TOWARDS AN INTEGRATED ENVIRONMENT
FOR ACCESSING EXTERNAL DATABASES

by

Dennis Heimbigner*

CU-CS~-263-84 March, 1984

* University of Colorado at Boulder, Department of
Science, Campus Box 430, Boulder, Colorado, USA.

Computer

Towards An Integrated Environment
for Accessing External Databases

Dennis Heimbigner

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

ABSTRACT

Diverse is a system that is designed to provide sophisticated access to external
database systems. The requirements for such a system are outlined and the
Diverse architecture is proposed for meeting those requirements. The Diverse
system is built upon a relational database system for storing data and a
knowledge base for interpreting procedural information. Diverse is intended to
be an integrated environment consisting of a directory of information about the
operation and semantics of external databases and media, a syntax-directed
database translator, and a dialogue system for mechanizing routine operations.

Introduction

Accessing and integrating information from various sources is a fundamental
problem in any office situation. These sources consist of the various databases
available throughout a company, as well as the externally available commercial
systems such as Dialog, Compuserve, and Dow-Jones. '

At the moment, such databases can be accessed in one of two ways. First, the
databases may actually be elements of a common distributed database system.
In this case, a user may only have to learn one language, and, usually, there are
mechanisms for combining data from the various databases. This may be fine
for small, homogeneous, systems, but it is unlikely to encompass the variety of
available data sources.

A second way to access external data is to simulate a terminal calling into the
system. While it does provide access, it provides no help in understanding and
structuring the data obtained in this way. Each of the databases has a different
command structure and a different model for structuring deta. Thus, a user
must know or learn many different languages in order to access various sys-
tems. Even when you have the data, it may be difficult to combine it with data
from other sources. Some of it may be in database format and some in text for-
mat. Furthermore, it may be difficult to extract the relevant parts from the
mass of data that you have collected.

It is reasonable to search for some middle ground: a system that is capable of
more sophisticated access than terminal simulation, but that does not require
total integration before useful data sharing can be achieved. The goal of this
paper is to outline the requirements for such a system, and propose an architec-
ture, termed Diverse, that is capable of achieving these goals.

Requirements for Diverse

The principle characteristics of external data sources are autonomy and hetero-
geneity. Such systems often are commercial ventures over which a user has no
control. They are free to maintain their data in any way they wish, and they are
not required to provide special interfaces to various users of their system. As a
consequence, the user is forced to provide his own capabilities for integration,
local to the workstation, and independent of the external data provider.

Since these systems are autonomous, it is unlikely that they will all adopt identi-
cal, or even similar, interfaces and data structures. The user is forced to deal
with the variety of languages provided by these external databases. Of course,
there is always some pressure to standardize, but historical inertia can often
prevail. For example, all of the systems mentioned above (Compuserve, etc.)
have quite different command languages. In fact, some of them have several
different languages depending upon which database is accessed.

Even if a common interface is provided, the user will still see only a collection of
independent data sources. Mechanisms must be provided for transferring infor-
mation between the various sources and for identifying inter-database relation-
ships.

Additionally, there must be provision for guidance and abstraction for the vari-
pus activities involved in accessing data. It must provide step-by-step seguenc-
ing of these activities, it must provide knowledge about the external system, and
it must allow the user to extend his knowledge to newly available databases.

Finally, there must be guidance in dealing with the broad spectrum of communi-
cations media available now or in the foreseeable future. These would include
telephone, cable, local area networks (e. g., Fthernet) and satellites. Each

medium has protocols that must be observed, and our systems must understand
those protocols and diagnose the possible problems involved in actual use.

Reloted Work

This research draws from a number of previous projects and disciplines. The
architecture presented here comes most directly from the work on federated
databases |Heimbigner 82]. Briefly, the federated database architecture is an
attermnpt to provide maximal autonomy for existing database systems, yet still
provide substantial sharing of data. It is characterized by the lack of a global
schera and its reliance on a distributed dialogue system. to coordinate the
activities of the component databases.

1t is clear in retrospect that the federated architecture has its place, but it
relies heavily on having the same software at all sources of data. System R*
[Lindsay 80] is an another systern emphasizing autonomy, and it also suffers
from the same problem. In the current environment where there are many
independent databases, and none of them use the same software, neither Sys-
temn R* nor federated databases is appropriate.

The RITA project (Rand Intelligent Terminal Access) [Waterman 78] is also simi-
lar to Diverse. RITA was an attempt to provide an intelligent agent for program-
mers. It was based upon a preduction system that attempted to learn from the
aclivities of the programmer. It also could deal with external systems, such as
the Arpanet.

Diverse is specifically set up to handle external database systems, while RITA
focuses on the act of programming. In theory, RITA could provide smart-
terminal access to external databases, but it does not appear that it could pro-
vide much help in interpreting and integrating data obtained from those exter-
nal sources. In addition, RITA spends much of its effort in automatic learning: a
very difficult problem in artificial intelligence. Diverse has no such capabilities;
rather, explicit user actions are used to enlarge its information base.

Lochovsky and Tsichritzis at the University of Toronto are also exploring the
problem of accessing external databases [Lochovsky 81]. Their emphasis is on
the user interface, and it implicitly uses a form of videotex {page-oriented)
model. Under this framework, all data is cast into pages of data. While the user
interface is important, The Diverse system attempts to provide more sophisti-
cated understanding of the contents and structure of the external databases. It
too casts much of that data into a fixed form (the relational model), but its use
of text as common model may allow other structures to be used. Finally, the
Toronto work does not yet promote integration of data from several sources.

An frchitecture for Diverse

Diverse may be divided into four components: the execution system, the simula-
tion system, the translator, and the user interface. The execution system pro-
vides support for the data and procedures defined in the other activities. The
simulation system must maintain state information about the currently active
databases and communications media. It uses the execution system to set up
the simulation and to interpret it. The translator is responsible for converting
external database output into local database format. The user interface is
intended to provide a clean presentation of the actions of the simulation.

The Execution System

The execution system provides reasonably general long-term storage of informa-
tion about external databases and a programming systern to execule programs.
Corresponding to these two divisions, it contains a database and a knowledge
base.

The data for the system is stored locally in a relational database system. The
database actually contains two connected collections of data. Most of the data is
stored in a file system on secondary memory. This acts as a long-term reposi-
tory for data for other components. But, the normal database is augmented
with additional data that is short-term and kept in primary memory. This latter
database is used by other components to keep highly structured, but volatile,
state information. In some sense, then, the volatile database is used for its
structuring capabilities as opposed to its storage capabilities.

The relations in Diverse are somewhat unorthodox because the attribute values
may contain both data values and procedures. When one want to connect to a
particular system, the tuple for that system is extracted from the database and
inserted into the environment. This insertion will set appropriate data values
and also insert certain procedures {such as logon, top-level, extract, and
display) into the knowledge base.

In addition to the database, the execution system contains a knowledge base. It
contains procedural knowledge for other components, and it provides an inter-
preter for that knowledge. For several reasons, Diverse uses a variant of Lisp as
the representation language:

1. The interpreter is relatively small.

2. The language is simple.

3. The language is flexible enough to
support the programming techniques
used in Diverse.

The Lisp system is augmented with facilities for using knowledge about external
databases. In particular, it supports a sirnple, Prolog-style, system of rules.
Such rule systems have been in common use in artificial intelligence research
for a number of years, and the basic principles are well understood.

A rule system consists of a database of information and a set of rules acting
upon that database. In Diverse, the database is an in-core relational database
provided by the database agent of Diverse. A rule consists of a left hand pattern
that is satisfled when all of the right hand elements have been satisfled. For
example, one (slightly simplistic) rule might be:

connect{Database) :- dial(Database), logon(Database).

This says that the connect clause is satisfled when the dial clause is satisfled and
the logon clause is satisfied.

Simulation

Diverse attermnpts to be knowledgeable about external systems by maintaining an
internal "simulation” of the possible states of the external system and also
maintaining. procedures for driving the system from state to state. States are
defined in user terms, and are defined in terms of the input modes and accessi-
ble external objects. Thus, to obtain some piece of financial information about a
company under the Dow-Jones database, the external system must be in a state

3

that allows one toask the appropriate question. If the external system is not in
the right state, it must be driven to that state from the current state.

In addition to the simulation of the states, Diverse must provide procedures
whose action depends upon the current state of the system. Thus, to disconnect
fromn socme systems, one must get to the "top level” and then type a specific
command such as logoff. Performing the disconnect operation in some particu-
lar state first requires getting to the top level, which in turn may depend upon
the current state.

The term simulation may be a bit misleading, but it is intended to refer to an
internal representation of both the state of the external database system and
the state of the medium connecting Diverse to the database. The simulation
creates an environment with a number of data items and operations whose
semantics are determined by the medium, the external database, and the
current state of that database.

Consider again the example for reaching a specific external database: the con-
nect operation, defined generically as follows:

connect{Database) :- get_dir_info(Database),
dial{Database), -
logon(Database).

This says that to connect to a database, one must get the appropriate directory
information, dial the database over seme medium, and then perform the logon
sequence for that database. The first operation searches the directory database
for the specified database name. If it finds it, it inserts data and procedures
into the environment. The next two operations (dial and logon) in turn search
the environment to find some defined method for dialing and logging onto the
specified database, In fact, these definitions will have been set up by the
get_dir_info operation and so they will succeed (assuming that get_dir_info suc-
ceeded).

The directory mentioned above represents information about known external
systems. It maintains both data and knowledge about these external systems.
For example, it may know the appropriate media and phone numbers for access-
ing some database; this data would be inserted into the environment to define
concrete values for use by procedures that actually establish the connection.
Other data might consist of user-ids and passwords, and access sequences for
reaching specific databases that are contained in a more global system (e.g.
specific databases under Compuserve).

The directory also contains procedural knowledge (rule-sets) that uses the data
to achieve certain ends. Thus it may have knowledge about the procedure for
login and logout, and the procedure for taking access sequences and actually
reaching a specific database. In addition, it may contain meta-knowledge about
the system. Such meta-knowledge may describe the means for learning about
the existence and structure of new databases.

The Diverse system can expect Lo access external databases through many
different communications media, possibly simultaneously when data from
several sources must be correlated. In order to accomplish this, Diverse must
store knowledge about the various media. Note that the media data must be
separate from the directory because there is not a one to one correspondence
between communications media and databases. Certainly the phone system
allows one to access many different external systems, for example.

The media database consists of information about each medium: transmission
rate, parity, cost per minute, and so on. In addition to raw data, the media

database must provide some procedural knowledge about the medium. Thus, it
must have sorme idea about how to connect to a medium, disconnect from it, and
- how to recognize transmission errors when they occur.

_Dialogue

The ultimate purpose of Diverse is to allow a user to perform some activity.
This activity may involve simply reading mail, or finding the latest quote for a
stock, or it may involve sophisticated inter-database manipulations. Many of
these activities can be routinely performed by Diverse once they have besn set
up by the user. The dialogue subsystem provides partial automation of many of
the routine steps of these various procedures. A dialogue system specifies the
structure and semantics of these activities by specifying the sequence of steps
as well as the data involved in each step.

A dialogue system is effectively just another programming language. It is dis-
tinguished from normal programming languages by the fact that it is provides
specialized operations. This means that it has some very powerful primitives for
doing some domain dependent activities. The dialogue language for Diverse
must provide operations specific to accessing external database: operations
such as connect, enterdatabase, query, display, and disconnect.

The dialogue language must have two special features: exception handling and
concurrency. Failures and errors are inherent problems in accessing external
computers. The external system may fail or the connecting medium may fail or
introduce errors. Certainly anyone who has had to use a noisy phone line knows
how difficult it is to do useful work. FException handling in most languages is
extraordinarily difficult. Those that can {e. g., Ada) are too complicated to serve
as a dialogue language. When exceptions are combined with concurrency, the
difficulties are compounded.

Most dialogue systems cannot handle errors in a concise fashion, and unfor-
tunately, Diverse is no exception. At the moment, errors occurring during dialo-
gues must be explicitly tested. Ornamenting the dialogue with explicit tests
seriously complicates the structure and makes it hard to understand and verify.
As a last resort, if the error is sufficiently catastrophic, the dialogue is ter-
minated.

The other feature that is needed is concurrent execution of dialogues. A user
may set up some procedures that must run automatically:

(1) They may periodically gather information commonly referenced by a user.
Examples are the latest stock quotations, or department progress reports,
or electronic mail.

(2) They may periodically update local information. For example, a user may
be interested in a particular class of information that is kept locally. An
automatic dialogue may then periodically scan the external databases for
new information, and if it is found, it may bring it to the attention of the
user.

{(3) They may periodically perform information searches. The user ray have
arbitrary information searches that he wants to perform at off hours when
it is less expensive. He may construct a dialogue for performing that
search automatically.

Concurrent dialogues are essentially independent processes devoted to the exe-
cution of the body of some dialogue. The dialogues must have some means of
synchronizing themselves with the state of the database so that they can recog-
nize the occurrence of important events. Diverse uses a restricted predicale for

this purpose. As an exarnple, suppose that a user had a dialogue called "stories”
that would collect all of the stories about a given company. Furthermore, sup-
pose that the user wanted to watch the price of the set of companies in his port-
folio and when the price dropped by 10%, he wanted to find the recent articles
on that company. We might construct the following dialogue:

stockcheck() :-

IF stockquote(Stock, Start,Hi,Lo),
(Lo - Hi) > (0.1 * Start)

THEN
stories(Stock).

The process is started when stockcheck is invoked. The IF THEN clause will be
instantiated for every stock that satisfies the condition. If one occurs, then the
body of the clause is executed and, in this case, stories is invoked to get the
stories on the company.

This predicate mechanism is intentionally similar to the production systems
such as OPS5 [Forgy 81]. Asin OPS5, the predicates that Diverse can handle are
restricted to those that depend upon the existence of tuples in database that
meet certain simple criteria. Currently, whenever a new tuple is added to a
datal:ase, predicates over that database are evaluated. The intent in restricting
the form of predicates is to eventually allow for optimization of the predicate
evaluations.

Tranalator

Up to now, we have assumed that (somehow) the output of an external database
can be placed in the local database in a relational form. The translator is the
system responsible for this transformation. The operation of the translator is to
talke a text representation of data from some other system and translate it into
the relational model for direct manipulation. The translator takes both text and
an annotated gramrmar as input. The grammar is used to parse the input and to
specify the translation into relations. This is accomplished by annotating the
parts of the grammar that correspond to the flelds and specifying how to
reassemble those flelds into tuples in a relation. The appropriate grammar
depends upon the current database and the current state of the database. Tor
exarnple, The Dialog database system has two forms of output: one for search
results and and another for display results. The search result indicates how
many documents satisfled some condition. After that, one may ask for the
display of the documents in the set. Interpreting each of these resulls requires
a very different grammar. Whenever Diverse changes state it must ensure that
the appropriate grammars are inserted into the current environment.

Many external databases assume that the user is viewing data on a screen termi-
nal. Often, the clues to the extent and meaning of the output are determined
visually: that is, by the placement of the data on the screen. It is relatively easy
for a person looking at the screen to understand the format, but it is more
difficult for a context-free parser. As a result, the grammar for the screen must
include certain kinds of spacing information so that a correct parse is produced.
Traditional parsers for programming languages tend to ignore spatial boun-
daries because they are either unimportant to the language, or they have been
removed by ad-hoc lexical fixes. For example, most Fortran compilers take this
latter approach. Tagging an LALR grammar with spatial marks does not extend
the power of the grammar, but it is important to provide a natural method for

specifying the tags and their location.

User Intei‘face

The final element of the Diverse system is the user interface. It must provide
the user with a reasonably consistent view of the system and allow him to per-
form his job. Since a number of activities may be performed concurrently, the
interface must provide for separate interface to each. In addition, a user may
want to vary the level of detail, and so the interface must be able to expand and
contract the amount of information that it displays.

It would appear that some form of windowing system [Teitelman 77] is an
appropriate basis for the user interface. On top of this layer, the simulation
must have some graphic or linguistic representation that the user can manipu-
late to achieve his desired ends. It is clear that an effective user interface is
essential to the use of Diverse, but it must be one of the last pieces to be com-
pleted since it depends upon the language forms provided by the other agents.

Examples

The Knowledge Index by Dialog Information Services is a keyword in text system
that maintains many different kinds of databases: financial, journal references,
and computer software listings, for example. In order to extract information
from that system one must perform two steps: search and display. Dialog allows
a user to specify a boolean expression involving search terms. Dialog then shows
you the number of matching terms. For example, asking "FIND XYZ CORP? AND
ANNUAL REPORT" would return:

100 XYZ CORP?
11133 ANNUAL REPORT
S1 6 XYZ CORP? AND ANNUAL REPORT

The last line indicates that Dialog has created a set, S1, of references matching
the search. Given this, one may display elements of this set in varying modes.
Typing "DISPLAY S1/L/1" causes a long listing of the first element of S1, which
might be the actual annual report of XYZ.

In trying to access this external database, Diverse must recognize its structure
and then act on the information embedded in it. Thus it must break up the
search answer and place it into a relation, called DIALOG_SETS, as follows:

DIALOG SETS | set | size term

] 1 !] !”XYZ CORP? AND ANNUAL REPORT"

Given this relation, Diverse must decide how to continue. In particular, it may
decide to pull all of the elements in the set into its database, or it may decide
that the set size is to large. If it is too large then it must come up with a stra-
tegy to reduce the size. In order to do this, the the knowledge base is invoked.
Some of the rules in the KB would be:

display(Set,Size,Def) :- B
(Size < 5},

* dialog_extract(Set,Size,grammar).
display(Set,Size, Def) :-
(Size >= 5),
restrict(Se‘t,Si.ze,Def,New&;ei,NeWSize,Newdef),
display(Newset, Newsize, Newdef).

display(Set,Size, Def) :-
(Size >= 5),
dialog_extract(Set,5,grammar).

The first rule says that if the size of the set is less than 5, then invoke
dialog_extract to print out the set elements, parse them using the appropriate
grammar, and insert them into an appropriate database. The second rule says
that if the set size is 5 or more, then try to invoke a routine to restrict the old
set and to create a new set that is smaller than the given set. This restriction
might attempt to add extra terms to the definition based upon synonyms for
terms. If the restrictor succeeds, then attempt to display the new set instead of
the old one. The last rule, which would be invoked if all else fails, extracts only
the first 5 elements of the set and ignores the rest.

It may sometimes be necessary to use information from one database as input
to another, which is, in effect, an attempt to link information between disjoint
databases. Consider the "stories” dialogue mentioned above. It will look for
recent news stories on a Corporation so that the user can peruse the stories.
Note that no attempt is to be made to interpret the meaning of these stories,
only to search for them. The stock price information may have been obtained
from Dow-Jones, but corporate news is available both from Dow-Jones and Dialog,
and it is expected that both will be searched. Additionally, duplicate stories
from both sources should be purged.

To perform the stories operation, the stock name must be obtained, and then
connected back to the name (or names) of the company. Sometimes a subsidi-
ary of the company will cause perturbations in the parents stock and so the
company must be connected to its parent or its subsidiaries. The final result
must be a set of terms of interest.

Once the names are obtained, it is time to search for stories about them. First,
the Dow-Jones systern is invoked via connect. Next the appropriate database is
entered to look for headlines about the companies. For Dow Jones, this is essen-
tially a loop to ask for stories about each term in turn. Fach story is collected
and inserted into a stories database using the company as the key. Once the
Dow-Jones stories are collected, it must be disconnected and Dialog connected
in its place. As mentioned before, this will put Dialog specific operations into the
environment for later use by this dialogue. Now, the term set is used to extract
stories from Dialog and insert into the database.

Once the stories are collected, they must be flltered to purge those that are
duplicates or are not of recent origin. Age may be determined if the story has
an associated date. Duplicate may be eliminated by searching for common keys
for the stories. For stories, a common key would be the magazine, the date, the
title, and the pages. For each duplicate, one of the two entries is purged.

The final example is a grammar for Dialog search results. It would be invoked as
extract(DIALOG_SETS, search_grammar).

It is assumed that whenever Diverse sends a command to the external database,

that the result is a new screen of information to be treated as a result. For
sufficiently smart databases, this may require Diverse to simulate a set of
screen operations to keep an accurate map of the state of the screen as it might
be seen by a user. Dialog, though, can be treated in this simple minded manner
because it does not do any significant screen manipulation. Thus, the extract
command applies the grammar "search_grammar” to the current screen and
places the resulting tuples into the relation DIALOG_SETS.

A partial grammar for search_grammar would be as follows:

search : setmatch
| match search

)

match : LEFTBORDER integer predicate RIGHTBORDER ;
setmatch : LEFTBORDER set integer/2 predicate /3 RIGHTBORDER ;
set : "S" integer/1;

A search output is deflned to be a series of zero or more match lines followed by
one match line with an attached set name. The grammar is in a slightly
modified Yacc notation. Fach rule is a non-terminal, a colon, and a sequence of
left sides separated by vertical bars. Terminals are in upper-case. Note the use
of LEFTBORDER and RIGHTBORDER to match the beginning and end of screen
lines. It is expected that when this grammar is used, it will extract three fields:
the set number, the count, and the predicate. All three will be extracted as
strings, assembled into a tuple, and inserted into the relation DIALOG_SETS. The
fields are marked into the grammar using the notation "/1", /2", and "/3".
When this grammar is applied to the screen, certain parts match the nodes
marked as fields. The actual fleld value is the substring that corresponds to the
terminals of the subtree rooted at the field node. For this example, those sub-
strings corresponds to two integers and a Dialog format predicate (grammar
not given).

Control Issues in Diverse

For completeness, the Diverse architecture must eventually address a number
of issues of control: protection, concurrency, and recovery. Because the exter-
nal databases are autonomous and heterogeneous, mechanisms traditionally
used for distributed databases are not applicable here.

Data protection is at best limited when accessing external databases. The best
that one can hope for is that the external databases provide some level of pro-
tection for their data. It is impossible for an external database to protect the
data once it is sent out over some communications medium. Thus, someone
using Diverse will be free to capture information from some external database.
But once that data has been captured, there is no way to prevent the user from
sharing that information with whom ever he pleases.

Concurrency appears at two levels in the Diverse system. First, there is con-
current access to the database and knowledge base components within Diverse.
It seems that traditional database approaches (transactions plus some form of
locking) will be adequate to handle this situation.

The second level of concurrency occurs when a user wishes to read and write
data from external databases. We cannct use locking and so we may find

ourselves using data that is changing during the period of time it is being
accessed. Often this will not pose a problemn because the changes are infre-
guent, or because the user doesn’'t care if there is some minor inconsistency.

Although locking is not possible, it may be that a modified optimistic con-
currency control [Kung 81] can be used when a high degree of consistency is
required. For instance, the transaction rnight be executed and then a second
transaction executed that checked the results of the first one. If the check is
successhul, then it is assumed that the original transaction was correct. If the
check fails then the original transaction may have operated on inconsistent
data, and recovery must be invoked.

Most recovery in database systems uses some form of commit protocol with
delayed write operations. Such an approach is not viable in Diverse because
there is usually no way to delay the writes on autonomous systems. Again we
must propose a less than perfect solution: reversible transactions [Gray 81].
For every transaction provided by an external database, we must specify
another transaction that can, for practical purposes, reverse the effect of that
transaction. Obviously there are irreversible transactions, bul in many cases,
there may be approximate reversals that suffice.

Interaction with Diverse

Now and in the near future, Diverse will not be simple to use. Constructing
dialogues and grammars requires considerable programming skill. An eventual
goal is to allow non-programmers to effectively use the system.

One solution may be to use examples and scripts of actual interactions. When a
user first contacts a new database, he knows very little about it; he may have an
user id and password plus a users manual in paper form. If Diverse were
sufficiently "intelligent" if might be able to learn on its own by watching the user
interact with the database. This is a serious artificial intelligence question and
one to be avoided here. Rather, Diverse will make it easy for the user to capture
histories of interactions and later use them as templales for defining common
activities and formats with respect to the new database.

Betting up the translator poses some particular problems because it requires
the construction of grammars for various inputs and outputs. Typical grammar
formalisms (Backus-Naur, for example) take time to construct and are some-
what difficult to understand. Diverse will attempt to use exaraples of the actual
output as the basis for construction of the grammar. The user can display the
data and mark it with relevant flelds and relationships. Once that is done, the
user can then graphically specify the transformations of the flelds into database
relations. Using this information, the translator can apply the rules to new data
automatically. ,

In sum, the emphasis in Diverse is not on automatic learning, but rather on pro-
viding powerful tools that allow a user to easily specify the appropriate data
structures and knowledge for a new database.

Conclusion

In this paper we have outlined the requirements for a system to support sophis-
ticated access to external databases. We believe that the architecture outlined
here, called Diverse, is capable of meeting those requirements. The Diverse sys-
tem is built upon a relational database system for storing data, and a knowledge
base of rules for storing procedural information. Diverse is an integrated
environment supporting a simulation of the external database and the

10

connecting mediurm. It allows a user to perform high level operations and to set
up event driven activities.

References

[Forgy 81]
Forgy, C. L.. "The OPS5 User’s Manual”, Technical Report CMU-CS-81-135,
1981. Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, PA.

[Gray 81]
Gray, J., "The Transaction Concept: Virtues and Limitations", Proceeding of
the Seventh International Conference an Very Large Datuboses, pages 144-
154, Cannes, France, 9-11 September 1981,

[Heimbigner 82]
Heimbigner, D. M., A Federated Architecture for Dofohase Syslems, Ph. D.
Thesis, University of Scuthern California, also available as Technical Report
TR-114, August 1982, Computer Science Department, University of Southern
California.

[Kung 81]
Kung, H. T. and Robinson, J. T., "On Optimistic Methods for Concurrency
Control", ACM Transoctions on Dafabase Systems 6(2):213-226 (June 1981).

[Lindsay 80]
Lindsay, B., and Selinger, P. G., "Site Autonomy Issues in R* A Distributed
Database Management System”, IBM Research Report RIZ927, 15 September
1980, IBM Research laboratory, San Jose, CA.

[Lochovsky 81]
Lochovsky, F. H., and Tsichritzis, D. C.,, "Interactive Query Languages for
External Data Bases”, Computer Systermns Research Group, University of
Toronto, March 1981,

[Teitelman 77]
Teitelman, W., "A Display Oriented Programmer’s Assistant”, Proceedings of
the 5th International Conference aon Artificial Intelligence, Volume 2, Cam-
bridge, MA, 22-25 August 1977, pages 905-815.

[Waterman 78]
Waterman, D. A., "Exemplary Programming in RITA", Paflern-Directed Infer-
ence Systems, pages 261-279, D. A. Waterman and F. Hayes-Roth (eds.),
Academic Press 1978.

11

