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ABSTRACT

In this paper we analyze methods of the type proposed by Coleman and Conn
for nonlinearly constrained optimization. We show that if the reduced Hes-
sian approximation is sufficiently accurate, then the methqd generates a
sequence of iterates which converges one-step superlinearly. This result
applies to a quasi-Newton implementation. If the reduced exact Hessian is
used the method has an R-order equal to that of the secant method. We also
prove a similar result for a modified version of sueccessive quadratic pro-
gramming. Finally some parallels between convergence results for methods
that approximate the reduced Hessian, and multiplier methods that use the

reduced Hessian inverse are pointed out.



1. Introduction

In this paper we study the local convergence behavior of several algo-
rithms for nonlinearly constrained optimization, and show that their conver-
gence rates are somewhat better than has been thought. Although many
methods have been proposed for numerical solution of optimization prob-
lems with nonlinear constraints, when we restrict ourselves to equality con-
straints, and to the operation of the methods near the solution, the variety is
not nearly so great. Indeed Tapia [1978] has shown that a number of known
methods are equivalent to Newton’s method on the Kuhn-Tucker equations
with an approximate Hessian. This common method we will refer to as suc-

cessive quadratic programming (SQP). Consider a problem of the form
minimize z
zERD f ( ) ) (1' 1)

subject to ¢ (z) = 0.
where f is a real-valued function on F* and ¢ maps F" to F*, where f <n. An

iteration of SQP on this problem has the following form:
Algorithm 1.

Given z; let dp minimize

VS () d+%d 7 B d
subject to Afd=—c (2 ). (1.2)
Let

Ty 1= +dk .

Here B, is an nXn matrix approximating the Hessian of the Lagrangian,
VEL(xk,Ak)':VEf (xk)-i-‘z]?\;gvzci(zk),

with approximations, A}, to the Lagrange multipliers of problem (1.2). The

matrix 4, equals A(z;) where, for any z, A{z) is an nx¢{ matrix whose

columns are the gradients Vc'(z). The step di may be expressed as the



solution to the linear system,

[ZkTBka Z. "B Y kaTfﬂ 12 Tf (i) (1.3)
"0 Tary | [l o (z) |

Here Y, is a matrix of orthogonal columns spanning the column space of 4,

and Z, is a matrix of orthogonal columns spanning the null space of A{. Of

course ¥; and Z; are not uniquely determined by 4, but they may be easily

computed from a QR factorization of 4,. Note that the projection matrix
Po=0 2 "= =4 (A4 )T AT

only depends on 4.

In this form it becomes clear that, as shown by Boggs, Tolle, and Wang
[1982], the step is independent of the range space reduced Hessian Y%7 B, Y
or equivalently, of (/—F;)B,{/—F). Thus the convergence behavior of the
method will depend only on the matrices Z, 75,2, and Z,7B,Y;. or,
equivalently, on P B,. Indeed, it has been shown by Boggs, Tolle, and Wang
[1982] and, under weaker assumptions, by Fontecilla, Steihaug, and Tapia
[1983] that the sequence z; generated by SQP is Q-superlinearly convergent
if and only if the sequence

| Pe(Bre =VRL (e A D) (Fre 11- %) |

HCTEE

converges to zero. Throughout this paper when we use the term superlinear

(1.4)

convergence without the qualifier Q- or R- we will be referring to Q-

superlinear convergence.

We now consider the horizontal-vertical algorithm of Coleman and Conn.
We give here only the local version of the method which represents its
expected behavior near the solution. Although it is very similar to successive
quadratic programming, the two are not equivalent. A more detailed
description and motivation may be found in the paper by Coleman and Conn

[1982a]. A single iteration is as follows.



Algorithm 2.

Given zi, let

he ==Z M 2 TVF ()
U == A (AT A ) e (zp +hy.)

T +1=Z +hk +'U}c .

Here M, is an approximation to Z, TV2L{zx.A\¢)Z.. Such an approximation
could be obtained by using the exact Hessian, by finite difference approxi-
mations along the directions given by the columns of Z;, or by some quasi-
Newton method. Note that h; is a solution of the homogeneous equality con-

strained quadratic program

minimize Vf{z)Th+¥hTZ. M. 2, Th

subject to A,?h =0
Note also that the constraints are evaluated at two points, 2; and z; +h.

If we compare the step generated by this algorithm with the step pro-
duced by SQP we see two differences. One is the extra evaluation of the con-
straints in the Coleman- Conn algorithm; the other is in the Hessian approxi-
mation used. In SQP any positive definite nzn matrix may be used. In the
Coleman-Conn method only the reduced Hessian is approximated. Effectively
the entire Hessian is approximated by Z, M Z |, a matrix of rank n—t. Thus
if were not for the extra constraint evaluation, Coleman and Conn’s algorithm
would be a special case of SQP with a Hessian approximation satisfying
ZTB, Y, =0. A similar strategy has been proposed by Womersley and
Fletcher [1982], but with v, =—Ac (Al4 )¢ (x;). Because of this difference

the main results of Section 2 do not apply to his method.

When we look at the speed of convergence of these two methods we see

strong similarities. Since the condition (1.4) clearly cannot be satisfied in



general by the Hessian approximation used in effect by Coleman and Conn,
Z M 7T, one would not expect superlinear convergence for this method.
However Powell [1978] shows that, under the assumption of convergence, if
the somewhat weaker condition

|| P (B =VPL (2 e )) Pe (i 1—2) ||

W (zes1—) ||

holds then the sequence is two-step superlinearly convergent. That is

-»0 (1.5)

||z o1~ || >0
[ L —1—zo || |

This condition is reasonable to ask of the projected Hessian and, since it
seems unlikely that an extra evaluation of the constraints will hurt perfor-
mance, it is not surprising that Coleman and Conn [ 1982a] were able to prove
two-step convergence of their method where the projection of the exact Hes-
sian is used. Later they weakened this assumption on the Hessian approxi-
mation and were able to analyze a quasi-Newton type method [Coleman and

Conn 1982b].

Recently, examples have been worked out showing that for methods of
this type the iterates x, are not in general one-step superlinearly convergent
[Byrd 1984, Yuan 1984]. In spite of these examples, computational experi-
ments indicate that these methods appear to be one step superlinearly con-
vergent. It is also not obvious that being two-step superlinear as opposed to

one-step superlinear implies that these methods are therefore slower.

In this paper we will show that under reasonable assumptions, the
sequence {x; +h,} produced by the Coleman-Conn algorithm is actually one
step superlinearly convérgent, and for exact Hessians we give a convergence
order. Analogous results will be proved for a modified version of SQP subject
to the condition {1.5). Finally we will point out some analogous two-step and

one-step phenomena that occur in multiplier methods.



2. Convergence of the Coleman-Conn Horizontal-Vertical Method

We now show that under the standard conditions, the sequence of points
{x, +h; ] produced by the Coleman-Conn algorithm is superlinearly conver-
gent. Al] theoretical results will be proven subject to the following assump-

tions.

Assumptions

1. The point z. is a local minimum of problem (1.1).

2. The functions f and ¢ are twice continuously differentiable
in a neighborhood of z..

3. The point z. is a regular point of the constraints, i.e. A{z.)
has full rank. (With assumption 2 this implies that in some
neighb(;rhood of z. the matrices A(z) and [A(z)T4(z)]™!
are bounded uniformly.)

4. The matrix V*L(z.,A.) is positive definite on the

null space of the constraint gradients.

In the following two lemmas we show that both the horizontal and verti-
cal steps are proportional to the current error.
Lerama 2.1. If z; and x; +h, are sufficiently close to z. then

Hue Il = O(||ze -z |]) (2.1)
and

Hxesr—ze |l = O]z the =z |]). (2.2)
Proof By definition of the algorithm

Ve =—A (ATA) o (e thy ).
By Assumption 2 and Taylor's Theorem,

ez +he) [} = O(]]ze+he 24 |]),



and (2.1) follows from Assumption 3. Since z,, = Zp +hg +v;, (R.2) follows

also. W

Lemma 2.2 If z;; and x; +h; are sufficiently close to .+ and the quantity

- || [Mc—2Z, TVQL(-’C*,)\')Zk] Zy T(xkﬂ"xk) |

szu"xk [

8

is sufliciently small then

Hhe || = 0(f |z == {])

and
Haw+h—zo || = O( || ze—z. |]).
Proof
ZIVPL(z o) 22 Z Thy, = [ZEVRL (20 N0) Zie =Ml | Zie T + M Zoc e
S0

Hhe [l = 1| ZeThe || < [ |[ZEVRL(zoN) Z 170 (O | Bir =i ||+ || M Z TR | |)

and by construction of A

Whe 1] = HZVPL(o N ZE I L 0k he 1+ o 1D+ 1 2797 ()] 1]
By Lemma 2.1 we know that for some constant 7 and for z; sufficiently close
to ||xx|

Hue ll =7 [lze th—zo || < 7 [z =z [[+7 |1 R | |

Thus, if & is sufficiently small, we may rearrange to get

N[ZEVPL(z o) Ze 17 [ 8y ]|z —2e ||+ 112 TV (2)] 1]
1= [ ZEVRL(z e A} Z 71 || O (147)
Note that the vector Z 7Vf (z;) is clearly O(| |z —z+||) so that

Hhe || =

Hhe [] = O(] |z =24 1]).

The second result follows immediately. =

Now we show that the vertical step results in a superlinear decrease in

the vertical component of the error.



Lemma 2.3. If the iterates z, ., and z; _;+h;_, are sufficiently close to z, and

assumptions 2 and 3 hold then,
Al +h—z0) = Az —20) = O( || Ze1the =20 || || Ze1—20 |]).
Proof. By definition of h; it follows that
Al +hy—z0) = Al —z.),
and, by definition of the algorithm,
Al(ze ~z2)= ATy (e 1+ Py oy ¥ Uy —2* )~ (AT —AD) (ze —24)
=—c{zpythy ) +o{z )+ AL (Ze Ry —z0) (AL —AD (e —z.).

Using Taylor's Theorem with assumption 2 and noting that

HAe1=A(@e 1+ he—1) || = O([[hg-y [|) we see that

Az —zo) || = O([ | Zk—1 b 1=z ||+ || Aoy []] || 21t 124 ||)
+O0( ||z —2 1] |2 =24 |]).

But, using Lemmas 2.1 and 2.2,

A (e —z) |1 = O] 2poythye g =ze || || Zy=20 1]).

Now we can prove the essential result, that if M, is accurate along the
horizontal step near the solution, then the step from zp_;+hg—; to x,+hy

reduces the error significantly.

Lemma 2.4. Suppose that the sequence {z;} is generated by the Coleman
Conn algorithm and that Assumptions 1-4 hold. If the point z,-; is
sufficiently close to z+ and the quantity

_ (M =Z "VPL(x o M) Z ) Z3 T (31— ) ||

21—z ||

8
is sufficiently small then

|| zp +hye =z ||

|2 -y +hge =2 || = 0( 8+ |[zp-1—z |]). (2.3)



Proof. First note that

T +hy —zo=(Ye Y2 T+ 2, 2. T )z +hy —x),
and by Lemma 2.3
Yo Ye " (zic +hy —2 )= A (AT A ) T AT (e +hy — )
= O(||zp_ythy =20 || || 2~z |]). (R.4)
Now we consider the tangent component of the error.
ZIRL(Z e N ) 23 20 T (i A hy —0) = ZTVRL(Z 0 No) 21, Zp Ty, +
Zg’VzL(Zo,)\o)Zk Zk T(.’Ck —.'1’,’0)
and since 7, Z, 7+, Y, T=1,
ZIVRL(zo No) 2 24, T (i thy ~20) = (ZAVRL(Ze N) 2 — M) 2 The  (2.5)

+Mk Zk Thk +Z}c ?VQL (Z’o,)\o)[(xk —x.)—}} Yk T(Zk --.’L’.)]
Consider the four terms on the right separately. By definition of 8, and

using Lemmas 2.1 and 2.2,

H(ZEVRL(z o M) 2 =M ) 2 Thee || = 6k || Ziowr =k || (2.6)
=0( 8y ||lze—=z.]).

The step Ry is constructed to satisfy

M2 Thy = ~Z, TV (). (2.7)
By Taylor's theorem
Z]C TVEL(m‘,Ao)(xk —xo) = Zk T(VL(:%,A.)—VL(R:.,?\.))*—0( ] lzk b’ l |2)
= ZuVf (ze)+0( |z —z+ | [?). (2.8)
Finally, note that by Lemma 2.3

Ye Ye (i —z+) = O(||zpy—zo || ||Zporthya—2ze]|) (2.9)
Now substituting (2.6)-(2.9) into (2.5) we have

ZEPL(zeN) 2 2 T (zp + i —z0) = O( 4 ||z —20 ||)+O( || 2 ~20 | [?)

+0( || Zey—zo || [|zeathe g~z |]).
Using Lemma 2.1 this implies

Z(zp th—ze) = O( O g ||Ze =z || )+ O( || Zpor—z o || || Zpmy thi_y =20 |]).
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Together with equation (2.4) this establishes the result. W

Using this we can immediately prove superlinear convergence of the
Coleman- Conn algorithm as long as M, is consistent along the direction

Zi Thy .

Theorem 2.5. Suppose Algorithm 2 is used and the Assumptions 1-4 as well as

the condition

- || (M =2 TVRL(2 o N ) 21 ) 2 T2 o1 =) ||
[z 412k ||

are satisfied. Then if some iterate z,, is sufficiently close to z, for m

Oz -0 (2.10)

sufficiently large it follows that for the rest of the sequence,

[z +hye —zo || .
Topthgaze ] O

Proof. Immediate consequence of equation (2.3). M

Note that condition (2.10) is a direct analog of Powell’s condition (1.5).

We now want to apply our results to some specific methods for getting
M. The simplest case is a Newton type method where an exact reduced Hes-

sian is used.

Theorem 2.6. Suppose that Algorithm 2 is used with M, = Z{V?L{z;.\¢ )7 and
Ne = —(ATA) T ATVS (2), and that assumptions 1-4 hold. If z, is sufficiently
close to z. then the sequence {z;+h;] converges one-step superlinearly to
z+. In addition both sequences, {z;+h;} and {x;}, converge to z. with an R-
order of at least ¥%(v5+1).

Proof. Since we are using exact Hessian information, by continuity of the
derivatives of f and ¢, 8, = O(||zx—=z+||). Substituting this into equation

(R.3) yields
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Nz th =z || =0( ||z 1+ b=z ] [z =20 |+ || 2 —20 |]]) (2.11)

and superlinear convergence of {x; +h; ] follows immediately. By Lemma 2.1
Hze+he—zo 1] = O(]|ze—ythe =20 || || Zp-athy =20 1]).

This inequality is analogous to the well known inequality provable for the

secant method, and, as is shown by Ortega and Rheinboldt [1970, section

9.2], it implies the R-order of the sequence zx+h; is at least %(~/5+1), or

approximately 1.818. Since, by Lemma 2.1,

[|Zge1—2+ || = O(||zx+hi—z.]|) the sequence z; has R-order equal to at

least that of zx +h,. M

Of course this is less than the one-step quadratic convergence one would
expect from a complete exact Hessian, but it is a bit more than the R-order
of V2 for the sequence {z;} which follows from the analysis of Coleman and
Conn. The difficulty is that the constraint derivatives used to compute the
vertical step from z,+h, are evaluated at z,. If the constraint derivatives
were also computed at z; +h; and used to compute the vertical step it is easy
to see that the ||z;_;—z.|| term in equation (2.11) would be replaced by
||z -1 +hg_1—z.|| and convergence of the sequence zp+h; would be qua-
dratic. Of course this is a fairly expensive modification, and it is not clear
that the resultant improvement would be worth the expense in gradient

evaluations.

We next consider using a secant update to approximate M. Coleman and
Conn have shown that if a Davidon-Fletcher-Powell update is used for M,
then the sequence {x;] is two-step superlinearly convergent. Here we show
that the same algorithm results in one-step superlinear convergence for the

sequence {z; +hed.

Theorem 2.7. Suppose Algorithm 2 is used with M given by
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N (Y =Moo 5 )8+ Yo (e = M) ST (e —Miesi)yeyd

M1 = M
kr * sy, (sdy, )?
where
S — ZIC Thk,
Ui = Zi T[VL (e +he N ) =VL (T Ae )]
and

Ne = —(ATA) ATV ().

Assume that Assumptions 1-4 hold and that Z is given by a continuous func-
tion Z(zx) evaluated at z = 2. If [|zo—z» || and
[ Mo=Z(z.)"VRL(z.,\o)Z(z.) || are sufficiently small, then the sequences z;

and z; +h, converge to xz. and

|| 2 +hye =z ||
[ zg—1thg =2z |]

-0.

Proof. This algorithm is the same one described by Coleman and Conn
[1982b]. In Theorem 3.14 of that paper they prove that under the above con-
ditions z;-»z.. Convergence of z;+h; follows from our Lemma 2.2. In the
same paper, Theorem 3.5 with Theorem 3.14 shows that under these condi-
tions

- I](Mk—Z(x’)TVzL(x"A‘)Z(Z‘))ZkT(xlcﬂ_xk)H R

9 Zer1—25 1|

0

which implies

_ N =2V (202 ) %) 2 (B =) ||
2 41— ||

The result follows from Theorem 2.5 of this paper. W

[P 0.

By similar arguments the same result can be proven for the Broyden-

Fletcher-Goldfarb-Shanno update.

Note that this algorithm has the drawback that the gradient of the
Lagrangian must be computed twice at each step. The theorems of Coleman

and Conn show that one superlinear step is made for each four gradient
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evaluations. Theorem 2.7 shows that one superlinear step is made for each
two gradient evaluations, a fact which makes the algorithm somewhat more

competitive.

3. A Modified Successive Quadratic Programming Algorithm.

We would like to see if, by analogy with the previous section, some ver-
sion of successive quadratic programming might be one-step superlinearly
convergent whenever it satisfles the Powell condition (1.5). However, the
extra evaluation of the constraints at z; +h, was essential to proving the 1-
step convergence results of section 2, so it seems unlikely that we could

prove an analogous result for any standard version of SQP.

What we will do is to consider a modification of SQP that has a similar
one-step superlinear convergence when condition (1.5) is satisfied. The
modification involves taking an extra vertical step after the standard SQP

step is computed. It is described precisely below.

Algorithm 3.
1. Compute Vf (z), 4, and B;.

2. Compute d;, the solution to

minimize Vf ()T d+%d7 B, d (3.1)
deR?

subject to4fd =—c (z;)
3. Compute

Ve =—A (AL A ) Yo (2 +di)
4. Set
Tp ) = Lt di U
Note that this algorithm differs from the Coleman-Conn method in that
an approximation to the entire Hessian is computed and, instead of a hor-

izontal step, a ‘“diagonal" step is computed which satisfies the
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inhomogeneous constraints. This method is slightly more expensive than
SQP in that the constraints must be evaluated at one extra point, z; +d;.
However this is a small cost, and in addition to giving a better convergence
rate, the extra constraint evaluation may provide a better interface with the
global strategy. In particular, if a nondifferentiable exact penalty function is
used as a merit function with a line search, the vertical step should make a
"Maratos effect” much less likely to occur, as this seems not to be a problem

with the Coleman-Conn method.

We will now show that the sequence xg+d; produced by Algorithm 3 is
superlinearly convergent if the matrices B; satisfy Powell's condition {1.5).
Note that to a great extent we are using the same arguments as in section 2
with di replacing k. For that reason we will abbreviate the proofs when one

follows the same pattern as a previous proof.

Lemma 3.1. If z;; and z +d;, are sufficiently close to z+ then

v Il = O(l|ze+dp—z. |])

and
Hago—zo || = O(||Ze +de—2z.|]).

Proof. Same as proof of Lemma 2.1 with di in place of h,. W

Lemma 3.2. If z;; and z; +d; are sufliciently close to z., the quantity

1 Z Ze " (B =VPL(2 0 No)) 2o 23 T (g 11—, ) ||
[ 2 e1—2 ||

is sufficiently small, and the matrix norms || B || are uniformly bounded,

Y =

then

Hde || = 0(|ze—=-|1)
and

ez +de —zo || = O(] |z —20 |])
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Proof The solution to (3.1) may be expressed

de = — A (A A e (2)~Ze (2L B 2) 7 2T B A (Al A) e i )+ VS ()]
- This is clear from considering equation (1.3). The first two terms on the right
hand side are proportional to ¢ (%), and since || B || is uniformly bounded
they are clearly O( ||z —z+||). The last term is equal to . Since the condi-
tion ¢, ~»0 has the same effect as the condition & ;-0 in this context, the
results follow from the same argument as was used in the proof of Lemma 2.2

forh,. M

Lemma 3.3. If the iterates z;x and z;+d, are sufficiently close to z. and
Assumptions 2 and 3 hold then,

Az —z.) = O(||z—=. [|?). (3.2)
and

Az +dp =) = O(||Zpytdpy =~z || |]ze1—z0 |]). (3.3)
Proof. By definition of the algorithm,

AkT(xk _z’>:AkT~l C L T PSS T _x*)_(AkT—-l “A;D(xk —Z.)

=—c(Zp 1+ di 1) +C (2 ATy (@ 1+ diy—z o) —(AT_, —akt )z, —z.).
By Taylor's Theorem, continuity of derivatives, and Lemmas 3.1 and 3.2, it

follows just as in the proof of Lemma 2.3 that
N (e —2*) || = Oz +dey—ze || [z =20 1),
which is equation (8.2). To derive {3.3) note that
Az +d—z0) = Az —z.)~c ()

= O(]| 2~z |[?).
|

Lemma 3.4. Suppose that the sequence {z,] is generated by Algorithm 3,
that Assumptions 1-4 hold, and that the matrix norms || B || are uniformly

bounded. If the point z;_, is sufficiently close to z. and the quantity
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_ 1 Z (B —VPL(x e M) 2k Zic T (Zie 41—k ||
k || 1~ Il

is sufficiently small then

|| 2 +dp —z4 ||
[ Ze—1tde 1~z [

= O{gr+ || Ze—1—2+ | |). (3.4)

Proof. Note that

Ty +dk —x.=(}’k }fk T+Zk Zk T)(xk +(ik —.’L't),
and by Lemma 3.3
Y Yo Ty +dy —2.) =4 (AL A ) Al (e + i )
= O( || ze~z+||)
= O( ||z 1t de—1—zo || [|Z-1—20 []). (3.5)
Now consider the tangent component of the error.
ZEVEL (Zt,)\o)Z]c Zk T(a:k +dk —.’Ea) = Zkysz (.’L‘o,)\&)Zk Zk T(.’Ek "“.'L'o)
+Z T By Z 23 Ty + 2, T(VRL(Z e, N0 ) =By ) 23 Z T e
and since Z Z, T+ Y, Y, T =1,
Z]S’VQL(.’L'”}\O)Z]‘ Zk T(R’.'k +dk "".4"30) = Zk: TV2L (xt,}u)(a:k ".'L'c)‘i'Zk TBkvdk
~Z . TVL(z o N6) Y, Vi Tz + 0y —0) (3.8)
+ 7 T(VZL (Zo,}\t)“‘Bk)Zk Z Tdk .
Consider the four terms on the right separately. By Taylor's theorem
Zi TPL{z o Ao ) (2 —z0) = Z T (VL (2 Ao} —VL(zZ o N))+ O( || 2 =+ ||?)
= Ze TS (z)+ O( ||z x4 ||?), (3.7)

and the step d; is constructed to satisfy

Z T Body = =2, TV (k). (3.8)
By Lemma 3.3

ZIVPL(zeA) 2 Y2 Y T (2 —zo) = O( ||z 12+ || || Zpmytde-1—24|]). (3.9)
By definition of ¢, and using L.emmas 3.1 and 3.2,

0 Ze T(VL(z o N) =B ) 21 Z T || = || Z T(VEL (20N ) =By ) Zie Z T (@i 1~ ) ||
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= ¢ | Ze o1~ ||
= gk ||z —z- |]). (3.10)
Now substituting (3.7)-{3.10) into {3.8) we have
ZIVRL(z o N) 70 Zi T + g =20} = O( || 2 2+ |]|?)
+0( 8 ||ze—zo [ )+O( ||z 1=20 || |]Zp1tdie—y—z |]).

By Lemma 3.1 and Assumption 4 this implies

ZiT(zp+di—z0) = O( 8 ||zp—2e | )+ O( [ zpor—2e || || Zeoythi—r—z0|]).
Together with equation (3.5) this establishes the result. W

Theorem 3.5. Suppose Algorithm 3 is used, || B, || are uniformly bounded,

and Assumptions 1-4 as well as the condition

- U (M =2 TVRL(2 0 N ) 23 ) 23 T (Zie 11— ) ||
[ Zpe +1—2 ||

are satisfied. Then if some iterate z,, is sufficiently close to z. with m large

Pk -0

enough it follows that for the rest of the sequence,

[P
| 21+ —z4 || '

Proof. This is an immediate consequence of equation (3.4). M

Note that this result involves the same assumption (1.5) as the
corresponding result of Powell, but because of the extra constraint evalua-

tion a better convergence rate is achieved.

4. Related phenomena in the method of multipliers.

An interesting parallel to the two step convergence behavior discussed
above occurs in certain versions of the diagonalized method of multipliers.
In methods such as SQP or the Coleman-Conn method two-step superlinear
convergence occurs when the Hessian of the Lagrangian reduced to the null

space of the constraint gradients is approximated. The diagonalized method
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of multipliers may be regarded as dual to these methods in that Lagrange
multipliers play a more central role. Below, we indicate that two-step conver-
gence behavior in these methods occurs when only the reduced inverse Hes-

sian on the range space of the constraint gradients is used.

The method of multipliers for solving problem (1.1) involves generating a

sequence {{zx,N\; )] where z; is a solution to the problem

mi;)ér;ize L{x Ne,p) = f{z)+Nc(z)+¥oc (z)Tc(z) (4.1)

Ne = Uz 1. M -1)-

If the scalar p is chosen sufficiently large, a strong solution (z.,A.) to (1.1)

corresponds to an x« which minimizes L{z,A+p), and a A+ which maximizes

minimum L{zx,\p).
TER™
Many multiplier update formulas U{z,\) have been proposed [see Bertsekas,
1982]. A central idea is to choose U to correspond to a method such as
Newton’s method or steepest descent on the problem of maximizing the

minimum value of {4.1) as a function of A.

As a more efficient alternative Tapia [1977] proposed the diagonalized
method of multipliers. Here again one generates a sequence z,Ar with A
chosen as above, but with xz; Being the result of one Newton or quasi-Newton
step on problem (4.1) taken from z;_,. Tapia showed that if the update for-

mula

U(z,\) = [Ve (z)TVRL(z,A\)"We (z)]? (4.2)

[c(z)~Ve (z)7V2L (2, M)V (z)]—pc (=)
is used and z; is generated by a Newton step then the sequence {z;,A;} con-

verges to the Kuhn-Tucker pair {z.A+) quadratically. Tapia also showed that
this procedure is mathematically equivalent to SQP using the exact Hessian

of Lz ,A,p) with respect to z.
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A related update formula is the one due to Buys[1972]

Uz, \) = A[Ve (z)TVRL(z A) " We (z)] e (x) (4.3)

If z; is chosen to solve (4.1) exactly then updates (4.2) and {4.3) coincide.
Note that the Buys formula only requires the inverse of the Hessian of
the Lagrangian reduced to the range space of the constraints, while the for-
mula due to Tapia requires the entire Hessian inverse. Byrd [1978] showed
that if the Buys update is used in the diagonalized method of multipliers and
if x;, is computed from a Newton step, then the sequence §{{z;,A; )} converges
to the Kuhn-Tucker pair at a two-step quadratic rate. Thus, just as in the pri-
mal SQP type methods, only having Hessian information on a subspace deter-
mined by the constraint gradients results in a reduction in convergence rate

from one-step quadratic to two-step quadratic.

Byrd [1978] also derived a result parallel to Theorem 3.5. If we modify
the diagonalized method of multipliers so that x; is the result of two succes-
sive Newton steps rather than one, and use the Buys update, the pair {z;, A )
still converges only two step quadratically. However, if in this method, we
look at the "out of phase” iterates cdnsisting of A\x and the value of z result-
ing from the first of the two Newton steps, this pair converges onefstep qua-
dratically.

However this correspondence is not perfect; in the diagonalized method
of multipliers with either update formula we require the entire Hessian in
order to take the Newton step. Another difference between the primal and
dual cases is experimentally observed. In computational experiments using
the Buys update the observed convergence was clearly two-step and not one-
step quadratic in almost all cases. With the Coleman-Conn method or with
SQP the observed convergence rate usually appears one-step and it is only in

contrived examples [Byrd 1984, Yuan 1984] that two-step behavior is really



observed. It is not clear why this is the case.
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