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ABSTRACT

The Interactive Distributed Debugger (Idd) is intended to be a comprehensive system
for debugging distributed programs. In addition to the standard sequential debugging
techniques it provides a powerful assertion language, based on a temporal logic, for
automatically monitoring the flow of a program. These assertions are checked at run-
time and the program is stopped when an assertion is found to be invalid. Unlike other
systems that assume a given set of assertions, Idd allows the user to expand the asser-
tion set interactively as he gains understanding of the proper behavior of the program.
In addition, 1dd provides a sophisticated graphics interface to display and filter the
information provided by the debugging systerm.

1. Introduction

The problem of effectively creating correct and efficient real-time and concurrent
software is rapidly emerging as one of the key software engineering problems of the
1980’s. With the sharp drop in computing hardware costs, increasing emphasis is being
placed upon using dedicated computers to handle smaller pieces of large computing
problems. Solutions to the larger problems are being effected by the interaction of
such dedicated computing systems distributed around networks. Such architectures

offer numerous advantages over older architectures under which entire large problems
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were solved using a single large hardware/software system. The distributed approach
offers such advantages as survivability, reliability, and the possibility of functional

modularity at both the hardware and software level.

A major problem with this approach, however, is that the software required to support
it is far harder to construct than sequential, single-process software. The difficulties
lie in the construction activity, and to an even greater extent in the expensive and cru-
cial activities of debugging, testing and verifying. These activities have been eflectively
assisted by tools and software engineering technology for single-process, sequential
software. Unfortunately, software tools and technology have not been eflectively

applied to the support these activities for real-time and distributed software.

This work concerns the application of modern debugging tools and technology to real-
time and distributed software development. The paper first discusses the strategies
for distributed debugging. It then presents the overall architecture of Idd and intro-
duces the graphic interface. Third, it describes interval logic and its role as an asser-
tion language using a example of the two-phase commit pretocol. Finally, use of the

graphics interface is illustrated, again using the two-phase commit example.

2. AStrategy for Debugging Distributed Systems

In order to debug a distributed program effectively, one must use many different stra-
tegies. Distributed programs are sufficiently complex that they require all of the tech-
niques used for sequential programs as well as new techniques specifically designed for
handling their distributed nature. A complete set of techniques must include: state

examination, stepping, tracing, message monitoring, and assertion testing.

State examnination is the traditional tool for debugging sequential programs. The pro-
grammer places breakpoints at various places in a program and runs the program. At
each breakpoint, the state is examined to see if it conforms to the programmers notion

of a correct state.

Stepping is closely associated with state examination. In stepping, program execution
pauses before the each statement in the dynamic execution sequence to allow pro-
grammer inspection of the current state of the computation. This is very important in
determining when a program is executing correctly. Normally, the programmer knows
approximately what path should be executed when given a certain initial program

state, and he can detect deviations from that path.

Tracing usually refers to the automatic printing of state information during the
dynamic execution of a program. Here too, the programmer knows the expected

sequence of outpuls and can spot anomalous behavior.



Message monitoring is not needed for sequential debugging, but it is essential for
debugging distributed programs. It is true that one could substitute tracing of process
states for message monitoring since the message resides in a process just before it is
sent, or just after it is received. Yet, one often does not want to have to deal with the
internal state of a program in order to see its externally visible behavior. Also, one
may wish to inject synthetic messages into an execution sequence to observe its reac-

tions, and this is difficult using only states.

Finally, there is assertion monitoring. Many debuggers provide no assertion monitoring
at all, and rely totally on stepping and tracing. Some sequential programs provide only
primitive forms of assertions, namely conditional breakpoints with simple conditions
based on the state of program variables. This debugging style assumes that the pro-
gram is deterministic, and so there is a uniquely specifiable state that is of interest. In
the distributed program, it is often impossible to specify exactly the state of the
desired breakpoint or of the possible failures. Rather, one must be able to specify the
relative sequence of classes of events and to specify invariant conditions that should

hold over intervals of program execution.

The traditional complaint against assertion-based debugging is the difficulty of defining
sufficient assertions to characterize all of the possible errors. This difficulty arises
both from the complexity of programs and from the complexities of avallable formal-
isms. But assertion monitoring is too powerful to ignore. In a distributed environment,
it can relieve the programmer of the burden of examining large traces. In addition, it
can help catch some time dependent errors by allowing automatic monitoring of

states and message sequences, as opposed to the manual insertion of breakpoints.

In Idd, we circumvent the difficulties of defining assertions by two mechanisms: a
powerful graphic interface, and incremental assertion generation. The latter technique
is based on the availability of stepping, tracing, and so on in conjunction with assertion
monitoring. Thus, a typical debugging session might begin by approaching the problem
using one of the former techniques. Then, having observed a behavior sequence ending
in error, the programmer could write an assertion describing some prefix of the
sequence so that he gets control if that sequence repeats. At that time he can search
for precursors of the error. Alternatively, he may observe some correct behavior
related to a problem and choose to check that with an assertion so that he is notified
as soon as a change undoes something that was working correctly. Thus, although
complete characterization may be impossible in general, he may be able to set up
assertions to guard against some of the failures that have been seen (and fixed) previ-

ously.



3. The Idd Graphics Interface

The number of messages crisscrossing a distributed network may be very. large.
Clearly, the interaction of messages in a distributed system would be difficult to view
and to manipulate with a linear syntax. For this reason, the Idd interface is graphics-
based. It provides a formated screen for viewing message traflic, and a number of
graphics operators which may be used to focus on messages of interest. The goal is to
allow a user to debug distributed programs by monitoring the progress of a system,
and then when an error is found, exploring the types, sources, destinations, and con-
tents of relevant messages. Aggregate information concerning message traffic may
also be collected. Immediately below, we discuss the screen layout and the operations
with which the user focuses his attention. A later section gives a brief scenario of the

graphic interface in action. First, we describe the basic operations.

The user’s view of the system traffic consists of a time line, with one axis representing
processes and the other time. Two points connected by a directed line represent the
passage of a message from one process to another. An initial screen is shown in Figure
1. The user may view the message traffic as the system proceeds, or view the history

file of messages.

At the ends of the two axes are a series of scroll icons. When viewing history, the user
may pick one of the arrows with a mouse, in order to go forward or backward in either
time or process number. At the bottom of the screen is a "throttle"”, which may be used

to speed up or slow down the viewing of the message history.

At the top of the screen are five global commands which may be picked with the mouse:
If Magnify is selected, user then uses the mouse to pick four points on the screen. The
area in the marked rectangle is then expanded. Monitor is picked when the user
wishes to view message traflic as is oceurs, and be informed when a temporal assertion
is not met or some breakpoint is encountered. When the system halts, the relevant

assertion or breakpoint is displayed.

If Local is selected, the user then selects a particular process with a pick from the Pro-
cess axis. The user then enters a separate screen, devoted to only one process, called
a process screen. In the process screen, the user may set breakpoints, view those tem-
poral assertions that concern only that process, insert or modify assertions, examine
source code, or use examine the current process state. To leave a process screen, the

user picks the Global operation.

The last two operations are Display and Filter, which are used to focus the display on
messages of interest. These are discussed in detail later, when the sample scenario is

given.



4. The Architecture of 1dd

It is clear that, aside from the capabilities of a normal sequential debugger, a program-
mer of distributed systems must have control of inter-process communication. To pro-
vide this, the monitoring system must monitor the activities of all processes compris-
ing the system. In order to minimize interference, monitor functions will be separated
into two subsystems: the primitive monitoring functions and the analysis and display
functions. We envision an architecture which consists of a set of satellite monitors to
provide simple, local control of process behavior, combined with a separate supervisor
monitor for global control. Fach satellite communicates with the controller using

small messages to reduce the effect on the program being monitored.

4.1. Supervisor Responsibilities

The supervisor program is responsible for handling control messages to and from the
satellites, monitoring and collecting messages generated by the distributed program,

providing the graphic interface to that data, and monitoring assertions.

Assertion monitoring may operate either on the incoming messages {(approximating
real time) or on some portion of the collected message history. In the first case, asser-
tion violation causes the supervisor to stop the monitored program and allow the pro-
grammer to inspect the various processes of the program. In the latter case, the
supervisor indicates the place in the message history where the assertion is violated

and allows the programmer to examine that portion of the message history.

Normally, the supervisor monitors those assertions that are global to the whole pro-
gram and that cannot be monitored by any one of the satellites. Not all assertions are
global in nature. Assertions dealing with more than one process (eg. concerning mes-
sages) are global and are monitored by the supervisor. Other assertions involve the
behavior of only a single process and may be monitored locally by a satellite. Local
monitoring also minimizes the time between exception and interruption, as no message

traffic is required.

4.2. Satellite Responsibilities

The satellites are responsible for the direct control of monitored processes. Control
actions are of three kinds. First, a process may be stopped, continued, or restarted.
Second, the state of a process may be examined or altered. Third, a satellite may be

responsible for monitoring some assertions that depend only upon a single process.

The actions may be invoked in one of two ways:



(1) The programmer, through the supervisor, requests that some action be performed
on some process. For example, he may request that some assertion be monitored.
In this case, the supervisor may note that it is not a global assertion, and send it

to a satellite for direct monitoring.

(2) The satellite’s process may cause an error {(including assertion violation), and this

will automatically invoke the satellite which in turn will notify the supervisor.

4.3. Problems of Real-Time Control

It is important that the debugger be able to stop a set of processes as fast as possible
in order to preserve the relative states of the processes for programmer inspection.
This is especially important in detecting time-dependent errors. Unfortunately, no
matter how quickly one can stop a collection of processes, there will be some race con-

ditions of such short duration that they cannot be caught in the middle.

Often, the programmer has a good understanding of where in a program time depen-
dencies are critical. Idd caters to this knowledge by providing a stepping mode for a
collection of processes. Thus, a programmer can single step a collection of processes
to watch their behavior in a critical piece of code. By varying the order of process exe-
cution, he can often test out the behaviour under various assumptions about message

arrival and execution speed.

4.4. Systems Requirements for Distributed Debugging

An effective debugging environment for distributed programs must ultimately be
embedded deeply into the operating system. Only in this way can one achieve
sufficient speed and transparency. The speed is necessary to preserve the relative pro-
cess states and to catch time-dependent errors that result from closely tirmed race

conditions.

Transparency is important in separating the debugging system from the program being
debugged. Ideally, the debugger is language independent and does not depend upon
code residing in the user program for correct operation. Again, such an ideal state
may not be entirely possible. The principal problem concerns the level of debugging.
If a programming language provides relatively high level message passing primitives
(Ada rendezvous, for example), then one would like the debugger to know about them.
In this way, these primitives can provide a level of abstraction for the programmer, and
the debugger can support operation at this level of abstraction. If the debugger only
knows about the message facilities provided by the operating system, then it will force
all debugging to occur at that level, and that may be irritating and confusing to the

programmer.
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In the initial stages of the IDD project, we will not be in a position to modify the operat-
ing system, thus we must take the tack of providing a synthetic environment within
which users will operate. Our initial environment will be a network Sun workstations
running Berkeley Unix 4.2. We will be using the stream socket protocol for messages,
and the ptrace facility for controlling processes. We would expect to work with one of

the standard programming languages (C, Modula2, and possibly Ada).

Such an environment leaves much to be desired for distributed debugging. The stan-
dard ptrace facility is designed to debug one-process sequential programs. It allows
the debugger to start the user program as a child process, control its execution, and
examine its state. If that child process forks it own children, the debugger cannot
reference them using ptrace. Since this is likely to be a common occurrence in a dis-
tributed program, some means must be developed for attaching debugging monitors

to these descendant processes.

The Unix stream socket is a specialized form of interprocess communication (IPC).
Presently, it is the only completely usable IPC mechanism provided. It is, however,
completely unsuited for message monitoring. Since it is stream oriented, the receiver
does not get a series of disjoint messages. Rather, all the messages sent are con-
catenated at the receiver, and it is difficult for the debugger to automatically recog-

nize the message boundaries.

Our (temporary) solution is to provide a specialized debugging library that would be
loaded with the user’s program to replace some standard Unix facilities. This library
would provide replacements for the process forking and the normal stream socket

primitives. The new forking routine would operate as follows:
(1) The child process is forked and a debug monitoring program starts execution.
() This monitor then forks the actual user process.

Thus a monitor process is interposed between the parent and the child. As an aid to
transparency, the fork routine returns the process id of the sub-sub child and not that
of the monitor. This will work in many situations, but any program that requires its

children to be immediate will not work correctly.

The replacements for the stream socket will actually do two things. First, it will pro-
vide a form of stream socket in which the chunks of data passing through a stream
can be monitored. As indicated, this is not quite what is wanted, but is useful for pro-
grams that use streams as pipe-like connections. The second feature will be a new
interface that provides messages on top of the stream socket. By controlling both
ends and adding appropriate control information, the library can simulate messages.
Thus, programs that are written to use this interface will have the benefit of extra

debugging help.



5. Monitoring Interval Logic Assertions

As mentioned earlier, a major difficulty of debugging distributed programs is presented
by the very fact that they are distributed. Previous assertional methods depend on the
notion of a global state, which is the entity tested by the assertions being written. In
distributed systems with no shared memory, the state of the program.is distributed
throughout the system such that obtaining a "snapshot” for testing purposes is impos-
sible. In the class of systems we are considering, i.e. those with a shared broadcast
medium such as Ethernet, there is one object whose state is testable and may be con-
sidered global. This is the broadcast medium. Further, in many distributed programs,
such as those implementing communication or coordination protocols, the individual
process states have very little meaning and the state of the computation is best
described by the sequence of messages that have been transmitted. Thus, we will focus

primarily on monitoring assertions describing message traffic.

Other types of assertions can be monitored as well, assertions describing the states of
individual processes can be monitored either by delegation to the local satellite or by
having the process export its state explicitly via extra messages. This requires extra
code in processes, but is, unfortunately, the only way to monitor the local states of two
processes concurrently with some global assertion. Again, the latter will result in an
approximation at best, unless the processes are also constrained to wait following state

exportation.

The next two subsections describe the interval logic underlying our assertion monitor-
ing and used in examples in this paper, and give some indication of the techniques that

will be used to monitor assertions.

5.1. Interval Logic

Interval logic [Schwartz 83] is an extension of linear time temporal logic [Lamport 80]
developed to eliminate a major difficulty involved with the use of ordinary temporal
logic. Ordinary temporal logic has been studied with much interest in recent years as
a language for stating and reasoning about properties of concurrent or distributed pro-
grams. The motivation for this is that it is capable of expressing behaviors over time,
unlike the various partial-correctness logics, which are restricted to properties expres-
sible in terms of input/output state pairs. This restriction becomes particularly
relevant when considering concurrent or distributed programs because of the fact that
correctness properties of many such programs do not depend on mapping some initial
state to some final state, but rather on exhibiting some stimulus/response behavior.
Thus, the ability of temporal logics to express properties of behaviors makes them
interesting for specifying and reasoning about properties of concurrent or distributed

programs.



Both ordinary temporal logic and interval logic have models based on state sequences
and include operators and predicates for describing properties of individual states as
well as sequences of states. The predicates on states are essentially the familiar ones
from predicate calculus, and the operators yielding assertions describing sequences
are O, and O, read "always” and "eventually” respectively. In ordinary temporal logic,
these operators apply to the entire sequence, which for a non-terminating program
would be infinite. Thus their temporal scope is unbounded. Consider the following
examples. The formula [0F asserts that predicate P is true of every state in the
sequence. The formula QP is true of a sequence wherein P holds for some state.
Finally, the formula OQP asserts that P is true in infinitely many states of the

sequence.

Very often, however, one wishes to state that a predicate remains true continuously
over some fixed period but not forever (a bounded "always') or that an event occurs
before some point in the execution and not just before the end of time {(a restricted
"eventually”). Unfortunately this is not possible in ordinary temporal logic with [I and
Q. While it is possible in a linear time logic which gives an interpretation to O con-
sidered as a diadic rather than a monadic operator [Gabbay 80], the expression of all
but the simplest such properties leads to cumbersome and inscrutable formulations.
Interval logic alleviates this difficulty by providing a convenient and readable mechan-
ism for defining bounded segments of execution sequences over which assertions are to

hold.

The notation used to state that an assertion holds for a specific period is [[]E which
asserts that if the sequence contains an interval described by 7, then over that inter-
val, F is true. Here, F can be any assertion. The interval term [ is generally con-
structed by use of the operators = and < to denote the interval between two end-
points described by their operands. These operands are assertions called event terms,
and define particular points in time {events) corresponding to the points at which the
assertions go from folse to frue. The operators = and < determine the order and
direction of search for the endpoints of a particular interval. The endpoint at the "tail”
of the arrow is located first, searching forward from the beginning of the entire
sequence being considered. Starting from this endpoint, the sequence is searched for
the other endpoint in the direction implied by the arrow. Thus, the assertion
[P =@ ]O0FR may be read "from the next time P becomes true and until the first time
that & subsequently becomes true, K will remain {constantly) true.” On the other
hand, the assertion [P¢: Q]DR may be read "over the interval extending backwards
from the next time & becomes true to the closest previous time that P becomes true,
R remains (constantly) true. In the first case the search is forward from P to ¢, and
in the second backward from € to P. The intervals selected may be very different

depending on the direction of search.



Since, if the interval specified does not exist, anything can be said to hold for it, the
interpretation of interval logic specifies that formulae containing such specifications
be considered vacuously true. From a logical standpoint this makes perfect sense, but
practically speaking it may be necessary to be able to say that an interval will occur.
To allow the expression of such a requirement, interval logic provides notation for stat-
ing that intervals occur either by requiring that an entire interval exist, or by requiring
individually that endpoints exist. If / is any interval term, then */ simply states that
the interval [ must occur. Thus the expression ¥*/A[7|OFR says that K must occur
during the next [ interval and further that there must be a next / interval. On the
other hand, if / is the interval term P=>@, then [*P =>%Q]OF makes the same state-
ment by requiring separately, within the interval specification, that the endpoints must
be found. This latter form is particularly useful when the interval need not exist unless
the first endpoint exists. Thus, [M=*N ][0 = 0 says that if # occurs then N must
occur and further that between them O is continuously false. It is hoped that the
above (somewhat loose) introduction gives enough feel for the logic to make the exam-

ple assertions readable.

5.2. On-line Testing of Interval Logic Assertions

In this subsection we discuss monitoring assertions of interval logic in the context of
Jdd. As mentioned earlier, most assertion monitoring, particularly assertions describ-
ing message traffic, will be done by the supervisor, who reads all messages transmitted
over the network. Although Idd will have a mechanism for saving and viewing message
histories, it might well prove infeasible to store all messages transmitted during the
long execution of a large distributed program involving frequent interprocess commun-
ication. Further, we require that the programmer be notified during execution of the
program as soon as an assertion is violated. Thus, although the sernantics of interval
logic are given in terms of completed execution sequences rather than prefixes
[Schwartz 83], in Idd we need to test for compliance with assertions "on-line” and in

real time.

Because of the great expressivity of the language, on-line testing of interval logic
presents a difficult problem that is not yet completely understood. The general stra-
tegy is straightforward; given an assertion of the form [[]P and an input message
sequence, when the message event corresponding to the left endpoint of the interval J
occurs, begin the necessary testing for P. When the event corresponding to the right
endpoint of / occurs, the entire interval has been seen and the state of P on the inter-
val should be known. The difficulty arises from several places. For example, the
semantics of [A ¢=B]P are that P must be true of the interval beginning with the last
A event before the next B event and extending through that next B event. Locating
the left endpoint of that interval to determine at which point the testing of P is to
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commence is non-trivial. Assume that recognizing an 4 event is easy. Then, when it
occurs we have to start checking for P, which depends in general on the entire inter-
val. If A occurs again before B occurs, then checking for P must begin again since the

endpoint is the last A before the next B.

Now consider the assumption made above that A was easy to recognize. The logic
allows an arbitrary interval assertion as an endpoint in an interval term. The assertion
["(OX/\ QY) =>Z]P involves an interval that begins at a point where X and Y do not
occur in the future. Given the input sequence of messages, the interval could begin at
the start of the sequence if not both X and Y will occur later; thus P must be checked
starting there. On the other hand, if during processing an X event occurs, then it
could be that from that point only ¥ cccurs later. In this case the interval starts after
the X event. If Y will not occur later, then the start of the sequence is still the left
endpoint. Thus, after the X event, there must be two ongoing tests of P over two over-
lapping intervals. It can only be known later which is the correct left endpoint. In both
of these cases, it is the prediction of the future that causes the difficulty in on-line

evaluation.

Our first approach to the problem was to parse the assertion into an expression tree,
where the state sequence would affect only leaf nodes {atomic predicates on states)
directly and frue and false would bubble up the tree in a more or less straightforward
way. Nodes corresponding to the temporal operators O and { must store some infor-
mation to implement the semantics of the operators correctly. For example, if the
assertion modified by [0 ever goes false, the [ node goes false and stays false. To han-
dle interval formulae such as [/ ]P, we can think of the interval modifier ([/]) as a filter
that allows the modified assertion to react only to those states that make up the
described interval. The root of P’s tree would then be the result for the entire asser-
tion. Unfortunately, despite the cleanness and simplicity of this approach, we were
forced to reject it because the one-way communication of this model does not handle
the semantics of the interval modifier properly. Further, the problems mentioned
above with regard to prediction remain difficult to handle, as information is con-

strained to flow in only one direction.

A related and more general approach should be more satisfactory. We parse assertions
into a tree as before, this time treating [*]* as an operator with two subtrees, one for
the interval term and another for the modified assertion. Since assertions consisting
only of simple predicates and standard boolean connectives have no "temporal con-
tent”, we then prune off subtrees that correspond to to such properties. These may be
viewed as simple predicates on states for the purpose of the interval logic. We are left
with a tree of "state predicates” joined via the temporal connectives (O, O, [])
Corresponding to each node or operator, we create one pseudo process that imple-

ments the semantics of the operator labeling that node. This is described below.
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These processes cooperate in the analysis of the input sequence, communicating in two
directions. For example, given the assertion [A :>B]P, several types of communica-
tion can occur. A asks the = node when to begin examining states. This is because [ ]
may appear within a larger assertion that limits the scope of the search for the end-
points A and 5. Once A has found a possible beginning for the interval, it notifies =,
who in turn notifies [] and B, who then begins looking for the right endpoint. []
notifies P, who begins testing states. Once B has found the right endpoint, it notifies
=, who then tells [] that the interval has been found, which causes [] to request a
result from P. This scenario reflects the case where A and B are easy to recognize. If
this is not the case, then "finding" must be tentative and only a final "commit" will ter-

minate the searching and testing.

Space restrictions have forced us to paint the above with very broad strokes indeed.
We hope that the example has given a hint at the method. These techniques will be
described in detail in a forthcoming report [Harter 85].

6. An Example

The example to be used is taken from the two-phase commit protocol [Gray 78] The
two-phase commit is an example of a protocol for commit of distributed database tran-
sactions. A principal feature of a transaction is that it is atomic. This means that
either a transaction completes successfully (commits) and its modifications are avail-
able to other transactions, or it aborts and it has no effect on the database at all. The
two phase commit protocol is intended to guarantee either that all pieces of a distri-

buted transaction commit, or that all abort.

Briefly, the two phase commit operates as follows (see also figure 2):
(1) The coordinator requests all participants to vote either for commit or for abort.

() The coordinator then chooses to commit if all participants vote to commit, other-
wise the decision is to abort.

(3) The coordinator sends the decision to all participants.

{4) The coordinator waits for acknowledgement from each participant, and re-sends
the decision if no response is heard after some time period.

{5) As each participant gets the decision, it carries out the appropriate action {com-
mit or abort).

6.1. Assertions for the Two-Phase Commit

The following describes several representative constraints on message behavior for the
two-phase commit protocol. Each constraint is specified first in english and then as an
interval logic assertion such as could be monitored by the supervisor. In the interval

logic assertions, we use a tuple notation to describe a message. Each message is
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assumed to consist of a type field, a source process id, a destination process id, and a
value. The distinguished identifier "M" is used to signify the last message transmitted.
Thus, the phrase "M = <P,-,-,- >" specifies the occurrence of a message whose type field
indicates that it is a poll request: "'-"' indicates that the actual field value is irrelevant.
Note: This syntax is used to illustrate the examples, and is not representative of the
actual syntax to be used in Idd.

(1) The coordinator, (and the participants also) should execute in the sequence Vote
and then Commit. Any other sequence is an error.

This constraint might be expressed as follows:

*(M=<P,—,~,—>=>HM=<D,—,—,—>)
A [M:<P,—,—,—>:>begfm(M=<D,~,—,—>)]DM:<V.—,—,">
AH=<D,~~~>=]0H=<0K,~——>

Recall that M is set to the value of each message monitored by the debugger. Here,

type D is a decision and OK is the response to that decision.

The use of intervals is crucial to expressing the sequencing of program sections. In the
above constraint, the first line indicates that it must occur that a Poll message is sent
out followed by the sending of a Decision message. The next two lines restrict the kinds
of messages that can occur during two stages of the protocol specified by two intervals.
From the time that the Poll message until just before the Decision message, all mes-
sages must be Votes, and from the time the Decision message is sent onward only OK
acknowledgements may be sent.

(2) Each participant should vote once and only once when polled by the coordinator.
This might be expressed:

1=i<MPID>[M=<P,~——>=>H=<D,—,—,—>|0M=<Vi,—,—>
AlM=<Vi—->=]-0M=<Vi,~—>
We assume here that the participants are numbered 1 through MPID. The phrase <V,i,-
.- > refers to a message of type vote sent by process i. Thus, the first line specifies that
in the voting interval (from first ballot to the first decision) every process sends at
least one Vote. The second line specifies that from the time a process Votes onward,
that process will not Vote again. This constraint is typical of send-acknowledge kinds of
communications in which multiple acknowledgements would cause havoc if not
detected during debugging.
(3) If any participant votes to abort, then the coordinator will decide to abort. Other-
wise, the decision will be to commit.
* This constraint is useful as a check on the decisions made by the coordinator. It may

be expressed as follows (here, the tag COORD is the coordinator process):

1=1,j k=< MPID D[ M=<V,i,k,abort >=>|0M=<D,COORD,j abort >
ADOM#ALV ik ,0bort >DQM =<D,CO0RD,j ,commit >

Note that in this case, the we have included in the message structure the destination

process (7, k) and the contents ("abort" or "commit"). Here we specify that the first
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"abort" message begins a period during which the coordinator must decide to abort,
and second that if there's never a Vote to abort, then eventually the coordinator must
commuit.

(4) The participants should not respond to the decision until it is actually sent.

This last constraint is typical of send-acknowledge situations where we want to check
that indeed the acknowledgement occurs and that it does not occur before the send by

the coordinator.

[<=begin (M=<D,COORD,j,commit >) |0 =~ M=<OK,j, COORD,~>
A[(#M=<D,CO0RD,j ,commit>=>0M =<0K,j, COORD,—>
The first line says that before the decision (i.e., during the interval before the first
Decision message), process j will not prematurely send an OK message, and the second
line says that once the Decision message has been sent each process will eventually

acknowledge it.

6.2. The Graphics Interface in Action

The two-phase commit example is used below to illustrate the interaction of a user
and the graphics interface. In this example, focus operations are used to manipulated

the formatted screen in order to visually isolate messages and processes of interest.

6.2.1. The Focus Operations

There are two categories of focus operations. When viewing the message history, the
user may rearrange the graphical image by using Display operations, or screen the
message traffic with Filter operations. Picking either category with the mouse causes
a pop-up menu to appear. The user then narrows his focus by selecting menu items.
The user may also be required to select operands by picking tokens on the screen or

items from a specific submenu.

Under the Display menu, there are two submenus: Time and Process. The Time sub-
menu gives the user the choices of Compress and Expand to adjust the focus along the

Time axis.

In the Time submenu, the user may also select Restart, which will cause the distri-
buted program to start from its beginning. By requesting a restart, the user is indicat-
ing that any saved message history is to be discarded, and a new history is to be col-
lected. Of course, restarts do not automatically invalidate previously established

breakpoints or assertions.

The Time menu also has a Breakpoint selection, which is used to place a breakpo'mt'
with a mouse pick. These breakpoints are intended to allow the user to specify a point

14



in time and have the system restart and halt when that time point is reached. Actually,
the "time" is indicated by a message event in each of the processes. Using this form of
breakpoint, the user can rapidly skip an initial execution sequence and stop some-
where before a known occurrence of an error. At that point, stepping and state exami-

nation may be inveked to detect error preconditions.

Normally, processes are assigned to positions on the Process axis in order of their
creation. With the Process submenu under Display operations, the user may use the
mouse to move processes around on the Process axis and to group them together into
subsets based on frequency of communication. This facility is useful for reducing the

crossing of message lines in the display.

Under the Filter menu, there are three submenus: Time, Process, and Message. If the
user selects Time, he then picks two points on the Time axis; only messages sent or
received during this period are shown.

Under the Process submenu, the user may specify types of senders or receivers he is
interested in; he may also indicate process numbers of specific senders or receivers.
The user may also pick Sum, meaning that the number of processes meeting the res-
trictions he has selected are to be totaled. In this case, the response to the filter

operation is a number, not a message display.

Also under the Process submenu is the choice of selecting a chain, which is a subset of
the available processes. This subset is dynamically determined by the actual commun-
ications that occur. The user specifies one or more processes that are to start the
chain. As execution progresses, any process that is sent a message by one of the éhain
processes is itself added to the chain. This facility is often useful for monitoring a
causally linked set of messages. For example, one may wish to separate a request ack-
nowledgement segquence out of a mass of other message traffic. This is easy using a

chain from the initial requestor.

Some of the chains formed with this mechanism may later be used as the basis for
temporal logic assertions to be checked automatically. In essence, a chain is a simple
way of specifying a temporal order on a sequence of message events over some set of
processes. If these chains are augmented with more information about the message

types that start them, they could then serve as reasonable temporal assertions.

In the Message submenu under Filter, the user may request to see certain message
types, contents, and the sum of the number of messages which meet the other condi-
tions specified. Predicates are used to indicate the contents of messages of concern.
Predicates may contain comparator, logical, arithmetic, and aggregate operators. The
aggregate operators include Max, Min, and Count. If arithmetic operators or the Count
operator is used in a predicate, the result is a numeric or character query response,

and not a message display.
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6.2.2. A Sample Session

Figure 3 contains selected screen images from an example scenario. It should be
noted that, for brevity, time sequences of pop-up menus have been condensed; often,

more than one menu appears, but in actuality, Idd shows these menus sequentially.

In our scenario, Mr. Smith is trying to debug his two-phase commit program. He begins
in Monitor mode and casually watches messages fly by until the system is suspended.
The assertion stating that the coordinator should decide to commit if and only if every
participant agrees to commit has not been met. Examination reveals that the coordi-
nator has commited, so that means that some participant has voted to abort. It should
be noted that the user may supply English versions of his assertions, in order to sim-

plify the display. See figure 3a.

At this point Mr. Smith has two hypothesis about the failure. Either (1) the coordinator
did in fact receive a commit vote from every Participant process, or () the coordina-
tor committed even though it received an abort vote from some process. Mr. Smith
decides to investigate the first possibility. In figure 3b, Mr. Smith filters out the
number of processes of type Participant, and notes that there are ten of them (figure
3c). In figure 3d, he sets the filter to count the messages of type "vote'. As shown in
figure 3e, he discovers the problem; there are eleven votes. Some process has voted
twice. Figures 3f and 3g show Mr. Smith locating the individual who voted twice.
Apparently, process number 186 voted to commit. Then, after the coordinator had
received ten commit votes, 16’s second vote - an abort - came through. Process 16

needs to be debugged.

7. Discussion and Related Work

There are a number of published proposals for distributed debuggers. DAD (Do-All-
Debugger) [Victor 76] is one example of a distributed debugger for the National
Software Works project. As with the BLIT debugger [Cargill 83] and others [Baiardi 83,
Bates 83, Weber 83], the emphasis is on the state of the various processes and the
events defined by changes in that state. Some work has been done on characterizing
the sequences of messages in concurrent programs [Riddle 78, Garcia-Molina 81,
Snodgrass 84]. The first of those was based upon regular expressions, and the resulting
assertions were very large and clumsy. This is principally because of the possible
interleavings of messages. The Garcia-Molina paper uses a database formalism to
manipulate the messages produced in the system. We believe that interval logic can
provide more expressive assertions for message passing patterns than either regular
expressions or database query languages. Snodgrass’'s work is perhaps closest to ours
and supports the importance of temporal assertions. He provides a database query

language (TQUEL) that includes some temporal concepts. His work appears oriented
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more towards straight monitoring and not debugging, and it is not clear how the rela-

tive power of his temporal query language matches with interval logic.

8. Summary

This paper outlines a novel dynamic debugging system for a distributed environment.
It uses a modified temporal logic, interval logic, as the language for expressing the con-
straints to be monitored by the debugging system. It provides a sophisticated graphics
interface for displaying and filtering the debugging information.
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COORDINATOR PARTICIPANT

begin begin
VOTE:
for all participants
send(poll)
VOTE:
receive{poll)

force data to
non-volatile storage
if force succeeds then
send(vote,commit)
else send{vote,abort)
for all participants
receive(vote)

DECIDE:
if any vote is abort, then
decision is abort
else decision is commit

COMMIT:
force all data to
non-volatile storage
for all participants
if decision is commit then
send{commit)
else
send(abort)
COMMIT:
receive(decision)
if verdict=commit then begin
perform commit actions
release locks
send{ok)
end

else begin
rollback
send{ok)
end

for all participants
receive(ok)

end coordinator end participant

Figure 2. Two Phase Commit Protocol (Coordinator and Participant)
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