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ABSTRACT

In this paper we give examples illustrating the behavior of the Coleman- Conn hor-
izontal vertical method and of successive quadratic programming with a Hessian
approximation exact on the tangent space of the constraints. One example shows

that these methods in general are not one-step superlinearly convergent.
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An Example of Irregular Convergence in Some Constrained

Optimization Metheds That Use the Projected Hessian

L\/iany methods for solution of optimization problems with nonlinear con-
straints make use of the Hessian of the Lagrangian to obtain fast local conver-
gence. Several of these methods including those of Coleman and Conn [1980] make
use of approximations to the reduced Hessian. In addition Powell [1978] analyzes a -
method where the Hessian approximation is accurate only on the null space of the
constraints derivatives. These authors show that under reasonable conditions
these methods are two-step superlinearly convergent; i.e. the sequence consisting of

every other iterate is superlinearly convergent.

An obvious question is whether these methods are one-step superlirearly con-
vergent. In this paper we give an example showing that neither the method of
Coleman and Conn, nor successive quadratic programming with an accurate Hes-

sian on that subspace is superlirearly convergent.

In order to do this we will now describe these two methods applied to a prob-

lem of the form

minimize z
e 1) 9

subject to ¢(z)=0

where f is a real-valued function on R™ and ¢ maps R" to R™. We assume both

functions are twice differentiable.

The method of successive quadratic programming (SQP), at aun iterate z;, has

the form:

Given z; let d;, be the solution to



minimizeV f(z,)Td+%dT B, d
subject toVe(z;)Td= = c(z;)

Then let

1=t 4

Here By is an nzn matrix approximating the Hessian of the Lagrangian,
VEL(2p, M )= V2 () + 2N Vi (zp).

It should be noted that if B, is the exact Hessian and if X is the vector of Lagrange

multipliers to the quadratic program at z;_, then this is just Newton's method on

the Kuhn-Tucker conditions for problem (1).

To discuss convergence of this method, let the orthogonal projection matrix
onto the null space of the constraint derivatives be denoted by
Py=1-Ve(g)(Ve(z) TV e(2)) ™ Ve(z,)T,
and let (z°,\+) denote the Kuhn-Tucker pair for problem (1). It has been shown by
Boggs, Tolle, and Wang [1982] and, without the assumption of linear convergence,
by Fontecilla, Steihaug, and Tapia [1983] that the sequence z; generated by SQP is
Q-superlinearly convergent if and only if

| Pe(Be= V2L(ze N ))(7ge 1= 2¢) |
HEREE |

(3)

converges to zero.

In the case when we only know P,V2L(z,,\;)P; accurately, that is we have
second derivative information only on the null space of the constraint derivatives,
this result is weakened. Powell [1978] shows that, under the assumption of conver-
gence, if the condition

| Py(BE=V2L(2+ X)) Pilagsy— 7) |

(21— k) I

holds then the sequence is two-step superlinearly convergent; that is

-0 (1)
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We now consider the horizontal-vertical algorithm of Coleman and Conn.
Following the usual notation let Z; be a matrix of orthogonal columns spanzing
the null space of Ve(z;)7, and ¥} be a matrix of orthogonal columns spanning the
column space of Ve(z). Of course Y, and Z; are not uniquely determined by

Ve(zg), but they may be easily computed from a QR factorization of Ve(z;).
A single iteration of the method is as follows.

hy = = Mg 2, TV ()
ve = = Ve(z)(Ve(z) TV e(2e)) Te(zp+ hy)
Ty = xk-i-hk-f- V.
Here M, is an approximation to Z; TV2L(z;,M;) 7.
Note that kg is a solution of the homogeneous equality constrained quadratic

program

minimize Vf(z;)Th+%hTZ,M,Z,Th

subject to Ve(z)Th=0.

Note also that the constraints are evaluated at two points, z; and z;+hk;,. The
method is intended to be used in this form only near the solution. A more detailed
description and motivation may be found in Coleman and Conn [1980]. If we com-
pare the step generated by this algorithm with the step produced by SQP we see
two differences. One is the extra evaluation of the constraints in the Coleman-
Conn algorithm; the other is in the Hessian approximation used. In SQP any posi-
tive definite nen matrix may be used. In the Coleman-Conn method only the
reduced Hessian is approximated. Thus if were not for the extra constraint evalua-
tion, Coleman and Conn's algorithmn would be a special case of SQP with a Hessian

approximation satisfying B, Z,=0.



Convergence results are similar to that of Powell for SQP. Coleman and
Conn [1980], [1982] show that if A, = Z,TV2L(x;,\;)Z; or even if
(M= V2L(24X )2, T( 2441 — 2) |l

”(IHI‘"% ”

the method converges two-step superlinearly.
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In spite of these theoretical results, there have been no examples or reports of
computational experiments that indicate these methods are not actually one-step
superlinearly convergent. It is also not clear to what extent being two-step super-
linear as opposed to one-step superlinearly implies that these methods are therefore

slower.

We now give examples showing that convergence for these methods is in gen-
eral no better than two-step superlinear. We first consider the horizontal-vertical

method of Coleman and Conn applied to an example.

To avoid confusion among iterate numbers, compouents, and powers in the
following example we will denote the components of a vector by subscripts in
parentheses i.e. z=(x(1),z(2))T. Iterate numbers will be denoted by plain subscripts
and powers by superscripts. We first consider a problem for which we believe the

behavior of the method is typical of what happens in most cases:

Example 1.

minimize f(z) = %2f)— azqrp)* h2h

subject to ¢(z) = — L 1=

(22— 2)°
where o is some constant. Note that the constraint is equivalent to requiring
2(2) = 1, and that there is a strong local minimizer at z = (a,1). We will apply the

Coleman-Conn horizontal vertical method to this problem using exact reduced Hes-

sian information, i.e. M, = ZIV2L(z;,\;)Z; which in this case, since ¢ is a



function of z() only, is

2
82(?1)’

Taking a horizontal step from a point of the form

7 = (e+d,1+¢€)

is equivalent to minimizing f subject to 2y held constant, so

g+ hy = (a(l+e)l+e). (5) .

A vertical step from any point is just a Newton step in 2() with z(;) held fixed, so

Treyp = zk%— hk"‘ v = (a(1+e),1+€9). (6)

By the same logic, on taking the next step we have

Tpert ey = (a(l+ €)1+ 67),

and

Tpro = Tpag il tugy = (afl+ €)1+ €,
Note that, for z; an arbitrary point, the subsequent step is linear unless the error
componeat normal to the constraint manifold {(€) is much smailer than the error
component tangent to the constraint manifold (8). However after one step the
tangent compounent at z;,, is dominant and the next step and all subsequent steps

are quadratic.

This effect of the iterates taking a path approximately tangent to the con-
straints is well known in practice. What we do next is to modify this example so
that at every other horizontal step the tangent component of the error is reduced
to zero, and the other horizontal steps and all vertical steps are identical to those

in Example 1.

Example 2.

= )3
minimize f(z) = %zﬁ)—az(l)z(g)—i-%zé)—-(—z(%;ﬁ’—-



subject to ¢(z) = —1 =0

\ (22— 2)?
Note that the only difference between this problem and Example 1 is the cubic
term added to the objective (which has no effect on the algorithm when 7y = @),
and that there is still a strong local minimizer at z = (a,1). Again we apply the
Coleman-Conn  horizontal  vertical method to this  problem  with
M, = ZIV2L(2;,\;)Z; which is now

aﬁ’f - 2(1(1)—&)'
32y «

Suppose the initial point is of the form

zy = (a,1+¢€).

Since z = a the horizontal and vertical steps are just as in equations (5) and (8) so

2ot by = (14 €),1+¢€),

and

7, = (a(l+€),1+€?).
It is straightforward to show that whenever an iterate has the above form, a hor-
izontal step goes to

11+ hl = (aJ1+€2))

aud the vertical step is in example 1:

2, = (0,1 +€?).
Now we have a point of the same form as z;, and the pattern repeats:
2o+ hy = (at+ et 1+€!)
1, = (a+ae!1+ed)
23t hy = (o0,1+€?)
z, = (a,1+€'%)

g+ hy = (ot aelb 1+ e!f)



2 = (a+ael®1+e€3?),

Note that at z, the error is €2’ if k is even, and a€?* ' if & is odd. Thus,
although the convergence is better than two-step quadratic, the one-step conver-
gence xs not even linear when a >1. In view of this example it appears that the
convergence rate of the Coleman-Conn horizontal vertical method is in general not

superlinear.
It is interesting to note that the sequence {z;+ k;} is converging quadratically.

It should be mentioned that this two-step behavior is rather semsitive and
that, when a starting point whose first component was not very close to a was
used, convergence appeared to be one-step superlinear. For example, consider

-

Example 2 with @ = 5. The solution is z = (5,1), and we should observe the two-
step behavior if we start at a point of the form z, = (5,1+¢€). If we instead start at
(5.01 , 1.8) the following iterates are produced on a VAX 11/780 in double preci-

sion.

(1) Z(2) He=(5,1)ll
5.0100000000000 1.80600000000000 0.8000
9.0160441767068  1.6400000000000 4.0160
5.0424165836447 1.4096000000000 0.4096
7.0829813477127 1.1677721600000 2.0829
4.8267376121833 1.0281474976711 0.1732
5.1260010221621 1.0007922816251 0.1260
5.0008278822104 1.0000006277102 8.2788E-04
5.0000030024674 1.0000000000004 3.0024E-06
5.0000000000002 1.0600000000000 1.6708E-13

5.0000000000000

1.0000000000000

< 1.0E-16



Although initially at every other iterate the z(y) error is smaller than the z(,) error
and there is a clear two-step patteru, eventually the steps become nearly tangent
to the constraint normals and convergence appears one-step superlinear. Similar
behavi'of was observed for other starting points unless the initial value of z(y) Was
very close to 5.0. If it is in general so hard to find starting points for which two-
step but not one-step superlinear convergence occurs, perhaps it should not be
surprising that methods of this type appear one-step superlinear convergent in -

most experiments.

Next we loock at successive quadratic programming applied to our examples.

Consider Algorithm 1 (SQP) where the Hessian approximation By is defined by

1T ZIV2L(2,\,) 2
[zk)'k] B |27 = [ ¢ (gk )2k l. (7)

For our examples this is just a 222 matrix. (Of course the identity in the lower
right corner is arbitrary as it does not affect the algorithm but just makes B; posi-
tive definite.) Now note that in the examples, ¢(z;) = c(z,+ k). Because of this,
SQP with B, given by (7) produces exactly the same iterates for the problems in
Examples 1 and 2 as the Coleman-Conn horizontal vertical method does. Therefore
all our comments regarding the Coleman-Conn method applied to Examples 1 and
2 also apply to SQP with the above Hessian approximaticn. In particular Example
2 is an example where SQP, using a Hessian approximation that satisfies Powell’s

condition (4), generates iterates that do not converge one-step superlinearly.
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