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Abstract.

Let A be an alphabet and Il its nontrivial binary partition. Each word over A
can uniquely be decomposed in subwords (called blocks) consisting of letters of
IT only, i € §1.2}. Let K CA™ . K has a long block property (with respect to IT),
abbreviated as LB-property, if there exists a function f : N* —-N* such that
for every w € K and every positive integer m the number of blocks of length at
most m. in w is bounded by f(m). K has a clusterea block property (with
respect to II), abbreviated as CB-property, if there exists a positive integer ng
and a growing function g : N* —-N* such that for every w € K and for every
positive integer m the blocks of length at most m can be covered by at most ng

segments of length at most g{(m).
It is proved that a CB-property always implies a LB-property but not neces-

sarily other way around. It is proved that an EQOL language has a LB-property if

and only if it has a CB-property.



Introduction.

A study of combinatorial properties of languages in various language classes
constitutes an active and important research area within formal language
theory. A typical result here is of the form: if X is a language of type X, then
P(K) where P is a combinatorial property of K. Such a property can be
expressed directly, as e.g. in all kinds of pumping theorems, or indirectly (con-
ditionally) getting then the following form: if X is a language of type X and
P,(K), then Py(K) where P,, P, are combinatorial properties. In the case of EOL

languages properties of this kind can be found e.g. in [ER] and [EnR].

This paper is concerned with a combinatorial property of the letter-type
concerning EOL languages. Let A be an alphabet and Il its nontrivial binary par-
tition. Each word over A can uniquely be decomposed in subwords (called
blocks) consisting of letters of I; only, 7 € {1,2]. Let K C A*. Khasa long block
property {with respect to II) if there exists a function f: N* -» N* such that for
every w € K and every positive integer m the number of blocks of Iengtﬁ at
most m in w is bounded by f{(m). K has a clustered block property (with
respect to II) if there exist a positive integer mg and a growing function
g : N* » N* such that for every w € X and every positive integer m the blocks of
length at most m can be covered by at most ng segments of length at most
g(m).

A CB-property always implies a LB-property but not necessarily the other
way around. Itis proved that an EOL language has a LB-property if and only if it
has a CB-property. This result is proved by the "in depth” analysis of derivations
in EOL systems and in this way we believe that this paper contributes to our
understanding of the nature of derivations in EOL systems. Also we provide
some applications of our main result. The first of this yields an example of a

language which is an ETOL but not an EOL language. The second example is



given grammatically (using the grammatical mechanism of the so-called regular
pattern grammars, see e.g. [KR1]). We prove this language to be not an EOL
language, which allows one to prove an important strict inclusion in [KR2]; we
can do this without knowing precisely the form of strings belonging to this

language.
The paper is organized as follows.
In Section 1 we recall some basic terminology concerning EOL systems.

In Section 2 we introduce the long block and clustered block properties. We
give some examples and prove that a clustered block property always implies a
long block property but not the other way around. We also prove that:

if Ky,.., K are languages which have a clustered block property and
K (KU \UK)=* where k is a positive integer then X has a clustered
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In Sections 3 through 5 we prove that if £ is an EOL language which has a
long block property then K has alsc a clustered block property. The proof -

which turns out to be very technical - is organized as follows.

In Section 3 we derive a normal form for an EOL system G generating X.

The useful letters of G are divided into different types: 1, 2, 3[ and 31l such that

K < (Mo U\ JL(G,))=* where M, is a finite language and « ranges over all useful
, )

letters of G. Moreover for all types except for type 3II it is proved that L{Gy)
has a clustered block property. In view of {*) it then suffices to prove that for a
letter a of type 3II, L{G,) has a clustered block property. This is done in two

steps.

In Section 4 it is proved that L{G,) C (M \UMz\JM3z\JM,)=* for a positive

integer k where M, and M, are languages which have a clustered block property.



Finally in Section 5 it is proved that also M3 and M, have a clustered block

property which concludes the proof of the main result of the paper.

We end the paper by some applications of our main result. This is done in

Section 8.



1. Preliminaries.

We assume the reader to be familiar with the basic theory of EOL systems
and languages, e.g. in the scope of [RS]. In this section we recall some basic ter-
minology concerning EOL systemns, fixing in this way the notation for our paper.

Also, some niew notions are introduced.

For a finite set X, #X denotes the number of elements of X. N denotes the
set of nonnegative integers and N* denotes the set of positive integers. For a
finite subset X of N, min X and max X denote the minimum and maximum of X
respectively. An alphabet is a finite nonempty set of symbols. f :N" - N*
denotes a total function with domain N* and range N¥; f is called growing if for

everyn € N*, f(n)=n.

Let A be an alphabet. A denotes the empty word. For a word w € A%, [ |
denoctes its length and alph = denotes the set of letters occurring in z. For an
alphabet @ #gz denotes the number of occurrences of letters from @ inz. For a
nonnegative integer 4, w(i) denotes the i-th letter of w if 1 <1< |w| and
w(i) = A otherwise. If z is nonempty, then last = denotes z(|z|). Let w =wv
where u,v €A”. Then u is a prefiz of w and v is a suffiz of w; we wrile
u pref w and v suf w respectively.

For a language K, K® = {\] and for a nonnegative integer n, K**! = K™ K.

LS H TN - n i
For a nonnegative integer n, =™ = U\, K"

An EQL sysfem will be denoted as G = (I, P, w, A) where T is its total alpha-
bet, A is its ferminal alphabel, w € T* is its axiom, and P is the sef of produc-
tions. In the notation of an EOL system we use a production set instead of a
finite substitution since this seems to be more plausible for the purpose of this

paper.

If a€X and & —-z belongs to P then a —-z is an a—production of G.

The fact that @ —-z belongs to P is often abbreviated as & ;-)x.
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Ifa€Z and Gis ?s above then G, = (E, P, a, A).

Since the problems concerned in this paper become trivial otherwise we
consider infinite EOL systems only (i.e. EOL systems which generate infinite

languages), unless explicitly clear otherwise.

Let G = (%, P, w, A) be an EOL system.

+
(1) A letter a € T is called recursive if « ———‘C::>-ucxv, wv €37, The set of

recursive letters of G is denoted by rec G.
() G is called propagating if « 2 implies £ # A In this case we say

that G is an EPOL system.

o+

(38) G is called synchronized if for every o € A, « Z'E*> z implies z £ A

Without loss of generality we can assume that if G is a synchronized EOL system
then there exists a symbol F € £—~A, the synchronization symbol of G, such that
F - F is the only F-production of & and for each a € A, a » F is the only a-
production of &. In the rest of this paper whenever we consider a synchronized

EOL system it will be assumed that its synchronization symbol equals F.
(4) Gis called standard if the following conditions hvold:
(i) w =5 eZ-A
(ii) G is propagating and synchronized;
(iii) foreacha €%, « l;—> z implies S £ alph z;
If G is standard, then we use us G to denote E—(A{S,F,}) and we call us G the
set of useful symbols of G
Let G = (T, P, w, A) b»e4an EOL system and let I be a positive integer. Let us
recall that a derivation zn G (of length l leading from z € 2% to Yy € E*) is a

sequence (z =z %, ..., 2 =¥), such that To=> z, TI=P> T Ty =z




together with a precise description of how all the occurrences in z; are rewrit-
ten to obtain zj4; for 0<1i <1-1. Such a description can be formalized (see,

e.g. [R3]). For the purpose of this paper it suffices to depict a derivation D by
Dizg=z, =>x,= '+ ==>I.
c G G G
A derivation in G leading form w to z € A¥ is called a successful derivation in

G.

To each derivation there corresponds a derivation tree; if a derivation tree
of G cbrresponds to a successful derivation in G, then it is called a successful
derivation tree (in G).

If £, L and T is a derivation tree of G whose nodes are labelled by ele-

ments of &y, then T is called a T,-labelled derivation tree of G

In addition to the rather standard notation and terminclogy concerning

derivation {rees we will also use the following.
For a tree T, height T denotes its height.
For anede v of a derivation tree we will use L{v) to denote the labelof v.

Let G be a EPOL system and let T be a derivation tree in G of height L.
Then for 0<1i <, set;T denotes the set of nodes whose distance to the root
equals 7, and result; T denctes the word which results from the sequence of all
" nodes (ordered from left to right) from sef; T by replacing each node by its
label. Whenever we omit the index 1 in the above notation, it is assumed that 4

equals height 7.



2. Long Block and Clustered Block Property.

In this section we define two combinatorial properties of languages over
fa.b 3* forming the subject of investigation of this paper: a long block property
and a clustered block property. We need a number of auxiliary notions first.

A segment of a word w is nothing else but an occurrence of a nonempty
sulbword of w, i.e., a subword of w together with its position within w. Formally

we have the following definition.

Definition 2.1. Let A be an alphabet and let w € A A segment of wis a
construct (w,k,l) where wueht k,leN l1sk=<l<|w] and

u = wlkywk+1)..w(l). The set of segments of w is denoted by SEG(w). =

In the sequel the usual terminology concerning words will also be used for
segments (e.g., the length of a segment (u, k, 1) is defined as |u|); however,
this should not lead to confusion.

Let = and y be two segments of w. We say that ¥ covers z if z onits own is
a segment of ¥. This definition is generalized to sets of segments as follows.

Definition 2.2. Let X, Y < SEG(w). We say that X covers Y if for every

(u, k,[) € ¥ there exists a segment (v’ k', 1) € X such thatk' <k andI'>1. =

For a word over a two-letter alphabet {a,b] we now introduce the concept of
a block. Intuitively we call a block of w € Ea,bg* a segment of w consisting
entirely of a's or b’s, which cannot be extended. Formally we have the following

definition.

Definition 2.3. Let w € {a, b}*. A block of w 1is a construct
{(u, k, 1) € SEG(w) such that either u € a* and w{k—1), w(l+1) #a oru €b*

and wk—1),w(l+1) #b.



The set of all blocks of w is denoted BL{w). For a positive integer m we

also denocte BL™(w) = {(u, k, 1) € BL{w)]| |w| =m]. =

We are now ready to introduce the definition of a long block property.
Informally speaking, a language K C {a, b}’ is said to have a long block property
if there exists a function which bounds the number of blocks of length of at most

m,

Definition 2.4. Let K C{a, d §* Then K has a long block property, written
K € LB if there exists a function f : N* » N* such that for every w € K and

every positive integer m, #BI™(w)= f(m). We also say that K € LB with

parameter f. o

Example 2.1. Let K| = {aba?6%a%3 - - - a™b™ | n > 1},

K= fawliat it gl Imn>=1 and 4.5, =1 for 1=<l=n}, and
Ky={a'p7ia*’2. . omph [ n=1andq,j, =1 for 1=l <n]. KKz L5 but
K3 £ LB.

Preof. Clearly for every w € K, and every positive integer m,
#BL™(w) < 2m. Thus if we define f : N* » N" by f(m) = 2m, then K, € LB with
parameter f. One can easiliv see that K; € LB with the same parameter f.
Since (ab)™ € K3 for every positive integer n, # BL(w) cannot be bounded by a

function f : N* » N*. Hence K3 Z LB. =

We now introduce another "block property’”: a clustered block property.
Intuitively speaking, a language K C {a,b §‘ has a clustered block prbperty if all
blocks of length at most m of a word w are not arbitrary scattered but occur in

“clusters”. Formally we have the following definition.

Definition 2.5. Let K C {a,b ;t. Then K has a clustered block property, writ-

ten K €CB if there exists a positive integer mg and a growing function
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g : N* » N* such that for every w € K and every positive integer m there exists

a X ¢ SEG(w) such that the following conditions hold:
1) #X<sng
(ii) foreveryz € X, lz| s g(m);
(iii) X covers BL™{(w).

" We also say that K € CB with parameters ngandg. =

The above definition says that we can cover all blocks of length at most m of a
word w by at most 1y segments bounded in length by g(m). We illustrate this

definition by the following example.

Example 2.2. Let K; and K, be as in Example 2.1. Then X, € CB and

Ko £ CB.
Proof. Let w = aba®%e®?® - g™b™ € K. Let m be a positive integer. Let
I =min{m,n]. Then the segment aba®b?a®® - a'b’ covers all elements of

BL™(w). Its length eguals 2(1+2+..+1) = 1{l+1)<m(m+1). Consequently
K, € CB with parameters 1 and g{m)=m{m+1). The fact that K, £ CB is
proved by contradiction as follows.

Assume that K, € CB with parameters ng and g. Consider m = ng+1 and

- abg(n0+1)+1a2bg(no+1)+2 ..,anOHb g{ng+1)+ngy+l

w Obviously every element of

BIM*! consists of a’s only and #BL%”(w) = ngt+l. Now let X ¢ SEG(w) satisfy
conditions (i) through (iii) of Definition 2.5 for m = ng+1 and w. Since for every
z € X, |z|<g(ngtl), every z € X can cover at most one element of BL™(w).

Consequently # BL%H(w) < ng; a contradiction. Hence K; £ CB. =

As far as K3 is concerned, we have K3 £ CB. This follows from the general
property that each clustered block property implies a long block property as

can be seen from the following theorem.
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Theorem 2.1. Let K C {a,b] . Then K € CB implies K € LB.

Prool. Assume that K € CB with parameters ng and g. Define f : N* » N*
by f(m) =ngg(m). We claim that K € LB with parameter f. This is proved as
follows. Letw € K, let m be a positive integer and let X € SEG(w) be such that
it satisfles (i) through (iii) of Definition 2.5. Then the total length of all segments
of X is not longer than #X times the maximal length of a segment in X, ie.
ngg(m). Thus - because the length of a block is always positive -

#BL™(w)<ngg(m) = f(m) and consequently X € LB with parameter f. =

Observe that from Examples 2.1 and 2.2 it follows that the converse of Thecrem

2.1 does not hold.
In the following theorem we state the obvious fact that if for a language

there exists a positive integer which limits the number of blocks in every word

then this language has a long block property and a clustered block property.
The following result is obvious and hence given without a proof.

Theorem 2.2. Let K C §a,b] . If there exists a positive integer n such that

foreachw € K, # BL{(w) <n, then K € CB (and hence K € L5). =

We proceed to investigate operations on languages which preserve the CB-
property.

Lemma 2.1. Let Ky, K;C{a,b} . It K, Kz € CB and K C K;\_UKz, then

K< Ch.

Proof. Let K|, K; be as in the statement of the lemma. Let K; € CB with
parameters n; and g,, and let K; € CF with parameters nz and go. Then clearly
K € CB with parameters max{n,, n,} and g where g(n) = max{g,(n), gz2(n)j for

a positive integer n. =
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Let X be a set of ségments of a word w. Such a set is called disjoint if no
two segments overlap or "touch” each other. From a set of segments which is
not disjoint we can construct a disjoint set by combining into one segment those

segments that either overlap or touch each other. Formally we have the follow-
ing definition.

Definition 2.6. Let X € SEG{w). X is disjoint if for every (ui, ki, 1),

¢

('LLg, kg, Zz) € X either ko> l1+1lork; > ls+1.
The join of X, denoted JOIN(X), is defined as follows.
(i) JOIN(X) ¢ SEG(w), JOIN(X), is disjoint and covers X.

(i) For every disjoint ¥ € SEG{w) which covers X, Y also covers JOIN(X).

Lemma 2.2. Let X; C ﬁa,bg*. Let k be a positive integer. If K; € CB and
K C K%, then K € CB.

Proof. Let K, k be as in the statement of the lemma. Let K, € CB with
parameters n; and g;. We will demonstrate now that X € (B with parameters -
k'n, and g where, for all positive integersn, g(n) = k'n;-g,(n).

Let w € K and let m be a positive integer. Then w = w,w;, - - w, where
w; € Ky for 1<1 <k. Since K, € CB for each w;, 1 <1 =<k, there exists an
X; € SEG(w;) such that:

(i) #X% =ny

(ii) for every z € X;, |z | < gi(m); and

(iii) X; covers BL™{(wy).

Fori=i<klet

X= byl § Jwl) | (k) <X
IE j=

Let X = JOIN(UE, X).
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Then the following conditions hold:
() #X=#(Uk, X)) =Bk, #X <k,
(ii) for every z € X,

|2 = # (UL X) mext|w] |w € YR, %] =k nygi(m)

and

(iii) X covers BL™(w). |

To see that (iii) holds consider a block u € BL™(w). Thus either
U = UjUjyycc Uy, 1<j<j+s <k where yjsuf w; , yjpref wy,s and
Uje =Wy for j <L <j+s,oru isasubwordofu;, 1<j<k.

Each of those u;’s, j <4 < j+s is covered by a segment from X; and so u is

covered by a segment of JOIN(\Uf., X;). Thus K € CB with parameters k-n; and

g. =

Lemma 2.1 and Lemma 2.2 yield the following theorem.

Theorem 2.3. Let k,I be positive integers. Let K, ..., X C {a,b 3* such that

K, . ..KeCB FEXC(K U UK)*F, thenK € CB. =

In the above we have restricted ourselves to languages over a two letter
alphabet. This however is not a real restriction. Definitions 2.3 through 2.5 can
be generalized to languages over an arbitrary alphabet A (with cardinality at

least 2) and a binary partition 7 of A. In this way we get the following definitions.

Definition 2.7. Let A be an alphabet and let m = (A}, Ap) 'be a binary parti-
tion of A (i.e. Ay, Az # ¢, A; UMz = Aand ANz = ¢).
Then a block of w (with respect to i) is a construct (u, k, 1) € SEG(w) such that
either u € Af and w(k —1), w(l+1) £ A, or v € A and w(k —1), w(l+1) £ Ay

The set of all blocks of w (with respect to ) is denoted BL,(w) (BL{w) if r is
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understood).
For a positive integer m we also use the notation

BLM(w) = {(u k1) € BLy(w) | |[u| =m]. »

Definition 2.8. Let K € A" and let 7 be a binary partiticn of A. Then K has a
long block property (with respect fo 1), written K € LB(w) or K € LB if 7 is
understood if there exists a function f : N* » N* such that for every w € X and
every positive integer m, #BL™{w) < f(m). We also, say that K € LB(r) with

parameter f. »

Definition 2.9. Let X ¢ A™ andlet mbe a binary partition of A. Then K has a
clustered block préperty (with respect to ), written K € CB{r) or K € CBif m is
understood, if thére exists a positive integer ngy and a growing function
g : N* - N* such that for every w € K and every positive integer m there exists
a X ¢ SEG(w) such that the following conditions hold:

(i) #X<ng

(ii) foreveryz € X, |z| < g{m);

(ili) X covers BL™{w).

We also say that K € CB(m) with parametersngandg. =

The following theorem establishes the connection between arbitrary alpha-
bets and two letter alphabets that concerns long and clustered block properties.
Theorem 2.4. Let X C A™ and let IT= (A;,A;) be a binary partition of A. Let
h be the homomorphism on A" defined by h{a) = @ for a € A}, and h{a) = b for

o € A, where a, b are two fixed different letters. Then

(1) K€ LB(II) if and only if A (K) € LB({a},{b}), and
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(2) K € CB(II)if and only if h(K) € CB({ai,{b}).
Proof. {1} Obvious.

(2) 1t K € CB(II), then h(K) € CB({a},{b}). This can be seen as follows. If
ng, g are parameters proving that K € CB(I/), then the same mngg will prove

that A(K) € CB({a}.{6]); for a word h{w) we consider covering by h(X).

It h(K) € CB({a},{b}), then K € CB(II). This can be seen as follows. lfng, g
are parameters proving that A(K) € CB({a},{b}) then the same mg.g will prove
that K € CB(II). Let w € K and let m be a positive integer. Consider h(w) and
X ¢ SEG(h{w)) such that conditions (i) through (iii) from Definition 2.5 are
satisfied for h{w). Let X' = {{u.k.l) € SEG(w) | (h{u)k.l) € X{. Clearly X'
satisfies conditicns (i) through (iii) from Definition 2.5 for w. Since w and m

were arbitrary, K € CB{II). =
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3. ANormal Form Using Basic Letter Types.

The aim of this paper is to prove that if K C {a,b }* is an EOL language and

K € LB then K € CB.

Let Gg = (Zp, Pg, S.{a,b]) be an EOL system which generates K, where we
assume that

’

G is a standard BOL SYSLeML.uuumie ettt (1)

- To prove that X € CB we proceed as follows. Observe that

K=L(Gyc(( U LUGo)a)) Uke)™ "%,

a€us Gy
where Mg is a finite language {consisting of all words which can be derived in one
step from S). In view of Theorems 2.2 and 2.3 it suffices to prove that for each
ax€us Gy, L{(Gg)a) € CB. To this aim we first replace Gy ny an EOL system
which satisfies some special properties. This is done in several steps {(a)
through (e)).
(a) We start by replacing Gy by an EOL system G, which meets condition {1) and
in addition
G1 is in binary normal FOrM. i iiieiieeieeeeiie e ittt s enre e (1)
i.e., its productions have one of the following forms:
N - NN, N-»>N,N-t,t-»> N, where N stands for an arbitrary nonterminal and
t stands for an arbitrary terminal (see, e.g., [MSW]).
(b) Next a nonempty word w € K is given a type depending on the number of

blocks it contains. We have the following definition.

Definition 3.1. (i) A nonempty word w € X is
- of type 1 if # BL{w) = 1,
- of type R if # BL{w) = 2, and

- of type 3 if # BL{w) = 3.
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Note that type 1 words are words of the form either a™ or ™, n > 0 (the
former are referred to as type la and the latter as type 1b). Type 2 words are
words of the form either a™b™ or b™a™, n, m > 0 (the former are referred to as
type 2e and the latter as type 2b).

(i) Let G=(Z, P, w, {a,b}]) be an EOL system generating K. We say that a

+ .
letter e € us G has type i, 1 € {1a,1b,2a,2b,3], if o =——é>'w and w is of type 1.

We will now transform G, intoc an EOL system G, generating X where each
symbol has at most one type. This is done as follows.
Let Z; = {a.b}Ulali] | e sus G, 1 € {1a,15,2a,2b 3} IS FI.
Let P; consists of the following producticns.

) I S ;oABABcus G, then S SoA[]BL]  for  all

1 2
1,7 € §3,2a,2b,1a,1b1.

i) IS --» A4 A<us G,thenS —- A[i]foreachi € {3,22,25,1a,154.
L
P, P,

(iii) If 4 5 BC, A,B,C <us Gy, then

1
A[3] P_: B[3]C[i] for each i € {3,22,2b,1a,15},
A[3] P—: B[2a]C[i] for eachi € 28,2?,2b,1a§,
A[3] 5; B[2b]C[i] for eachi < {3,2a,25,15],
A[3] ;: B[1a]C[i] for eachi < {3,26},
A[3] ;2—* B[16]C[i] for each i = {3,2a],
Al2a] VP—: B[2a]C[1b],

AlRa] 5 Bl1a]C[i] for each i € {2a,1b},

AlRb) 5 B[2b]C[1a],
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Al2b] 5 B[1b])C[i] for each i € {2b,1a},
2

Alla] P—z—a Bl1a]C[1a],
Al1b] o0 Bl1b]C[1b].

(iv) f A —= B, A,B €us G, then A[1] o B[i] for eachi € {3,2a,2b,1a,1b].

1 2

(v IS —»z,zcfabithenS =»z.
Py Py

(vi) f A —--a, A €us G, then A[1a] Pl
2

Py

(vii) f A =—-b, A €us G, then A[1b] ;->b.

Py 2

(vii) @ —»F,b —-»Fand F —- F.
P Py Py

Clearly L{Gs) = K, G inherits the properties (1) and (1') from G; and
each & € us Gp has al mMost ONe LYPE. it L)
(c) Thirdly, following the lines of the standard proof of the theorem L{ECL) =
L{COL) (ses, e.g., [RS]) we can transform G into an EOL system (g which inher-

its properties (1) and (1") and is such that

*
*
for each o € us Gg, S = uav for some UV € (us Gg) , « ?z for some
Gs 3

z € (us Gg)" and « =y for some Y € {@,b ] i (2)
s -

Hence from (1") and (4) it follows that

each « € us Gy has exactly one EYPE veereeenreeroreeriiinres e st (3)
If an EOL system satisfles (3) we say that "ais of type i" rather than "« has
type i". For z € {1a,15,2a,2b,3} type z denotes the set fa | type a=f{zii.
Furthermore, for a derivation tree, each node labelled by a letter of type z is

called a node of type z.

+
(d) Let a € us GsN(type 1Utype 2) and consider « -(-;> w € (us Gg)*. Observe
3

that w contains at most on letter of type 2 and the rest of w are letters of type
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1. Clearly:

either there exists a positive integer my such that for every positive integer n

n
there existsa word w, € (us G;)* such that ¢ => w and #ype1aW = Mo
3

or such a positive integer ny does not exist.

An analogous situation is true for letters of type 1b.

Now using the standard speed-up technique (see, e.g., [RS]) one can con-
struct an EOL system G, such that (1),(2) and (3) remain true and (see the
above remark) furthermore

for each a € us Gy (type 1\ Utype 2) either there exists a ng > 0 such that

n
for each positive integer n, a => w < (us Gy)" and #iype1c W =7 or for

ger
Gy

n
every positive integer n, « «'-—g} w € (us Gy* implies #yps10 W =71, more-
4

over this property alsc holds if we replace 1@ by 18 .ooiiveiiniiiinniinns (4)
(e) Finally, again using the speed-up technigue, it is possible to construct an
EOL system G =(Z, P, S, {a,b}) which satisfles {1) through (4) and in addition
satisfies the following two properties.

E
Ifa €us GNOyrec G, then & => uav for some wv € (us G) .evreeiennne (5)

Let a €us G be of type 3 and such that alph = does not contain recursive

"
symbols of type 3 whenever ¢ = z. Then « 5” y and alph y < us G
G
imply alph y contains only letters of fype 1 and type 2oiiivieiiiencenn (8)

The above property (8) gives rise to the division of letters of type 3 into two
categories.

Definition 3.2. The set type 37 is the set of all letters of type 3 such that

+
a =G? z implies alph z Nrec GMtype 3 = ¢ and type 3// is the set type 3 - type
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37.

Nodes of type 3/ (3] respectively) are nodes labelled by letters of type 3/

(type B3I respectively). =

For the rest of the paper we fix an EOL system G = (£, P, S,{a,b}) which
satisfies (1) through (8) and generates K.
Recall that X has a long block property and
Ko U LGHUHM)=™=C

ccus G

where Mg is a finite language.
We proceed now by proving that for each a € us G, L(G,) € CB. The follow-
ing theorem states the result for the case when o € type 1\Utype 2\ type 31.
Theorem 3.1. If & € type 1 Utype 2Utype 31, then L{G,) € CB.
Proof. If « is either of type 1 or of type 2, then each word in L(G,) has at.

most two blocks. Thus by Theorem 2.2 L{G,) € CB. If « € type 3] then the

result follows from the above and Theorem 2.3. =

It remains to prove that for « € type 377, L{G,) € CB. This will be shown in

the next two sections.

We end this section by proving en upper bound on the number of nodes of
type 3 on a level of a derivation tree. '

Lemma 3.1. There exists a positive integer k such that, for every (us G)-

labelled derivation tree T of G and every 0 <1 < height T, #p. s result; T < k.

Proof. Since K € LB, there exists a function f : N* > N* such that
# BImC(w) < f (mazr G). Let k = f (mazrG). We prove that for this choice of

k the lemma holds. This is proved by contradiction.
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Assume that T is a (us G)-labelled tree of G and 0<1i < height T is such
that #,6 s result; T > k. Clearly based on T a successful derivation tree T of G
can be constructed such that there exists a 0<j =< height T' such that

#rype s TESULL; T > K\

Then, since each letter of type 3 does create at least one block and since &

satisfies (R),

o . | |
S ;C? result; 7 = we K and #BL™C(w) > k = f(mazrG); -
a contradiction. Thus the result holds. =

For the rest of the paper let &; be an arbitrary but fixed integer which

satisfles the statement of Lemma 3.1.



22
4. Limbs and Spikes.

In the previous section we have divided letters of & into basic types and for

each letter type except for type 3II we have proved that a letter of this type
éives rise to a language in CB.
In this section we make a first step in proving that a letter of type 3II also gives
rise to a language in CB. We will prove that there exist four languages, M,
through M, and a positive integer k, such that if « €iype B3I, then
L(Ga) C (M, UM2\UMs\UM4)=*, where, moreover ¥, and Mz € CB. In the next
section we prove that M3 and M, also belong to C5. Then from Theorem 2.3 it
follows that L{G,) € C5.

Our division of L{G,) into elements of M, through M, is based on a detailed
analysis of successful derivation trees in G, To this alm we need quite a

number of new definitions which will be introduced now.

Consider a successful derivation tree T in G, and remove from it all nodes

" which are not of type 3II. We end up with a derivation tree as depicted in Figure
1. The remaining tree is called the skeleton of T and is denoted as skel 7. Two
kinds of nodes occur: nodes with at most one successor {in skel T) and nodes
with more than one successor. The former are called simple denoted by . in Fig-

ure 1); the latter are called complez (denoted by O in Figure 1).

The following lemma gives an upper bound for the number of complex nodes

occurring in a successful derivation tree of G, where « € type 3IL

Lemma 4.1. There exists a positive integer k£ such that for every a € type
311 and every successful derivation tree T of G,, skel T contains no more than &

complex nodes.

Proof. The lemma is proved by contradiction. Assume that no bound k

exists. Let « € type 3/7 and let T be a successful derivation tree of G, such that
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skel T has more than k, complex nodes. Recall that k; is an arbitrary but fixed
integer satisfying the statement of Lemma 3.1. This T can now easily be
transformed (using property (5) of Section 3 and the definition of letters of type
3l into a (us G)-labelled tree T' of G with at least k;+1 complex nodes and
such that each node of type 31l has a son of type 3II. Conseguently there is a
i =0 such that e 3 result; 7' > k; which contradicts Lemma 3.1. Thus the

lemma holds. =

For the rest of the paper let k; be an arbitrary but fixed integer which satisfies

the statement of Lemma 4.1.

We now proceed with the analysis of skel 7. A maximal {looked at top-
down) branch in skel 7 which contains only simple nodes and ends either on a
complex node or on a leaf (of skel T) is called a limb (of 7). In Figure 2 all limbs
are indicated by boxes. Such a limb will be denoted as <vy ..., % > where
wy, ..., U are consecutive nodes of the limb. A spike (of a limb) is a subbranch
of a limb consisting of nodes vy, ..., Um, ™ = L such that vy . still belongs to the
same limb, and v; and v, ;, have the same label (i.e. [{(y;) = I{Upmyey)). A spike as

above is said to be of fype I (v;) and will be denoted by Kv;, ..., Un >>.

The notion of a spike is illustrated in Figure 3. We have depicted a imb
<vy, ... v15>. To the left of it we have indicated the nodes and to the right of

it we have indicated the labels.

- Ky, U, KLUy, L, U, KLUy, L, VD, KUg, UaDP

Lug, ..., vg>» and Kvs, ..., vg>> are all spikes of typé a.
- KUy, o, U, KUy, .., U and Ky, .., V> are all spikes of type b.
- Kvg, .,.,.’Ug>>. Ky, ..., v1a>» and KV, ..., Y137 are all spikes of type c.

- Kuvg, ..., v1;> is a spike of type 4d.
- &LV, , ..., V> is a spike of type e.

- Observe that there are no spikes of type f since the given limb contains only



one node with label f.

Next we consider nodes (and words) which are descendants of the nodes of
a spike.

Definition 4.1 Let a € type 311, let T be a successful derivation tree of G, of
height I, let p = <Urg, Ur,> be a limb of T such that for 7; €1 < 75, v; has dis-

tdnce i to the root andlet 0 = vy, ..., Vi, 2> be a spike of p.

Then for 1, <1 < I, lset;(T,0) denotes the following subset of set; T

If i, <1 <1ip+1 then Iset; (T, o) consists of all nodes of set; T which are des-
cendants of Uiy oo Uil and which are to the left of v;.

If i+1 <7 <1 then Iset;(T, o) consists of all nodes of sef; 7 which are des-
cendants of Vi ooos Vi and which are to the left of all elements of sei; T which are
descendants of Uy, +1.

If in the above definition we replace left by right then we get the definition
of rset; (T, o).

Finally lresult;(T, o)(rresult;(T,0) respectively) is the word which results
from the sequence of all nodes (ordered from left to right) from

Iset;(T,0)(rset;(T,0) respectively) by replacing each node by its label.

If1 = height ’T then in the above the subscript 7 is omitted. =

Figure 4 illustrates the above definition. We have depicted 7T,0,lresult;(T,0) and
rresult;(T,c) for various levels.

Based on the above definition we will define for a letter « of type 31l two
languages, called the left contributions of a and the right contributions of «.
Consider the situation as depicted in Figure 4. Moreover assume that v; has
label 8. Then we say that z is a left contribution of § and ¥ is a right contribu-

tion of 8. Formally we have the following definition,
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Definition 4.2. Let g € type 3Il. We associate with 8 two languages LC{B)
- the left contributions of 8, and RC(B) - the right contributions of g as follows.
(1) z € LC(B)
if and only if
there exists a letter o of type 311, a successful derivation tree T of G, a limb
p =<y, ..., v%>of T and a spike 0 = KV, ..., v, > of p of type § such that
z = lresult (T,a).
(2) = € RC(p)
if and only if
there exists a letter « of type 3II, a successful derivation tree T of G, a limb
p=<Vy ..., U> of T and a spike 0 = Ky, ..., U, >> of p of type § such that

z = rresult (T,0). =

We now return to the situation depicted in Figure 3 - as we have seen, the
given limb contains several spikes. Let us consider the contributions of the limb
to the word generated - we have already a formalism to denote contributions
(both left and right) of a spike. Based on it we define now unique splitting of a
limb into (disjoint) spikes called true spikes. |

Definition 4.8. Let a € tyg;e 3. Let T be a successful derivation tree of G,
andletp = <v, ..., v,>bealimbof T.

Let SPIKE(p) be the (possibly empty) sequence of spikes defined iﬁduc—
tively as follows.

If p does not have spikes then SP/KE(p) = 2.

Otherwise SPIKE(p) = (py, ..., pt), t = 1 where py, ..., p¢ are spikes con-
structed one-by-one as follows.

Choose the first (top-down) node v; on p such that p contains another node

labelled by the same letter ; let Uj,+1 be the last node on p labelled by the same
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letter as v;. Then p; = <Ky, Vi 4y, ..., v;,>>. Then start with v; 4, and proceed
as above. One stops when there are no spikes left in the remaining part of the
limb.

By Rest p we denote the set of all nodes from p not involved in any of
P1. -, pt. Elements py, ..., py of SPIKE(p) are called true spikes of p. For every

limb p of T, a true spike of p is called a true spike of 7. =

Consider again Figure 3. The true spikes of the given limb p (indicated by
boxes in Figure 5) are <«wv,, ..., vg>®» and <v,q ..., Vi3>>; Rest p eguals
21)9, Vig U 15]. Observe that both, the number of true spikes of p and the cardi-
nality of Rest p, are bounded by the number of letters in the alphabet of the
given system.

In order to divide the result of a successful derivation tree starting from a
letter o of type 3II into words of four different languages we need the follewing
definition.

Definition 4.4. Let o € type 3II and let 7 be a successful derivation tree of
G, Let ) be the set of all nodes which occur in a true spike of 7 and let C; be
the set of all node‘s which contribute in one step to the terminal word. Observe
that C,N\Cz = £ (the last node of a limb is never included in a spike). Csis the

set of all nodes of skel T not contained in C;|Ca.

Then the exfended skel’eton of T, denoted eskel T is obtained from skel T
by including also all nodes (and their edges to nodes from skel T) that can be
obtained in one step from nodes in Cg.

The nodes of eskel T which do not belong to skel T are referred to as added
nodes of 7. Observe that none of the added nodes is a leaf of 7 and all added

nodes belong to type 1 (U type 2 | type 31. =
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Figure 6 depicts a typical situation.
- [0 are nodes of true spikes (C, nodes),
- ®are (3 nodes,
- »are (3 nodes,
- O are the nodes which belong to eskel T but not to skel T (the added edges

are denoted by dotted lines).

Let M, = U L(Gy),
B € type 1Utype 2 Jtype 37

My =iz €{a,bl*|B =z and f € type 3111,

He= \J LC(g), and
B € type 3I7

Hy= \J RC().

B € type 3T
Observe thatz =z z5 - - - z,;, where
Zy, Te, Ty, Ty, Tio € My
5, Tg €My T3, 23 € Myand x4z, € M,
Clearly the following lemma holds.
Lemma 4.2, Let o€ type 3 and let M = M, UM UMs My, where

My, Mz, M3and ¥, are defined as above. Then L{G,) € #M*. =

We can improve the result of Lemma 4.2 and prove the existence of a posi-
tive integer & such that L(G,) C zW"‘;. We need the following lemma which pro-
vides bounds on the number of true spikes of an arbitrary successful derivation
tree of ; and on the number of its added nodes (« € type3//).

Lemma 4.3. Let a € fype3// and let T be a successful derivation tree of
G,

(1) The number of true spikes of T is bounded by #(kymazrG+1).

(2) The number of added nodes of T is bounded by #I-(kymazrG+1)

mazxr(.
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Proof. (1) Since each limb of T either starts from a son of a complex node
or from the root, the number of limbs of T is bounded by kz'mazxr G+1. Since
every limb can contain at most #Z true spikes, the number of true spikes of 7 is

bounded by # 2 (ky mazrG+1).

(2) Clearly the number of added nodes of T is bounded by the number of
limbs of 7 times the number of nodes on a limb not included in a true spike of T

times mezrG, thus by #Z- (kg mazr G+1) mazrG. '-
We are now ready to prove the main result of this section.

Lemma 4.4. Let o € type 3// and let M be as above. Then there exists a

positive integer k such that L{G,) C M =¥.

Proof. Let k = (kymaxrG+1)(#LZ (maxrG+2)+1). Consider a successful

derivation tree 7 in G, of w. The word w is divided into subwords as follows:

(i) contributions of added nodes, |

(ii) contributions of nodes of the C; category,

(iii) left contributions of true spikes of T,

(iv) right contributions of true spikes of 7.

Obviously in this way w = w; ' - W, where for 1=1 =<p,w; € 4. To prove
the lemma it suffices to prove that p < k.

(1) ##i]1=<i<p,w; € M} is bounded by the number of added nodes of T

thus by #2-(k; mazrG+1)-mazrG (see Lemma 4.2 (2)).

(2) #ii|1=<1=p,w €My} is bounded by the number of nodes of the

category, thus by the number of limbs, i.e. by ky moxrG+1.

(3) #{il1=1 =<p, w; € My} is bounded by the number of true spikes of T,

| thus by #2- (ko mazrG+1) (see Lemma 4.2(1)).

(4) #4i|1=<1i <p,w; € M, is bounded by the number of true spikes of T,

thus by #Z-(ky mazr G+1) (see Lemma 4.2(1)).
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Combining (1) through (4) we get that p is bounded by
(komazr G+1)(#2-(mazrG+2)+1) = k.

Thus the lemma holds. =
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5. Contributions of Spikes.

In view of the results from the previous section, to prove that for each
o € type 311, L(G,) € CB, it remains to prove that LC(B) € CB and RC() € CB
for each B € type 3I/. This is done in the present section. Since the situation
for left and right contributions is "symmetric”, without loss of generality we con-
sider right contributions only.

First we need the notion of a promised block. Intuitively a segment of a
word is called a promised block if (as a whole) it will derive a block of a’s (a
promised block of type 4) or a block of b’s (a promised block of type B). For-

mally we have the following definition.
Definition 5.1. Letz =a, - 8,, @; €us Gfor1=i=mn, (y.kl) < SEG(x).
Theﬁ y is called a promised block of type AIfz =ay " G YTy " Qp

and one of the following conditions holds.

(1) v € {fype 2b)(type 1a)* (type 2a).

(2) v < (type 2b){type 12)" and a;4; € (type 1b Jtype 2b).

(3) y € (type 1a)" (type 2a) and g, € (type 1b Utype 2a).

(4) y € (type la)* o, _; € (type la Jtype 2a) and a4, € (type laUtype 2b).
We cell y a promised block of type Bifz =a; " QG-1Y%+1 """ On and one

of the following conditions holds.

(1) y € (type 2a)(type vlb)"= (type 2b).

(2) y < (type 2a)(type 1b)* and a;4, € (type 1a Utype 2a).

(3) y € (type 1b)* (type 2b) and a1 € (type laUtype 2b).

(4) y € (type 1b)*, ax, € (type laUtype 2b) and ;4 € (type la Jtype 2a).
If y is a promised block of type A or a promised block of type B theny is

called a promised block. =
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Definition 5.1 is illustrated (in the case of a promised block of type A) by

Figure 7.
We then have the following lemma.

Lemma 5.1. Let a € type 3// and let 7 be a successful derivation tree of G,
which contains a spike ¢ = «<wv,, ..., Up>> and there exists a positive integer ¢
such that either lresult, (T, o) or rresult,(T, o) contains as subword a promised

bvlock z. Then

(a) If z is of type A then there exists a § € alph = which is of ﬁype lorg2

n
such that for everyn >0, § => w, w € (us G)* implies #ype 16W =N
G

(b) If z is of type B then there exists a § € alph z which is of type 1or?2

: n
such thet for everyn >0, § => w, w € {(us G)* implies #yz W =70
G

Proof. We will prove (a); the proof of (b) is analogous. That (a) holds is
proved by contradiction. Assume that (2) does not hold. Then from Section 3 we

know that for every 8 € alph z which is of type 1 or 2 there exists a positive
n
integer Cy such that for every n > O there exists a w, € (us G)* where § = Wy,
; c
and #upei1c Wn = (. Let

D = mex{Cg | 8 €alph z}|z| mazr G.
Let f be such that X € LB with parameter f. Without loss of generality we

assume that z is a subword of lresult, (T, 7).
Let 7' be the subtree with root v; where we delete
(i) all descendants of vp 4y,
(ii) all nodes of set T, and

(iii) all nodes of Iset;(T, 0), 7 > ¢.
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Let Ty, ..., Ty(pys1 be f (D) +1 disjoint copies of 7" Let v}, ..., v{®P)*! be the
nodes corresponding to v; and let Ugyy, ...y v {0*! be the nodes corresponding
to vps1. Let T' be the tree which results from Ty, ..., Ty(p)+1 by identifying it

and vgﬂ for 1<j < f(D)+1. Let T" be the tree which results from T by remov-

ing all nodes of set T and by replacing the subtree rooted at v, by 7".

Finally 7" is completed to a successful derivation tree of G, as follows. Let

m = height T"'+1. In each leaf node v of T with I{v) = B € alph =z which

occurs in set; T, j <m, append a tree representing a'derivation

m=j
Dﬁ_j : B e Wag 5 € ('U,S G)+ where #typelawﬁ,j < C‘g
g

In each leaf node v of T, with {{v) = 8 £ alph z which occurs In sef; T, j <m

m—j
append an arbitrary tree representing a derivation Dg; : B ——g““» Wgy € {us G)*.

Let T denote the resulting tree. This situation is illustrated by Figure 8 {for the
case of f (D) = 2).

Since G satisfies assumptions (1) through (6) of Section 3 the above con-
struction implies the existence of a word w € X such that £BLP(w)= f(D)+ L a

contradiction. Hence (a) holds. =

We are now ready to prove that for a « € type 3I/, RC(a) and LC(e) belong
to CB.

Lemma 5.2. Let « € type 3I/. Then RC{a) € CB and LC(a) € CB.
Proof. Let g : N* » N* be defined by g(n) = (maxrG)™*% We will show that
RC{a) € CB with parameters 4 and g. The proof for LC{«) is analogous.

Let z € RC(x). Thus we have a situation as expressed by Definition 4.2. We
will use the notation of Definition 4.2. We number of levels from T bottom-up
(starting from 1) and we consider the covering of BL'(z) where t is a positive

integer. The situation is depicted in Figure 9.
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Let z =z -z, ¢ =1 where z; € BL(z) for 1 =1 =g. Blocks z, and z,
are called outside blocks and blocks zp, ..., 24— are called inside blocks.

Let 1<1 < g be such a block. Let p(z;) be the number of the level on which
a node v; of ¢ lies such that v; is an ancestor of last z; but v, is not an ances-
tor of last x;. We consider inside blocks only.

Let z; be such a block. Observe that p{z;) = p(z;-,). Now z; is called

t—ysung if p(z;) < t +4,

t—old if p{z; ;) =t +4,

t—middle if p(z;_,) <t +4 and p(z;) =t +4.

Claim 5.1. If z; is t —old, then |z;| = { +1.

Proof. Let v, (u, respectively) be the word formed by all ancestors of
nodes from z; on the level p(z;_)—1(p(z;-;)—2 respectively). The situation is
depicted in Figure 10.

All letters of 1, are of one of the following types: 3/, 2a, 2b, la, 1!3;, and
consequently all letters of u; are of one of the following types: 2a,2b, la, 1b.
Consequently u; is a promised block (see Definition 5.1) and thus by Lemma 3.1
ug contributes at least p(z;_,)—3 letters a (or letters b) to the block z;. Since

z; is t—old, p(z,_;) = ¢ +4 and consequently p(z; _;)—3 = t+1; thus [z;[ 2 £+1. =

Claim 5.2. The joint length L)f all t—young blocks is bounded by

(mazxr G)***; moreover, all ¢ —young blocks are adjacent.

Proof. Both facts follow from the fact that to the left of a t—young block
(different from the first inside block) there is always a t —young block and all of
them are included in the contribution of the node in ¢ which is an ancesitor of
the last letter of the rightmost t —young block (and this node is on a leviel not

higher than £ +4). =
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Claim 5.3. Among Zj, ..., Z5-; there is at most one £ —middle block.

Proof. This follows immediately from Claim 5.2 and the observation that
each block to the right of a t —middle block is £ —old and each block to the left

of a t —maddle block is t —young. =

We have now the following situation concerning blocks in z.
- all £ —old blocks are outside BLH{w),

- there are at most three ("special”) blocks to handle: z;, z; and the
t —middle block, each of them has length at most £ and can be covered by a seg-

ment of length (mazr G)!** if mazr G = 2 (clearly, this can be assumed without

- all f —young blocks form a subword of length bounded by (mazr G)**
Then clearly we can choose X € SEG{w) such that

) #r=4

(i) forevery 2z € X, 2| < (mazr G)** =g (t); and

(ii1) X covers BL {(w).

Thus indeed RC{a) € CB with parameters 4 and g.

We are now ready to state the analogous of Theorem 3.1 for letter of type

3L

Theorem 5.1. If « € type 377, then L(G,) € CB.

Proof. Follows immediately from Theorems 2.2, 2.3, 3.1 and Lemmas 4.4
and 5.2.

Finally we get the following theorem.

Theorem 5.2. K € CB.
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Proof. Clearly K =L(G) < ( \ L(Ga)UMo)=*, where k is a positive

acus G
integer and M, is a finite language. Then Theorems 2.2, 2.3, 3.1 and 5.1 imply

KecChB. =

We are now ready to prove the main result of the paper.

Theorem 5.3. Let A be an alphabet, let IT= (A, A7) be a binary partition of
Aandlet L € A’ be an EOL language such that L € LB(Il). Then L € CB(II).

Proof. Let L be as in the statement of the theorem. Let h be the
homomorphism defined by h(a) = a if & € 4 and k() = b if « € Ay where a and

b are two different symbols.

Then by Theorem 2.4, h(L) € LB({a}.{#}). Then Theorem 5.2 implies
A(L) € CB{{z}],{8}) and consequently, again applying Theorem 2.4 yields
L € CB(Il). =
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6. Applications.

In this section we present examples to show the usefulness of Theorem 5.3

for proving that a language is not an EOL language.

Example 6.1.

K= Eailbj‘aiebjz..,ai“bj” |n=1and 4,7, =1 for 1<l <nj It was proved
in Section 2 that for 1= ({al}, b)), K € LB(I)-CB(Il). Consequently Theorem

5.3 implies K £ L/EOL). Observe that K € L{(ETOL). ="

Example 6.2. Let G be a rewriting system with letters ¢ and &, productions
a » b%and & - c? axiom ¢ and with the following rewriting rule.
et £=a; g, n=1 0 €{a,b}] for 1<i<n, and let ¥y =y, " Ys.

Then z :c? y if either g P y; for 1<1 < n, or there exists a 1 £7 €n such

thaty; =g, andfor 1<i<€n, 1 #7, 27 Vi Thus in a string either all letters

are rewritten or all but one letter are rewritten.

The system G is a regular pattern grammar (see, e.g., [KR1]). We will now
show that X = Z{G) (which consists of all strings derivable from the axiom) is

not an EOL language. Obserye that we are going to prove this without knowing
any explicit expression for the language f(

Let IT= ({a},{b}).

Claim 6.1. X € LB(I) with parameter f where f(1) =1 and for m > 1,
Fim)=f({lms2])+3. (Im/2] denotes the integer k£ such that 2k <m and
2(k+1) > m).

Proof. The proof goes by induction on the length of the blocks m.

(1) m = 1.
We must prove that for every w € K, #5L4(w) = 1. This is proved by induc-

tion on the number of derivation steps needed to derive w.
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If w is the axiom then w = a and thus #8L4(a) = 1. Assume that for any

w € K which can de derived in less than or equal to n steps, #8L4(w) = 1. Then

n+l n

let @ => w,,,, Le. 0 = w, =>w,,, and by induction #BL} (w,) = 1.

To obtain w, ,, either all occurrences of letters from w, are rewritten or all
but one occurrence of letters from w, are rewritten. If all occurrences of
letters from w, are rewritten then the form of the productions irhplies that
every block of w,,, has length at least 2, hence #BLj(w,y) =1 If one
occurrence of a letter is not rewritten, then this occurrence is the only possible

candidate to belong to a block of length 1, hence #BLA (Wh+1) < 1.

This concludes the proof for the case m = 1.

(2) Assume that for every w € K, #BL(w) =< f(k) for 1 =k <m. Then we
prove that for every w € K, #BLE* ! (w) < f(m+1). This is proved by inducticn
on the length of a derivation of w:

If w is the axiom, #BLE " (w) < f (m +1) clearly holds. Assume that for any
w € K such thaé a ;; w, #BLR (w) < f{m+1). Tl;xen let @ => W, == W4y
As in (1) there are two possible ways to derive W4y from wy,. If productions are
applied to all occurrences of letters of wy, then every element of BLE *! (wn+1)
must come from an element of BL}%mH)/ZI (w,). Thus
BELE (wn) = #BLE™ Y P (i) < 7 (LGm+1)/2]) = £ (m),

If one occurrence of a letter of w, is not rewritten then
BBLE " () = 5L ()43 2 7 (Imr 1)/ 2]) 43 = 7 (m).

This concludes the proof of (2).
From (1) and () the claim follows. =
Claim 6.2. X £ CB(I),

Proof. The proof goes by contradiction. Assume that K € CE(II) with

parameters ng and g. We will derive a word w which violates the property.
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ngt+l

Let n > g (2" (ng+1) and let t = g(2"°""). To get w we first derive a?"

and then proceed ng+1 steps (using the second rewriting rule) according to the
following scheme (for each step we have underlined the occurrence which is not

rewritten in that step.)

aa® l=>ab!bb™!

=b%a?balaa”?
=t a?pRabt s
::>beaatb4a4zbZGtha:aaz4
'_—: e .

If {(ng+1) is odd we get

w = g W1p @0t g2 02 0 22y 02t 2l 2ty abibp Mot

and if (ng+1) is even we get the same word with the roles of @ and b inter-

changed.
Without loss of generality assume that ng is odd (ng is even is symmetric).

Then all blocks of w consisting of b's only are longer than £. Let mg = ghott

. Al
blocks of length at most mg consist only of a’s. However no two different ele-
ments of BLT°(w) can be covered by a segment of length at most g(mg) = ¢.

Thus if X covers BLT°(w) then #X > ng ; a contradiction. This ends the proof of

Claim 5.2. =

Since K € LB(II)-CB(I]), by Theorem 5.3, K £ L(EOL). =
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