhaps the most important (for our purpose) property of the leaving
record {of a 2faust A) is that it can be updated when going (to the right) from a
| gwen configuration T to the next configuration 7" that is knowing
Oa ((input (7), work (1)) (with |input(r)| = |work(r)| and the last letter of T
different from B) and a,b such that
input (7') = (input (1))a, work (7') = (work (1))b
one can compute Oy (input(7'), work(7')). This is demonstrated in the next
result {we provide only an outline of a procedure for such an update leaving for-

mal details of the proof to the reader).
Lemma 3. Let A= (A, X, & U&R. F, ¢in. 6) be a 2faust. There exists a func-

tion upd, from QeXx@rx{A|B)XZ into @rX Qe such that, for all w € A*B" and all

20

z €3 with lw]| = |2z, upda(Op{w,z),a,b) = Op(wa,zb) foralla € AUB, b € L.
Proof. (sketch)

This follows really directly from te definition of @,

Let a € AUEB, b € L and consider Oa{wa,zb) for an arbitrary w € A* B and
*
z €% suchthat |w| = |z].
(0) Let 7 and p be configurations such that 7 = ($waB®, 82b5°, |w|+1, q) and
7 = ($waB®, 82zbB%, |w|+2, ¢"), where q, ¢' € Gp.
If r |——; T', then
(1) Either 7 | 7' and then (g, ¢') must be included in @x(wa,2b).

{2) Or 7 | 7' in more than one step.
Then 7 | 71 = (BwB*, $2B8% |w|, q;) for some qi € @». For each such qi and

for each g, such that (g1, q1) € Ox(w,z) we include in @x(wa,zb) pairs (g1, g:)
such that (b, +1, g,) € 6(a,b,q;).

(3) Then again, for each q; as above we consider all pairs of configurations
7 = ($waB®, $2bB°, |w|+1, q,), 7, = ($waB®, $zbB°, |w|+2, q,), for all
q; € g, and for each such pvair (if it was not already encountered before) we
proceed as under (1) and () above adding pairs from @pX&p to @(wa,wbd).
Clearly in a finite number of steps (not exceeding #{&rX&g)) no new pairs will be
added to Ox{wa,zb). If we perform this procedure for each pair (g, ¢') € @rX&r

we get@,(wa,zb).
Hence to construct @,{wa,zb) we need to know @p(w,z) and (a,b) only.

Thus the lemma holds. =

We will demonstrate now that for each 2faust its language can be defined by

2faupd.

21

Lemma 4. L{2FAUST) C L{(2FAUPD).
Proof. (sketch)

We will show how for an arbitrary 2faust A one constructs a 2faupd A' such
that L(A) = L(A).

Let A= {A %, @ = @p UGr, F, qin, 6) be a 2faust.

Intuitively speaking the 2faupd A' = (A L', @', F", q,;'n, ') works as follows.
Symbols of its working alphabet I' are triplets [a,U,V] with ¢ € ¥ and
U,V € @p%X@r. Then whenever Ais in a situation 7 with
input (1) = wa, work () = zb, where @ € AUF and b €, and st(7) € &, A will
be in the situation 7' with input () = wa, work (7') = z'[b, Oplw,z), Op{wz,2b)]
for some z', pos{7') = pos{T) and st (1) = st{T).

If A goes from the situation 7 as above to the right getting to a situation 7; with
input (1,) = waa, for some a; € AUb, work(7;) = 2b'B and st(1,) € @p, then A
goes to the situation 7, with input (1) = input (1}),

work (1)) = 2'[b", Op(w,z), Op{wa,zb")]B, pos(7;) = pos (7))

and st (1;) = <st (7,), Ox(wa,zb")> - to construct T; , A’ uses the update function
updp.

Hence we have two kinds of state: original state of A used only when the topmost
symbol of the push-down tape in A’ is not blank and "annotated” states of the
form <g, U>, where g € @p and U C @rX&pr used only when the top of the push-
down tape in A' is blank - in this situation g is the state of the corresponding
situation in A and U is the leaving record (in A) of the portion of the tapes

immediately to the left of the position of the heads.

Formally the 2faupd A' = (A, &', &', F", Qi 6) is defined as follows.
(1) A=A
(®) ¥ ={[a,UV]ae €L and U,V C @pX@r},

22

(3) @ =QUiq,U>:q € @ and U C QrXQp},

(4) Gin = Gin, and

(5) the transition function ¢' is defined as follows:

(5.1) for all situations (z,5,9) in G such that ¢ € &,

([y Unpdp{U,z,y")], +1, <q'udpp(U,z,y")>) € §'(x,B<q,U>)
for all U C Qrx@r whenever (y', +1,q") € d{(z, B, q),

and (B, -1,9") €6'(z, B, <q,U>) for all U C @rX&r

whenever (B, -1,g9") €6(z, B, q),

(6.2) for all situations (z, v, ¢) in Gsuchthaty # B and g € &,
([y', U, udpp(U,z,y")], +1, (', updp(U,z,y")) € 8'(z,[y,. U.V].q)
for all U,V C Qrx&r whenever (y', +1, ¢') € 6(z,y.,9).

and (B, —1,q') € 6(z,[y,U,V],g) for all U,V C @rX@r

whenever (B, -1, ¢') € 6(z,y.q9),

(5.3) for all situations (z,B,¢;;) in G,

([y'.0a(AN) upd (Oa(AA),z,y")], +1, <q',upda(Oa(AA),z,y'>) € 6'(z,B.qin),

whenever (y',' +1, ¢") € 6{(z,B.qmn),

and (B, -1, ¢') € 6(z,B.q").

whenever (B, -1, q') € 6(z,5,9).

(5.4) forallg,g'€ @p,x €AYB,y €L and U, VC @rXp
(ly,U,V],+1,<q",V>) € 6'(z,[y,U,V],q)

whenever there exist 5,5' € ¢p such that
(y.0,s)€é(z,y.q),(s,s) € Vand (B,0,q") € 6(t,B,s")
forallt € AUB.

It is rather easy but tedious to show that L{A) = L(A).

Hence the result holds. *

Theorem 3. L{FAUST) = 1{REG).
Proof.

The theorem follows from Lemma 4 and from the obvious observation that

L{REG) C I{FAUST). =

One could extend the faust model by allowing the 'reading without
changes" also forward. That is, after switching to the ''reading mode" an auto-
maton may decide to go forward (i.e. to the right) on the input tape in order to
"check some information" — then it would return to the top of the push-down
tape and either switch back to a push-down state or again in a reading state it
could either go to "read backward” (i.e., to the left of the top of the push—down

tape) or "read forward" (i.e., to the right of the top of the push-down tape).

It is easily seen that this extended model may be simulated by the faust ,

model and so such automata recognize regular languages only.

We end this section by considering briefly the case of the 2faut model when

the working tape is the linearly bounded tape {in a classic sense).

Definition. A 2faut A= (ALZ,Q,7,9:,8) is called a 2way finite automaton

.fwith. a unison linearly bounded tape, a 2faulb for short, if for each situation

(x,y,9) and each action (¥'.n,q'), z = B impliesn = —1. =

The class of languages of all faulb’s is denoted by L{(FAULE).

The following result is obvious.

Theorem 4. L{FAULB) = 1{CS). =

24

DISCUSSION.

In this paper we have extended the classical 2-way finite automaton model
by attaching to it an auxiliary storage tape working in unison with the input
tape. We have demonstrated that so extended model does not gain in the
accepting power - still only regular languages are accepted. We have also
demonstrated some applications of our results (Section 4): e.g., we believe that
(once our result on faupd automata is given) our proof of the extended Biichi
theorem is very simple (if not trivial) - certainly, the proofs existing in the

literature are rather involved.

We would like to conclude this paper by relating our proof techniques to

those from [9] and [13].

Clearly our proof techniques are based on these from [9] and [13]. In boti}
[9] and [13] one makes a very basic use of "'crossing relations", i.e. sets of pairs
of states corresponding to crossing - forwards and backwards - of a cut between
two positions on a tape (moreover in [9] one uses "crossing sequences” i.e., the
histories of crossing a given cut). The basic observation (trick) of both [2] and
[13] is observing that crossing relations are "time-independent”, i.e., once one
may cross a cut {forwards or backwards) in a way corresponding to a pair of
states (g, ') (¢ - before the crossing and g’ after the crossing) the crossing of
this type may always be repeated (provided we are at ''the same place” in the
state g). Technically this allows one to classify prefixes of all accepted words
into a finite number of types (classes) and then use the Nerode theorem, see
e.g., [9], to prove that the language accepted by a 2-way finite automaton is reg-
ular.

The time-independence of crossing relations does not hold in models we

consider in this paper. More speciﬁcally:

(1) the forward-backward crossing relations (i.e., crossing a cut forward into a

25

state ¢ and returning backwards info a state g¢') is time independent (it may
always be repeated: whenever in the future we cross forward the same cut into
the state ¢ we can always go backward into state g¢'), () however, the
backward-forward crossing relations (i.e., crossing a cut backward into a state
g and returning forward into a state ¢') are not any more state independent
(whether in the future after crossing backward the same cut into the state g we
can go forward into the state ¢' depends on the currently scanned symbol of the

auxiliary storage - and this could have been changed in the meantime!)

So, roughly speaking, the main observation (trick) behind our proofs is that
the prefixes {(up to the position of the common head) can be characterized by
Jfinite sels of forward-backward crossing relations and this "characteristic sets”
can ’be updatediwhile we move to the right. Hence everything can be remem-
bered in (a finite number of) states and there is no need for going backward

(and hence no need for the auxiliary storagef)

- ACKNOWLEDGEMENTS.

The authors gratefully acknowledge the support of NSF grant MCS 83-05245.

26

REFERENCES.

[1]

(2]
(3]

1
[5]
[8]
[7]
[8]

[e]

Buichi, J.R., "Regular canonical systems", Arch. Math. Logik und Grundlagen-

forsch., v. 8, pp. 91-111, 1964.

Engelfriet, J., Schmidt, E.M. and van Leeuwen, J., "Stack machines and
classes of nonnested macro languages”, Journal of the Assoc. for Comp.

Mach., v.27, pp. 96-117, 1980.

Engelfriet, J., Rozenberg, G. and Slutzki, G., "Tree transducers, L systems
and two-way machines”, Journal of Computer and Systems Science, v. 20,

pp. 150-202, 1980.

Greibach, S., "Checking automata and one-way stack languages”, Journal of

-Computer and Sysiems Science, v.3, pp. 196-217, 1969.

Greibach, S., “A note on push-down store automata and regular systems”,

Proc, Amer, Math, Soc., v. 18, pp. 263-268, 1967.

Harrison, M.A., Introduction fo formal language theory, Addison-Wesley,

Reading, Mass. 1978.

Kratko, M.1., "Formal Post systems and finite automata (in Russian)", Prob-

lemy Kibernet., v. 17, pp. 45-65, 1966.

Post, E.L., "Formal_reduétions of the general combinatorial decision prob-

lem'", Amer. J. Math., v. 85, pp. 197-215.

Rabin, M.0. and Scott, D., '"Finite automata and their decision problems",

IBM Journ. of Res. and Develop., v. 3, pp. 114-125, 1959.

[10] Rozenberg, G., "On coordinated selective substitutions: Towards a unified

theory of grammars and machines”, Theorelical Computer Science, to

appear.

[11] Salomaa, A., Theory of automata, Pregamon Press, Oxford, 1969.

27

[12] Salomaa, A., Formal languages, Academic Press, London-New York, 1974.

[13] Shepherdson, J.C., "The reduction of two-way automata to one-way auto-

mata", /BM Journ. of Res. and Develop., v. 3, pp. 198-200, 1959.

common head

input tape

>
Cll a2 ai o ¢ . alq B B B %
bl bz b’]: 'J """"" bs B

% working tape

current state

finite state
8 control

Figure 1

Cl_2

........

input tape

oooooooooo

oooooooooooooooo

i working tape

Y

s

6{29/ initial state

Figure 2

)

.......

.......

........

§

an accepting state

Figure 3

input tape

working tape

