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The degree of a graph H is the maximum among the degrees of its nodes.

A set of graphs L is of bounded degree if there exists a positive integer n

such that the degree of each graph in L does not exceed n.

In this paper we demonstrate that it is decidable whether or not the

(graph) language of én arbitrary node label controlled (NLC) grammar is of
bounded degree. Moreover, it is shown that, given an arbitrary NLC grammar
G generating the language L(G)of bounded degree, one can effectively compute

the maximum integer which appears as the degree of a graph in L(G).



INTRODUCTION

The notion of a node label controlled (NLC) graph grammar was intro-
duced by Janssens & Rozenberg (1980a) as an underlying model for a systematic
build-up of a matematical theory of graph grammars. Since then the theory of
NLC grammars was quite extensively investigated (see, e.g.,Janssens & Rozenberg,
1980b, 1981a,1981b; Janssens, 1983; or Turan, 1983 ).

One of the important research areas within the theory of NLC grammars
is that of the decision problems. Most of the decision problems for NLC grammars
considered until now are of graph-theoretic nature. The typical questions are:
(i) Does the generated language contain a discrete (planar, hamiltonian etc.)
graph? (ii) Are all generated graphs connected? It, turns out that most of the
decision problems of this nature considered so far are undecidable.

In this paper we consider a decision problem that is quite fundamental
from the graph theoretical point of view and which is also of conceivable
interest in practical considerations. The problem can be stated as follows:
"Given an NLC grammar G, is it decidable whether or not there is an integer
n such that the degree of any node in any graph in the language, L(G), gene-

rated by G does not/exceed n, i.e., whether or not L(G) is of bounded degree?"

from Janssens & Rozenberg, 198la). Thus not all fundamental decision problems
for NLC grammars are undecidable!

The decidability of this problem is rather surprising, since there are
already two results on related questions: "It is undecidable whether or not
the set of connected graphs in an NLC language is of bounded degree,"(see
Janssens & Rozenberg, 198la), and "It is undecidable whether or hot the axiom
of an NLC grammar generates a graph (not necessarily terminal labeled) which,

on its part, generates a set of graphs of bounded degree", (see Janssens, 1983,



Theorem 4.4). Hence our result points somehow to a borderline between
decidable and undecidable for NLC grammars.

Moreover we would like to point out the following. Until now one
has established a rather strong connection between the theory of NLC graph
grammars and the theory of string grammars, in particular grammars from the
classical Chomsky hierarchy (see, e.g., Janssens & Rozenberg, 1980b,1981b;
and Janssens, 1983). A characteristic feature of these connections is that a
number of techniques were established where derivations in a string grammar
were simulated by derivations in NLC grammars. In the present paper we also
establish a connection between string grammars and NLC grammars. However,
two points appear to be novel. First of all, we establish a connection with
parallel type grammars, namely with ETOL systems. Second, the technique used
here allows one to "simulate" (for our special purposes!) a derivation in an
NLC grammar by a derivation in a string grammar (that is in an ETOL system).
As a matter of fact our key idea points out even a closer relationship - we
discuss this briefly in the last section of the paper.

It isinstructive to consider the present paper as a "companion paper"
of Janssens & Rozenberg (198la)- the two papers together shed more light on
the nature of decision problems for NLC grammars. Although the basic notions
concerning NLC grahmars are recalled in this paper - this is done briefly and
somewhat informally - the reader is referred to Janssens & Rozenberg (198la)
for complete and formal definitions. For basic notions concerning the theory

of ETOL systems, the reader is referred to Rozenberg & Samlomaa (1980).



- PRELIMINARIES

We recall here a number of definitions and notions from graph-,
graph grammar-, and string grammar theory as far as they are needed in
this paper.

Graphs .

We consider finite undirected node labeled graphs without Toops
and without multiple edges. Each such graph X is specified as a four-tuple
X=(VX,EX,ZX,¢X), where VX is a finite nonempty set of nodes, EX is a set of
two element subsets of Vy.(the set of edges), z, is a set of labels, and oy

is a function from VX into Zyo (the Tabelling function). By lab(X) we de-

note the set of labels which actually occur in X, that is 1ab(X)={@X(x)}x€VX}.
If, for some set of labels 2, lab(X)cz, then X is called a graph over z.
The set of all graphs over Z is denoted by GZ.

Notions like connected graph, induced subgraph, discrete graph,
graph isomorphism, etc. are defined in the usual way (see,e.g.,Harary,1969).
Since the degree of a graph (language) is the central notion of this paper,
we recall its definition now.

For a node x in a graph X, its degree, deg,(x), in X is defined as
degX(x): #{yevxr{x,y}eEX}. (For a finite set V, its cardinality is denoted
by#V.) The degree, deg(X), of a graph X is the maximum integer which occurs

as a degree of a node in X. A nonempty graph language L is of bounded degree,

if {deg(X)|XeL}, is finite. We define deg(L)=max{deg(X)|XeL}, if L is of
bounded degree and deg(L)==, otherwise.

For a graph X, ind(X) is the set of (node) induced subgraphs of X.
For a graph language L, ind(L)= UXGLind(X) and conn(L) is the set of all con-

nected graphs in L.



Graph grammars (NLC).

A node Tabel controlled (NLC) grammar is a system G=(Z,A,P,C,Z),

where 2 is a finite nonempty set of labels, A is a nonempty subset of 2

(set of terminal labels), P is a finite set of pairs (d,Y), where dez and

YEGZ »(set of productions), C is a subset of 2x3, (comiection relation), and

Let X,Y,X be graphs inG with V, N Vg=p and let xeV,. Then X concretely
derives ¥ (in G, replacing x by V), denoted X =1x ?)X, if there is a produc-
tion (d,Y)€P, such that Y is isomorphic to ¥, d=py (x) and Vg=(Vy-{x})UVy,

E’X=(EX'{{X,y}iy€VX‘{X}}) u E? U

ULLy>2}[{ x,2}€Ey VeV, (oy(y) oy (2))€Ch,

and, for yevx, @X(y)=wx(y), if erX and @R(y)=@?(y), if yevv.

Intuitively, we replace x in X by the graph Y and connect a node y in ¥
to a (former) neighbor =z of x if and only if (wv(y),@x(z))eC.

A graph X directly derives a graph X'(in G), in symbols X =X', if

= - *
there is a graph X isomorphic to X', such that X concretely derives X. =
*%
is the transitive and reflexive closure of =. If X = X', then we say that X de-

rives X'(in G). A sequence of successive derivation steps

Xy =X, =X

0=X =Ko oo
is called a derivation (of X from X,). Finally, the language, L(G), gene-

B Xn? n=0
rated by G is L(6)={XeG,|Z = X}.

String grammars (ETOL).

An ETOL system G is specified in the form G=(V,A,P,w) where V is 1its
total alphabet, 4 is its terminal a1phébet, Pis its set of tab]es: and w is

its axiom.



THE RESULT

The following three notions will be crucial in our considerations.
In what follows, let % be a finite alphabet and let z$={a§[aez}; we assume
that Z$ﬂz=¢.

For a graph XEGZ, mark(X) denotes the set of graphs defined by

mark(X)={YeG [VY=V E,=E,, and there is exactly one node yévy,

ZUZ$ X7y X
such that @Y(y)=a$, where a=@X(y), and for all xevy, X#)

@Y<X)=(Px(x)}-

Hence a graph in mark(X) is obtained from X by replacing the label, say a,
of exactly one node in X by a$. For a language LEGZ, we define mark(L)=

UXGL mark(X). For Xe mark(GZ), the (unique) node x of X that is labeled by
an element in z$ is called the marked node of X.

Let XEGZ U mark(GZ). By red(X) we denote the graph Y, such that
VY=VX,¢Y=¢X, and EY={{x,y}€EX | either @X(x)ez$ or @X(y)éz$}. Hence, if -
X€ mark(Gz), then red(X) is obtained from X by omitting all edges in X which
are not incident with the marked node of X, and if XeGZ, then red(X) is the
discrete graph on VX‘ For a language LE}BZU mark(GZ), we define red(L)=
{red(X)|XeL}.

For a language LEGZ, we denote by star(L) the set

star(L)=conn(ind(red(mark(L))))N mark(GZ).
Note that each graph in star(L) is obtained from a graph in L by (i) re-
placing the label a€x of one node by a$,(ii) removing all nodes except for
the a$-1abe1ed node itself and some of its neighbors,and (iii) re@oving all
edges apart from those between the a$—labe1ed node and its not removed neigh-

bors.

It is easily seen that deg(L)=deg(star(L)).



THEOREM 1. It is decidable whether or not the language of an arbi-

trary NLC grammar is of bounded degree.

Proof. Let G=(2,4,P,C,Z) be an NLC grammar. Clearly, we can assume

JA
In the first one an NLC grammar G" is constructed, such that

that #V.,=1. Let L=L(G). The proof is presented in two steps.

conn(L(G™ ))=star(L). It easily follows that deg(L)=deg(conn(L(G" ))) and
that conn(L(G"™ )) is of bounded degree if and only if it is finite.

In the second step we introduce an ETOL system GO which generates
the Tanguage L(GO) in which each word of length n corresponds to a graph on
n nodes from conn(L(G™ )). In this way the "bounded degree problem" for |
NLC grammars is reduced to the " finiteness problem" for ETOL systems which is

known to be decidable (see,e.g., Rozenberg & Salomaa,1980).

STEP I.
Let L'=mark(L). Consider the NLC grammar G'=(2UZ$,AUA$,P',C',Z'),

where A§={a$ez$!a€A},

P'=PU{(d$,Y)|Ye mark(Y'), for some production (d,Y')=P},
¢'=cutat,b) | (a,b)eCIut(a,b%) | (a,b)eCT,

and if a is the label of the node in Z, then let Z' be a node graph with its

node labeled by a$. It is easily seen that L(G")=L".
Let L"=red(L'). Consider the NLC grammar G”x(ZUZ$9AUA$,P",C",Z"), where

Pu={(d,red(Y)) | (d,Y)€P'},

C"=C‘n(2xz$uz$xz) ,

and Z"=Z'. It is easily seen that L(G")=L". Observe that each graph in L(G")



consists of an element of star(L) together with zero or more isolated nodes.
Let L™ =ind(L“)ﬂmark(GZ). Consider the NLC grammar G" =
(ZUZ$,AUA$,PW ,C" 2™, where
P" = {(d,Y)|dez,Y eind(Y"'), for a production (d,Y')eP"}U
U{(d$,Y)|d$éz$,Y eind(Y')ﬂmark(Gz), for a production (d$,Y')eP"},
C" =C", and Z"™ =Z". It is easily seen that L(G")=L" and it follows from the

construction that conn(L(G"™))=star(L).

STEP 1I
Consider a derivation in G" of a graph in conn(L(G"™)). Since in an
NLC grammar a graph derived from a disconnected graph is also disconnected,

each graph occurring in such a derivation is an element of star(G_). We

Z
distinguish two kinds of derivation steps in such a derivation.
(i) Derivation steps X=X in which the marked node m of X is rewritten,

that is,wx(m)62$. Then m is replaced by a graph of the form

n>0, where b$ez $, al,az,ag,...anéz, and for each neighbor x of m in X,
(b3},q>x(x))€(?"'T That is, ]ab(X)ﬂ{a]b$,a)eC“?=¢uAHence whether or not the appli-

cation of a production (a$,Y), a$éz$, Yestar( @), to a graph X in star((%)

Z
results in a connected graph depends only on lab(X). Accordingly, a produc-
tion p=(a$,Y), with a$€z$; Yéstar((%), is called good production on 2$ with

forbidden set Fnz{af(b$,a)¢6"?, where b® is the label of the marked node of Y.




(i1) Derivation steps X=X in which a neighbor x of the marked node
m in X is rewritten, that is, @X(x)ez, @X(m)éz$. Then x is replaced by a dis-
crete graph Y such that for each node yevy,(@Y(y), @X(m))e C" . That is,
1ab(Ylg{bi(b,@X(m))€Cm } or,equiva1ent1y, formulated as a condition on X,
Iab(X)ﬂ{a$ez$]1ab(ﬁ)g{bl(b,a$)€C”@}:ﬂ. Hence,again, whether or not the graph

X is connected depends only on lab(X). Accordingly, a production p=(a,Y)

with a€z, Y a discrete graph, is called good production on % with forbidden

set Fp={a$ez$uab(v>g{b|(b,a$)ec'"}}.

Note that the above observations show that our problem became rather
independent of the graph structures involved. This fact will be exploited as
follows.

$

We will define an ETOL system GO=(VO,AUA-,PO,W such that:

o)
(*) A graph X is in conn(L(G")) if and only if (X is in star(G,)
and) there is a word w in L(GO) with # (w)= {erX]@X(x):a}, for all

aéAUA$,

(é%(w) denotes the number of occurrences of a in w.) Consequently, L(G) is
of bounded degree if and only if L(GO) is finite. Since the finiteness pro-
blem for ETOL systems is known to be decidable, the theorem follows.

Thus to complete the proof we provide now the construction of an
ETOL system GO=(VO,AUA$,PO,WO) satisfying (*) above. Let VO=ZUZ$U{N}, where N
is a garbage letter with NEZUZ$. w062$ is the label of the axiom Z" in G" .
Let §=(d,Y)€P“' be a good production ong or z$ with forbidden set Fp and Tet u
be a word in (zUz$)* such that #a(u)sz{yevY)@Y(y):a} for all ae(zuz$)*. Then

there is a table Pp in PO with the following productions:



d-u ’(called the essential production of Pp),
a->a for all aeVO—Fp, and
a-N for all aer,

Note that d-d is always in the table, since déFp. No other tables but those
(of the form Pp) defined above are in P.
We will not explicitly prove that Gj fulfills assumption (¥*) above,
rather we point out two crucial observations.
(i) Whenever there is a derivation of a word w over
ZUZ$ in Go’ then there is always a derivation of w in GO such that in every
step the essential production of the used table Pp (from PO) is applied exactly
once.This stems essentially from the facts that (a) there is always at most one
letter from Z$ in a word derived from the axiom Wy and (b) whenever there
is a table Pp corresponding to a good production peP™ on 2, and d»u is the
essential production of Pp, no letter of u appears in Fp, since in this case
uéz*, while Fpgz$). (Hence parallel applications of an essential production
can be "sequentialized").
(ii) Deriving in GO a word containing the garbage letter N corresponds
to deriving a disconnected graph in G".
Observations (i) and (ii) indicate clearly how derivations of connected
graphs in L(G") correspond to derivations of words in L(GO) and the other way
round. As discussed above, this completes the proof by reduction to a standard

result in L-theory.o

Actually, one can prove a stronger result.
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THEOREM 2. For an arbitrary NLC grammar G, deg(L(G)) can be effectively

computed.

Proof.Let G be an NLC grammar. By Theorem 1 we can decide whether or not
L(G) is of bounded'degree.

I[f G is not of bounded degree, then deg(L(G))=.

If G is of bounded degree, then, for k=1,2,3..., (in this order) we decide
whether or not L(G") contains a graph Xestar(GA) on k nodes (where G" is defined
as in the proof of Theorem 1). If kO is the smallest number for which such a
graph does not exist,then deg(L(G))=k62; (Note that if L(G") contains a graph

of degree j, j=1, then it contains a graph of degree j-1.) o



...11._

DISCUSSION

The proof we presented here essentially relied on the reduction to
the finiteness problem for ETOL systems. It turns out that a crucial idea of
our proof is similar to that of a proof in Penttonen (1975), where it is shown
that every language generated by an N-grammar without recurrent productions can
be generated by an ETOL-system. To be more precise, an N-grammar is a
“context-free" grammar, where every production has an additional "context con-
dition" in the form of a set of symbols. A production is applicable to a word w
only if no symbol of the corresponding set (representing the context condition)
occurs in w. The direct correspondence between these "context condition sets"
and the forbidden sets Fp from the proof of Theorem 1 should be obvious.

The problem whether or not an N-grammar generates a finite set seems
to be open. (At least, there is no solution known to the authors and, moreover,
this problem has been explicitly stated in Stotskii (1971) for ordered context-
free grammars which can be easily shown to be constructively equivalent to
N-grammars. )

Obviously, the reduction to ETOL systems in Theorem 1 gives a
solution to the finiteness problem for N-grammars in a very special case.

The more general probTem stated above has also a direct correspondence in

the framework of NLC grammars. It is not too difficult to prove that the
finiteness problem for N-grammars is decidable if and only if it is decidable
wheter or not the graph language generated by an NLC grammar contains a finite
number of complete graphs.

Hence this paper demonstrates, once again, various ways in which string
and NLC grammars interact, extending thus the picture given in Janésens &

Rozenberg (1980b,1981b) and Janssens (1983).
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