ODIN - An Extensible Software Environment Report
And User’s Reference Manual *

Geoffrey M. Clemm

CU-CS-262-84

—
%ﬁUﬂiversity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

*] acknowledge Department of Energy support under contract no. DE-AC02-80ER 10718 and National Science Foundation support under
grant no. MCS80-00017.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ODIN - An Extensible Software Environment
Report and User's Reference Manual

by

, Geoffrey M. Clemm
Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80309

CU-CS-262-84 March 1984

(Revised December 1984)

1 acknowledge Dept. of Energy support
under contract no. DE-AC02-80ER10718
and National Science Foundation support
under grant no. MC380-00017

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSEZD IN THIS PU3-
LICATION ARZ THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIZWS OF THZI
NATIONAL SCIENCE FOUNDATION.

This report was preparad 25 aa accounc of work spoascrzd v
the United Scates Goverameaz. Neicher che Unicad Scacss

aoT the Department of Emergy, notv aay of their eaplovass,
nor any of their conctractors, subcontractors, or theisr esm-
plovess, makas any warraaly, exprass or lmplied, or assuzas
aay legal liability or responsibilicy for che accurazcy, com-
platensss, or usefulness of aay informacicn, apparazus, pro-
duci ot procsass disclosad or Tegra2sends Chac 125 use wauld
noc infrings privately-owned :Léhcs.

Abstract

The purpose of the Odin System is to provide an extensible program
development environment. In Odin, a standard hierarchical file system is
extended by the addition of user specified file types and user specified
operations defined in terms of those file types. User operations are
implemented through sequences of host system commands. Two
languages are provided : an object oriented command language, and a
specification language to allow the easy addition of new file types and
operations. The user maintains in the host file system only those files
that will be modified directly - the results of all operations are maintained

within the Odin Systerm.

INTRODUCTION i

THE COMMAND LANGUAGE
Odin Objects .oviviveiiiiiicni,
Primitive Objects

CONTENTS

................................

............................

.................................

.................................

.................................

.................................

Derived Objectscoovvvivuniinnnns et et eranieraenas PPN
Status Level of Objects ...ccoocvevviiniiiniininnn, rreriasiannsrernii

Sentinels
Odin Commandsccoceevvverviiieeiiiiiceinesinann
Display Command
Transfer Command

...

...........................

.........................

.................................

.................................

.................................

.................................

History Substitutioncccociiiiiiiiiiiiiiiiiini i .

Command Scripts
HostSystem Commands
Eelp
Odin Variables
Variable Manipulation Commands

THE SPECIFICATION LANGUAGE
File TYPeS wiiiiiiiiiiiiicrecrciciianaen
File TYDPES civrvevieeirieiiniicececieennee
Derived File Structure
Inputs i
Tools
File Types i cccceiieeeienee
Pre-Defined File Types
OES i

Atomic
Derived

Linking

Comme

...........................

..................

..

..

........................

....................

...

.............................

.................................

.................................

.................................

.................................

.................................

.................................

.................................

essereesasssnsssarerseinessanasns

.................................

.................................

.................................

.................................

.................................

.................................

IMPLEMENTATION ..ooiiiiiiiceenitene e st einrie e b e

ACKNOWLEDGEMENTS

REFERENCES
Appendix A :
Appendix B :
Apkpendix C:

Appendix D :

..

Syntax of Odin Commands

Syntax of Odin Specifications

Example of an Odin Specification

Examples of Odin Command Files

.......................................

.................................

.................................

.................................

.................................

Cerecsrvisiucatursebessanreteannd

.................................

o AW

10

13
13
13
15
18
17
17
20
22

50

51

52

53

55

57

87

1. INTRODUCTION

The premise of the Odin System is that the basic software objects are
files, and that the task of the pProgrammer is to modify old files or to
produce new files. The way an environment Supports this task is by
providing to the user a variety of "views" of files, where a view of'a file is a
mechanical, although possibly extremely complex, derivation from that
file. For our burposes, a mechanical derivation is defined to be one that
can be performed by a computer program - each of the output files of the

program form a view of the input to the program.

The production of views is essential for three reasons. First, the
form of the file most convenient for its specification may not be the form
that it must take for eventual use (program source text vs. object code).
Secondly, the task of producing a given new file can be an extremely
difficult one, which often can be effectively solved only if a variety of
different views (abstractions) of the existing files are available (call
graphs, cross reference listings). Finally, views are the mechanism
whereby properties of files can be specified, so that the environment can
verify that these Properties are maintained when a file is modified (error

free compilation, correct spelling of documents).

extensible, performing this extension involves a degree of knowledge
about the system possessed by only a few expert users. Alternative
approaches have been to provide a massive set of tools in an attempt to
cover as many views as possible, or to deliberately limit the environment

to a specialized application area. While these approaches can be very

-2-

successful when the tools provided are well designed and integrated,
many application areas involve constantly changing and evolving needs
which cannot be met by a fixed environment. In addition, the advantages
of new and improved tools must be foregone due to the difficulty or

impossibility of integrating these tools into the existing environment.

The purpose of the Odin System is to provide an extensible program
development environment. A specification language is provided to
describe the behavior of new tools and the Odin Command Language
offers a simple and consistent mechanism for requesting the results of

these new tools.

2. THE COMMAND LANGUAGE

The Odin Command Language is an object-oriented command
language. Tools are invoked only as needed to create a requested Odin
object. For example, if an executable object were requested, various
compilers and loaders might be invoked. The tools "might be’.’ invoked
because the Odin Systern automatically saves the objects from previous
requests, so that a given object might already exist and therefore be

immediately available.

2.1. Odin Objects

All Odin objects can be thought of as files (simple objects) or sets of
files (compound objects). Examples of simple objects would be source
code, executable binary, or output from a test run. Examples of
compound objects would be the set of flles containing the source code of
a single program, the set of files containing different versions of the same
source code, or an executable program with files containing input data

for the program.

2.1.1. Primitive Odin Objects

The primitive Odin objects are host system files. In case the host
system provides a hierarchical file system, a file name that does not
begin with a slash ('/’) is assumed to be relative to the "current”
directory (e.g. the directory from which the Odin System was invoked).
For example, if the current directory were "/usr/geoff/src”, then both

"/usr/geofl/src/test.c” and "test.c’” would refer to the same file.

Every primitive object is given a type by the Odin system based on
the file name "extension” of the host file. The extension of a flle name is
the string following the last period in the final segment of the file name,
where segments are separated by a slashes. For example, the extension

of each of the following flle names is "¢" :

/usr/geofi/src/test.c
src/test.c

test.c

test.l.c

The type of a primitive object determines which derived flles can be
produced from that file. In case the extension of a primitive object is null
or is not recognized by the Odin system, no derived files can be produced

from that file.

-5~

If a list of the possible extensions is desired, typing a question mark
followed by a colon ("?:") to the Odin System would generate a message

of the form :

Possible Base Types:

Corrrieneneans C source code

VC teeierernnn, C code stored in recs format

foririiis Fortran77 source code

vl Fortran?7 code stored in rcs format

int ... an integer

tgl o tree-building parser grammar

fsi scanner grammar

tgiref tree-building parser/scanner grammars
mf . Fortran77 source code with m4 constructs
hos. include data

L m4 Include Data

ref ... reference flle containing a list of file names

This states that all of the following would have extensions that the Odin

system would recognize :

/tmp/test.c
project.vc
src/parser /new.tgiref

2.1.2. Derived Odin Objects

A derived Odin object is a file (or set of files) that can be produced
from a primitive object (or another derived object) through the
invocation of one or more tools. Examples of objects that can be derived
from source code would be cross reference listings, executable binary

code, or a formatted version.

There are three Odin operations for specifying derived objects :

derivation, parameterization, and selection.

2.1.2.1. Derivation

A derivation is specified by appending to the name of an Odin object

a colon (':') and the name of the desired derivation. For example,

test.c :fmt
would request a formatted version of test.c, and
test.c :fmt :run

would request the result of compiling and executing the formatted

version of test.c.

If the name of the desired derivation has been forgotten or a list of
the possible derivations is desired, a question mark ("?’) can be put in
place of the derivation name, and the Odin System will respond with a list
of the possible derivation names that could appear at that position. For

example,
test.c :fmt : ?
would generate the following message :

Possible Derivations from an Object of Type "fmt" :

obj object code from c compiler

fmt formatted version

xref ... cross reference listing

run ... results of executing a ¢ program

This states that all of the following would be legal objects :

test.c :fmt :obj

test.c :fmt :fmt
test.c fmt :xref
test.c :fmt :run

2.1.2.2. Parameterization

It frequently occurs that there is a variety of additional information
that can be associated with a flle and that will aflect the derivatives
produced from that file. In the Odin System, this additional information

is associated with a file as the "parameters"” of that file. For example : a

-7 -

debug parameter could cause the compile derivative to contain run-time
checks; a library parameter could cause the load derivative to have
undefined externals satisfied from a non-default library; and a format
parameter could cause all printable derivatives to be generated in line-
printer format.

A parameterized object is specified by appending to the specification
of an object a’+' and a parameter. For example, a debug parameter can

be added to the object "test.c :fmt" as follows :
test.c :fmt +debug
If this new object is then run, e.g.
test.c :fmt +debug :run
the "run” object produced would contain debugging information.

It is often the case that a value should be associated with a given
parameter. Such a value can be specified by appending to the parameter
an equal-sign (*=') and the value. For example, if array bound violations
are to be checked or if dereferencing of nil pointers are to be checked for

the object "test.c”, then respectively
test.c +debug=arrays

or
test.c +debug=nilref

would be specified.

If the value associated with a parameter is contained in another Odin
object, the value is specified as the Odin object surrounded by
parentheses. For example, suppose that there is a derivation named "lib"
that will produce a library from a file of source code. Then the result of

running "test.c” using the library produced from a file called "util.c”

would be specified as :
test.c +lib=(util.c :lib) :run
If the name of the desired parameter has been forgotten or a list of
the possible parameters is desired, a question mark ('?') can be put in

place of the parameter, and the Odin System will respond with a list of

the possible parameters that could appear at that position. For example,
test.c:fmt + ?

would generate the following message :
Possible Paramters : id lib debug

This states that all of the following would be legal objects :

test.c :fmt +id
test.c :fmt +lib
test.c :frmt +debug

In fact, both id and lib should be associated with parameter values, such -
as:

test.c :fmt +id=runbd
test.c :fmt +lib=(/usr/lib/network.a)

but since this required value information is not stored in the derivation
graph, an unexpected parameter value {or lack of a value) will only be
detected by the appropriate tool after the erroneous object has been
requested.

A more exact form of parameter help can be requested by specifying
which derivation you are intending to apply t_:o the parameterized cbject.

For example,
test.c :fmt + ? :obj
would generate the following message :

Possible Paramters : debug

-9 -

This states that the following would be a legal object :
test.c :fmt +debug :obj

Since the id and lib parameters are not relevant to the derivation from

fmt to obj, these are not listed.

2.1.2.3. Selection

As mentioned earlier, an Odin object can be either a simple object
(i.e. a single file) or a compound object (i.e. a set of files). Frequently, it
would be desirable to specify some subset of the objects in a compound

object. To allow this, Odin associates a "key"” with every Odin object.

A primitive object is given a key corresponding to its host file name,
e.g. the key of " /usr/geoff/src/test.c” would be "test.c”. A derived object
is given a default key equal to the key of the primitive object from which
it was derived. For example, the key of '"src/test.c :run” would be

"test.c'.

In case a derived object is a compound object, the key for each
element of the compound object is generated by the tool that produces
the compound object. For example, suppose 'src/test.c :output”
specifies the output files generated when running 'src/test.c”. This
derived file is a compound object because a program can generate more
than cne output file. Since the tool that executes a user's program is
responsible for giving keys to the output files, they could be arbitrarily
given the keys "outl", "out2”, etc. A more useful and more likely
convention would be for the tool to use the file names given by the user’s

program to the output flles as the keys for the output files.

The subset, from a given compound object, of objects with a certain

key can be specified by appending to the name of the compound object

-10 -

an at-sign (‘@) and a key. For example, suppose that running
"src/test.c’ produces three output files named "DATA", "source.list”, and
"source.errors”. These three files could be specified as the three Odin

objects,

src/test.c :output @DATA
src/test.c :output @source.list
src/test.c :output @source.errors

2.1.3. Status Level of Odin Objects

Associated with each Odin object is a status level, where a status
level is cne of OK, WARNING, ERROR, NOREAD, NOFILE, and ABORT. OK is
considered the maximum status level and ABORT the minimum. The
status of a primitive object is always OK. The status of a given derived
object depends on the results of the tools needed to produce that object.
If any tool generated warning messages, the status level of the given
object is at most WARNING. If any tool generated error messages, the
status level of the given object is at most ERROR. If any object that was
needed to generate the given object was not readable, the status level of
the given object is at most NOREAD. If any object that was needed to
generate the given object did not exist, the status level of the given object
is at most NQFILE. If any object that was needed to generate the given
object had status level ERROR, then the status level of the given object is
set to be ABORT.

If the status level of an object is less than OK, the status level is
indicated whenever that object is displayed or copied. The actual warning
or error messages that were produced can be displayed by requesting the
results of running the internal WARNING tool or the internal ERROR tool
(see "Tools”). Assume that the ":warn” and ":err’ derivations invoke the

WARNING tool and the ERROR tool respectively. If the request to display

-11-

the object,
test.c :run
resulted in the message,
Note : Abort Status set for "test.c :run”

the errors that caused the generation of the abort status would be listed

in the object,

test.c :run :err

Error messages are included in the list of warning messages, so the
list of errors is always a subset of the list of warnings. The difference
between an error and a warning is that an error prevents the tool from
generating its cutput, while a warning indicates that although output was
generated, it might be faulty. An example of an error message from a

loader would be
Unsatisfied external reference: "procl”.
An example of a warning message from a loader would be

Multiply defined external : "proc?”, first copy loaded.

2.1.4. Sentinels

In any software system, it is very useful to be able to specify
semantic constraints on the software objects in the system. In Odin, this
capability is provided through distinguished Odin objects called

"sentinels”. Examples of sentinels would be

thesis.txt :spell
prog.c +input=(thesis.txt) :run

If sentinels are activated, whenever a modification to an atomic file

causes the status level of any sentinel to become ERROR or less, Odin will

-12-

generate an error message indicating which sentinels have been violated.
In the above examples, assume that the ":spell” object receives ERROR

status if any spelling errors are detected, and that the ":run" object
receives ERROR status if any error messages are generated in the
attempt to compile and run "prog.c’ with input file "thesis.txt". Then if
"thesis.txt” is modified, Odin will check that the "thesis.txt"” file is spelled
correctly, and that it is acceptable to the "prog.c” program. In addition,
assuming "prog.c” uses the system library "/usr/lib/jobs”, if either

"prog.c” or "/usr/lib/jobs” is modified, Odin will check that prog.c still

runs successfully with "thesis.txt” as input.

The list of sentinel objects is stored in the special Odin object
specified as a vertical bar {'|'). Any user is permitted to add arbitrary
Odin objects {and therefore arbitrary semantic constraints) to this
special object. A list of all sentinel violations can be obtained by

requesting the object,
| :compound :err

where ":compound” invokes the internal Odin tool, COMPOUND, and ":err”

invokes the internal Odin tool, ERROR (see "Tools").

-13-

2.2. Odin Commands

There are two basic Odin commands : the display command which is
used to view an object and the transfer command which is used to copy or
modify an object. A basic commands consist of the name of an Odin
object, possibly followed by a description of what is to be done.with that
object. In addition to the basic commands, there are four utility
commands concerning history substitution, command scripts, host
system commands, and help. The utility commands are used to invoke
previously specified Odin commands or to query various characteristics of

the Gdin system.

2.2.1. Display Command

The display command prints out an Odin object to the current
standard output device, normally a terminal screen. An Odin object is

displayed by specifying its name. For example,
test.c

weuld display the file named "test.c"” in the current directory.
test.c +lib={/usr/lib/simple.a) :run

would display the results of running the file "test.c’ when loaded with the

library "' /usr/lib/simple.a".

2.2.2. Transfer Command

The basic form of the transfer command copies the contents of one
Odin object into another Odin object. The second object must be a
primitive object. An Odin object is copied by appending to the name of
the first object a right-angle-bracket (">') and the name of the second

object. For example,

-14 -

test.c > testZ.c
would put a copy of the contents of "test.c” into "test2.c".
test.c :run:err > test.err

would put into "test.err” a copy of the list of errors generated in

attempting to run ”tesbt.c".

In case it is desired that the copy should only take place if it would
violate no sentinels, the "guarded copy” form of an Odin command script

should be used (see "Sentinels” and "Command Scripts”).

An extended form of the transfer command places an object as input
to a host system command. This allows the use of host system "editors”
or "viewers”. In this form of the transfer command, appended to the
object is a right-angle-bracket (">’), a colon (*'), and the name of the host

system command. For example,
test.c >:vi

would invoke the host system editor "vi” on the file "test.c”, while
test.c ;run :err > :more

would display the list of errors by running the host system command

"more' with the list of errors as its input.

In case the colon and host system command name is omitted, a
default host system command is invoked. The name of the default host
system command is specified in the Odin "Editor” variable (see "Odin

Variables'). For example, if the default host system command is "vi’,

then the following two commands are equivalent :

prog.ref >
prog.ref > :vi

-15-

2.2.3. History Substitution

A list of all basic commands invoked during a given Odin session is
maintained by the Odin system. This list can be displayed and modified,
and commands from this list can be selected and modified for re-
execution.

The exclamation point character ('!I') is to display the history list.
Since the history list can grow quite large, only a given number of the
most recent commands are actually displayed. This number is specified
by the History variable (see "Odin Variables").

The history list can be modified by specifying the history list as the
object in a transfer command. For example,

1>
would invoke the host system editor ""vi” on the history list.

A given command from the history list can be selected for execution
by following the exclamation point with an integer or a word. An integer,
i, selects the i’th most recent command in the history list. For example,

11
would select the last basic command for re-execution. A word selects the
most recent command that contains that word, where a word is an
alphanumeric string. For example,

‘run
could be used to select the command

test.c:run :err

The selected command can be modified before being re-executed by

specifying the selection in the form of a transfer command. For example,

-16 -

‘run > :vi
specifies that the "run" command should be given to the host system

editor, "vi", before being re-executed. In case no change has been made

by the host system editor, the command will not be re-executed.

2.2.4. Command Scripts

An Odin command script consists of an Odin object that contains a
list of Odin commands. This command script can be invoked by
specifying a left-angle-bracket ("<') and the name of the Odin object. For

example, if "script.odin” contained a list of Odin commands,
< script.odin
would invoke all the commands in script.odin.

2.2.4.1. Guarded Copy In case it is desired that a sequence of copy
commands be performed only if no sentinels would be violated by the
results of performing these commands, the "guarded copy” form of
command script invocation should be used. In this form, the left-angle-
bracket is immediately followed by a vertical bar (’]'). All commands in a
script invoked from a "guarded copy” must be simple transfer commands
{(see "Transfer Commands”). For example, if the file "test.copy”

contained the following text :

/usr/tmp/test.c > /sys/rn.c
/usr/tmp/fix_lib.a > /usr/lib/jobs.a

then the command :
<| test.copy

would cause Odin to check the effect of these two transfer commands on
all the sentinel affected by them, with the changes only being made if no

sentinels are violated. If simply

-17 -~

< test.copy

were used, then the changes would be made whether or not any sentinels

were violated in the process.

2.2.5. Host System Commands

Host system commands can be invoked by specifying a percent sign
(%) and a host system command. If the host system command contains

Odin metacharacters (such as '<’, '>’, and ":’), then the command must

s

be enclosed in quotes (""’). For example,

% s
% 'ls *.c > dir.list’

would invoke the "ls” and "ls *.¢ > dir.list"” host system commands.

2.2.6. Help

A simple help facility is provided to describe the syntax of Odin
commands and Odin objects. A list of topics is generated in response to a
single question-mark ('?). Following is a complete list of the current
topics, and the results of requesting each topic.

?

Topics :
Syntax
Help
Quit
Display
Copy
Edit
Script
HostCommand
Variables
OdinFileName
HostFileName
Operation
Parameter
ParameterKey
ParameterValue
FileType
BaseType

..18..

? syntax
[a] is optionally a
[a]... is zero or more a's

? help
2

? Topic

OdinFileName : ?
OdinFileName + ?
OdinFileName + ? : FileType

? quit
Controel-D

? display
OdinFileName

? copy
OdinFileName > OdinFileName

? edit
OdinFileName Editor

? editor
>
>: EOST_TOOL

? history
i

i Editor
| HISTORY_ENTRY
' HISTORY_ENTRY Editor

? script
< QdinFileName
<| OdinFileName

? hostcommand
% [NAME]...
% 'STRING’

? variables
? =
VARIABLE =7
VARIABLE =
VARIABLE = VALUE

? cdinfllename
HostFileName [Operation]...
| [Operation]...

? hostfilename
FILENAME.BaseType

19

? operation
+ Parameter
: FileType
@ KEY

? parameter
ParameterKey [= ParameterValue]

? parameterkey
Use a help command of the form
OdinFileName + ?
or
OdinFileName + ?: FileType
to determiine appropriate ParameterKeys

? parametervalue
NAME
'STRING’
(OdinFileName)

? flletype
Use a help command of the form
OdinFileName : ?
to determine appropriate FileTypes

? basetype
Use a help command of the form
? .

to determine appropriate BaseTypes

-20-

2.3. Odin Variables

Odin provides to the user a set of variables. These consist of read-
only variables and user-modifiable variables. A read-only variable
provides to the user status information about the Odin system; a user
modifiable variable allows the user to affect the operation of. Odin in
~ various ways. Currently the functions affected by changing the values of
user modifiable variables are the working directory, the default editor,
the help facility, the history facility, the log facility, and the maximum

total file space used by derived objects.
Dir

In commands, file names that do not begin with a slash ("/’) refer to
files with respect to the current working directory. Initially this directory

is the one from which Odin was invoked by the user. This directory can be

changed by modifying the value of the Dir variable.

Frr¥ile

All error messages are sent to a file which is initially set to be the
standard output device. These messages can be redirected by modifying

the ErrFile variable.

Editor
The Editor variable specifies the name of the default host system tool

to be used for the abbreviated form of the transfer command.

HelpLevel

The HelpLevel variable specifies what degree of detail should be
provided when the user asks for a list of possible derived file types (with

the "file :?" help command). Normally, only commonly used file types are

-21-

described, but the HelpLevel can specify that all possible file types should

be described.

History
The History variable specifies how many of the recent commands

should be listed when the history list is displayed (see 'History

Substitution”).

LogFile, Loglevel

The "log" contains a brief description of each of the tools that were
inveked to satisfy the request for an object. In addition, whenever a
derived flle is deleted by Odin to conserve disk space, a message
describing the file deleted is sent to the log file. Since objects are saved
by the Odin System between reguests, the tool executions needed to
satisfy a given request will vary. In particular, if an object is requested
immediately after a request for that same object, no tools will be invoked.
The LogFile variable specifies where the log information should be placed
and the Loglevel variable specifies how detailed the generated log

information should be.

MaxSize, MinSize, Size

Since the Odin system has the capability of deleting and recreating
derived objects at will, parameters of interest are how much total space
the derived files should be allowed to occupy and how much space is
currently being occupied. After an Odin command is completed, derived
objects will be deleted if necessary until Size is less than the MaxSize.
The MinSize variable is provided to allow Odin scripts to specify that
MaxSize should be at least a specified amount, without affecting MaxSize

if it is already larger than that amount.

-22 -

Sentinel

The Sentinel variable is a boolean that can be on or off. Normally any
modification to a file during an Odin session will cause a broadcast of the
change to all affected derived files. Any objects specified as sentinels will
automatically be updated to reflect the modification. If the Sentinel
variable is turned off, no broadcasts will take place, and no sentinels will

be updated until such an update is explicitly requested.

Verify

The Verify variable is a boolean that can be on or off. Normally Odin
assumes that any modification to a host system file will take place
through an Odin transfer command, and that the modification will be
broadcast to all derived files that this would affect. In case host system
files were modified other than through an Odin transfer command, or
were modified while the Sentinel variable was turned off, the Verify
variable should be turned on to indicate that actual host system date
stamps should be inspected to determine if host system files have been

modified.

2.3.1. Variable Manipulation Commands

Four commands are provided to manipulate these variables :

2.3.1.1. Show VYariables

A list of the available variable names is generated in response to the
command,

7=
Currently, this command would generate the list,

Dir Editor ErrFile HelpLevel History LogFile LogLevel

-23-

MaxSize MinSize Sentinel Size Verify

Of these variables, only Size is read-only.

2.3.1.2. Describe Yariable

A description of the pocssible values that can be assigned to a given

variable is generated in response to the command,
Variable = ?
The descriptions of the current set of variables are as follows :

Dir =7
The current working directory.

Editor = ?
The default editor.

ErrfFile =7
1: Error information sent to standard output.
2 : Error information sent to standard error.
filename : Error information sent to file named "filename".

HelpLevel = ?
1 : Help returns information for common file types.
2 : Eelp returns information for all file types.

History = ?
The number of lines displayed from the history file.

LogFile = ?
1: Log information sent to standard output.
2 : Log information sent to standard error.
filename : Log information sent to file named "filename".

Loglevel = ?

: No log information is generated.

: Insert commands executed by scripts into the log.
: And names of objects generated by external tools.
: And names of objects generated by internal tools.
: And names of objects deleted.

: And names of objects touched by broadcast.

D P> W NI

MaxSize = ?
The maximum disk space (kilobytes) to be used by derived objects.

MinSize = ?
A minimum value for MaxSize {will not decrease MaxSize).

-24 -
Size = ?
The current amount of disk space (kilobytes) used by derived objects.
Sentinel = ?
off : Sentinel validation ofl.
on : File modification validated by Sentinels.
Verify = ?

off : Assume all host system files modified through Odin.
on : Check all host system files for external modification.

2.3.1.3. Show Variable Yalue
The value of a variable is generated in response to the command,
Variable =

where ''Variable" is a legal variable name. The default values of the

current variables are :

Dir =
the directory from which Cdin was invoked

Editor =
vi

Errfile =
1

Helplevel =
1

History =
S

LogTile =
1

Loglevel =
3

MaxSize =
5000

MinSize =
5000

Size =
0

-25-
Sentinel =

on
Verify =

off

2.3.1.4. Set Variable
A variable is given a new value with a command of the form,
Variable = Value
For example,
Dir = ../src
Editor = emacs
ErrFile = err.out
Helplevel =2
History = 10
Loglevel =5
LogFile = test.log
MaxSize = 1000
MinSize = 7000
Sentinel = of
Verify = on
An attempt to set the value of a read-only variable will generate an error

message.

-26 -

3. SPECIFICATION LANGUAGE

The specification language is designed to allow the integration of any
existing tool or set of tools into the Odin System, with no modification to
the tools themselves. This is critical when a tool only exists in the form of
executable binary, as is often the case for host sys‘tem provided tools.
The only tools provided by the Odin System itself are ones whose purpose

is to support this task of integration.

For example, a compiler would be provided in an Odin environment
by describing the host system compiler in the Odin specification
language. On the other hand, Odin itself provides a tool that will interpret
a file containing a list of file names as a "collection of files"”, so that this
collection of files can be treated as a single object by a user of Odin. Odin
would ensure that a reguest to run a tool on this collection would in fact

invoke the tool on each of the elements in the collection.

The specification of each tool is entered into a text file called a
"derivation graph”. Basically, a specification consists of a description of
the input and output behavior of the tool, and the host system command

file or Odin system tool that performs the desired operations.
For example, a simple formatter could be described as follows :

fmt "formatted version of C code”:
USER pol_c.crmd
i c

where fmt is the name of the results of applying a C code formatter, the
string in quotes cn the first line describes this object, the name following
the keyword USER on the second line specifies the host system command
file that will invoke the formatter, and ¢ names the kind of file which is

suitable as input to the formatter.

-27 -

In general, the i/o behavior of a tool can be far more complex than
this simple example, but this basic model of the naming the output of a
tool, naming the procedure that invokes the tool, and then describing the

input to the tool, will always be followed.

~-28 -

3.1. Atomic File Types

Every type of file that is to be edited directly by the user is given a
unique "atomic file type”. Each atomic flle type is declared in the
derivation graph by specifying the name of the atomic file type followed
by the keyword ATOMIC and a string that provides a short English
description of that type of file. For example, atomic file types for C and

Fortran source code could be declared as follows :

c ATOMIC "C source code”
f ATOMIC "Fortran?7 source code”

The English description is given with the name of the atomic file type
when a user requests at run time a description of what atomic file types

are currently known by the system (i.e. "? basetypes’).

" -29-

3.2. Derived File Types

Every type of file that is produced by some computer program or
tool is given a unique "derived file type". Each derived file type must be
described in the derivation graph. A description of a derived file type
consists of a description of the structure of the derived file followed by a
description of the tool that produces the derived file and a description of
the inputs needed by the tool. For example, in the following rather

complex derived file type description :

dbx <
exe-dbx ~null "executables for a dbx run”*
srcs-dbx (null} "sources for a dbx run'*
keys-dbx (null) "names of source files for a dbx run”*
core-dbx "core dump for a dbx run"*
> "Berkeley symbolic debugger run” :
USER dbx.cmd

: exe

: {objsrcU)

: (objkeyU)

: PARAMETERS(id)

the description of the the structure of the derived file is :

dbx <
exe-dbx ~null "executable for a dbx run"*
sres-dbx {null) “sources for a dbx run”
keys-dbx (null) "names of source files for a dbx run"*
core-dbx "core dump for a dbx run”*
> "Berkeley symbolic debugger run” :

the description of the tool is:
USER dbx.cmd
and the description of the input is:

. exe
: {objsrcU)

: {objkeyU)

: PARAMETERS(id)

As with atomic file types, derived flle types are associated with a

string that provides a short English description of that type of file. This

-30 -

English description is given with the name of the derived file type when a
user requests at run time a list of what file types can be derived from a

given object, based on the file type of that object.

This description can be marked with an asterisk indicating that it
describes an ‘'intermediate derived file type”. The Odin variable,
HelpLevel, specifies whether intermediate derived file types will be
included in help messages. The default is to not report intermediate
derived file types. In the example above, exe-dbx, keys-dbx, and core-dbx

were declared as intermediate derived file types.

3.2.1. Derived File Structure

Due to the great variety in output behavior of tools, it is necessary to
provide a flexible language for describing the various possible kinds of
derived file types. Examples of different kinds of outputs that a tool
might generate would be a single data file, a single file that refers to
another file, a fixed number of different kinds of output files, or an
arbitrary number of similar cutput files. The description of the structure

of a derived file is always terminated by a colon.

3.2.1.1. Simple Derived File

A file with a "simple” derived file type is just an ordinary text or data
file. Some common simple file types would be assembler code generated
from a higher level language, executable binary, cross reference listings,
and error reports. A simple file type is analogous to a basic variable type
in a programming language, such as booleaﬁ, character, or integer. QOdin

allows a user to introduce an arbitrary number of such basic types.

A simple derived file type specification consists of the name of the

derived file type followed by a text string describing the type and a colon.

-31-

For example, in:
exe "executable binary’ :

"exe" is declared to be a simple derived file type.

3.2.1.2. Reference Derived File

A file with a "reference’ derived file type is a file that refers to
another file. This is analogous to a pointer type in a programming
language. Whenever such a file is used, such as when it is displayed or
when it is given as input to a tool, it is automatically dereferenced by
Odin so that what is displayed or received as input is actually the file
referred to. There are two kinds of reference derived file types - pointer

reference and name reference.

Pointer Reference Derived File

A file with a "pointer reference” derived file type contains the actual
name of the file being referred to. For atomic files, this is just the host
system flle name; for derived files this is the name of the file in which
Odin chose to place the information for that derived file, such as
"/usr/odin/ODIN/FILES,/c/157823".

A pointer reference derived file type specification is like a simple
derived file type specification except that immediately following the name
of the file type is added a carat {'~') and the file type of the file being

referred to. For example, in :
tgi_ptr ~ tgi "parser grammar" :

"tgi_ptr” is declared as being a pointer to a file of type "tgi'".

-32 -

Name Reference Derived File

A file with a "name reference” derived file type contains an Odin
command specification of a file. For atomic files, this will be just the host
system flle name, the same as in a pointer reference file types; for
derived files this will be a specification of the derived file, .such as

"a.f:fmt"” or "test.c +lib=(/usr/lib/network.a) :run".

A name reference derived file type specification is like a pointer
reference derived file type specification except that immediately
following the name of the referred to file type is added an at-sign ('@').

For example, in:
f main ~ fcast@ "scanner default main program” :

“f_main" is declared as containing the name of a file of type "fcast".

3.2.1.3. Compound Derived File

A file with a given "compound” derived file type consists of a set of
files, each of which has the same file type called the "element file type"” or
is another compound derived file of the given type. A compound file that
contains only files of the element file type is called a "flat compound file"
- one that alsc contains other compound files is called a "nested
compound file”. A flat compound file is analogous to an array in a
programming language - a nested compound flle is analogous to a tree.
There are two kinds of compound derived file types - compound reference

type and compound source type.

Compound Reference Derived File

A file with a "compound reference” derived file type consists of a list
of references to other files. These references can be either by pointer or

by name, as with reference derived file types.

-33-

A compound reference derived file type specification is like a simple
derived file type specification except that immediately following the name
of the file type is added the name of the element file type in parentheses.

For example, in:
objC (obj) "list of object modules” :
"objC" is declared as containing pointers to elements of type "obj".

If the reference is by name, an at-sign ('@') is appended to the
element file type name. For example, in:

so_ref (null@) "list of nroff included files" :

"so_ref’ is declared as containing the names of elements of type "null".

Compound Source Derived File

A file with a "compound source” derived file type consists of a set of
files, all of which were generated by the tool. This is distinguished from
compound reference flles where only references to existing files are
generated by the tool.

A compound source derived file type specification is like a compound
reference derived file type specification except that square brackets

(['’]) are used instead of parentheses. For example, In:
output [data] "output files from a test run”:

"output' is declared as being a set of files of type "data”.

3.2.1.4. Composite Derived File

A file with a "composite” derived file type consists of a set of a fixed
number of files, each of which has a specific, although possibly different,
file type. This is analogous to a record or structure type in a

programming language. In Odin, most tools that are normally considered

..34..

to produce multiple outputs are instead considered to be tools that
produces a single composite file as output. The members of a composite

file type can be compound, reference, or simple file types.

A composite derived file type specification is like a simple derived file
type specification except that immediately following the name (.>f the file
type is added a pair of angle brackets ("<’ '>’) containing a list of member
file type specifications. Each member file type specification is either a
compound, a reference, or a simple file type specification, except that

the terminating colon is omitted. For example, in:

fscan <
fst "scanner tables"*
fst_lst "fscan compiler listing”*
f drive ~fcast®@ "scanner driver routines”*
f_main ~fcast@ "scanner default main program'*
> "scanner tables''*:

"fscan” is declared as being a structure containing four elements - a
simple type "fst”, a simple type "fst_Ist”, a name reference type "f_drive”,
and a name reference type "f _main”. The tool that produces "fscan”
would be responsible for generating an "fst”, an "fst_Ist”, an "f_drive”, and
an ''f_main” output flle - the Odin system would then be responsible for

producing the fscan composite file from these four members.

3.2.2. Inputs

In order to produce a file of a given type, cne or more input files are
needed by the tool that creates this file. These input files are specified as
a list of file types, each preceded by a colon. These file types can be
atomic file types, derived file types, or parameter file types. For

example,

f-scan (f) "source files for a scanner module”* :
COLLECT
: fst

-35-

: f drive
specifies that the file types "fst” and "f_drive” are needed as input.

In addition, it is sometimes convenient to have a constant file as an
input file, where this constant file contains data needed by the tool. In
this case the name of the constant file is placed in quotes, again preceded
by a colon. In the above example, if "f_drive” is the same for all tool
invocations, the specification could be modified to read :

f-scan (f) "'source files for a scanner module"*:

COLLECT
: fst
: " /usr/lib/std.f_drive”

3.2.2.1. Parameter File Types

Normally, when a derived file is being produced, the actual inputs to
a tool are determined automatically by Odin based on the object from
which the file is derived. It sometimes is the case that a user would like
to pass additional information to certain of the tocls. This can be done
when a derived file is requested at run time by appending to the
description of the object from which the file is derived, a list of
parameters. A parameter consists of a parameter file type followed by
the information that is to be placed in the input file corresponding to that
parameter file type. If the parameter value is a compound file, then
instead of creating an input file for that parameter, an input directory is
created, and each element of the compound file is linked into that
directory with a name matching its Odin key. Normally a tool will allow a
parameter file to be omitted, in which case a default value will be

assumed.

The parameter file types used as input to the tool producing a given

file type are described in the derivation graph by specifying the keyword

-36 -

PARAMETERS followed by a list of parameter names separated by

commas. For example,
: PARAMETERS (debug, lib)

would indicate that the "debug" and "lib" parameter files will be used.

3.2.2.2. Transitive Needed File Types

In case one of the needed file types is a compound file, the question
arises whether just the list of names of elements of the compound file is
needed, or whether the data in those files is needed as well. The default is
that only the list of names is needed. If the data in these files is needed,
this is specified by placing parentheses arcund the apprepriate needed
file type. For example,

: (cmpd)
would indicate that the elements of the "cmpd” input are required, while
:cmpd

would indicate that only the names of the elements of the "cmpd" input

are required.

3.2.3. Tools

The tool specifies what process must be executed to produce the
specified derived file from the specified inputs. There are two kinds of
tools - "internal tools" that are provided by Odin and "external tools” that

are provided by the user.

3.2.3.1. Internal Tools

An internal tool is selected in a derived file specification with the

-37-

keyword for that internal tool. For example, in the specification

ckey "name of c file"* :
KEY
ic

the internal tool KEY is selected.

Currently there are sixteen internal tools :

STRUCT

The STRUCT internal tool produces a composite file from a text file
containing a sequence of odin file specifications, one per line. Each
specified file in order is placed as the corresponding member of the
composite flle. If the number of lines in the text file is not equal to the
number of members of the composite file, the STRUCT tool generates an

Eerror message.

COMPOUND

The COMPOUND internal tool produces a compound pointer reference

file from a compound name reference file.

COLLECT

The COLLECT internal tool preduces a single compound reference file
from a set of compound reference files by constructing a new compound

reference file whose elements are the set of input files.

FLATTEN

The FLATTEN internal tool produces a flat compound file from a
nested compound file. This is done by performing a depth first search of
the input compound flle, and adding a reference to each simple file found,

in the order in which it is visited, to the output file.

-38 -

UNION

The UNION internal tool produces a flat compound file from a nested
compound file. This is similar to the FLATTEN internal tool, except that
only one copy of each element file is placed in the result - if a file has
already been placed into the result file, any later occurrences of that file

in the input compound file will be ignored.

HOMOMORPHISM derivation-spec

The HOMOMORPHISM internal tool produces a compound file from
another compound file by applying the derivation following the
HOMOMORPHISM keyword to each element of the input ¢ompound file. A
derivation is specified for homomorphisms in the same way that a derived
file is specified in the Odin command language, except that the keyword
HOMOMORPHISM is treated as the atomic file, and vertical bars {'|') are
used in place of colons (':'). For example, if it is desired that the
"obj_src" derivation be applied to each element of the input compound

file, then the tool would be specified as

HOMOMORPHISM | obj_src

P-HOMOMORPHISH derivation-spec

The P-HOMOMORPHISM (parameterized homomorphism) internal tool
is identical to the HOMOMORPHISM internal tool, except that the
parameters used to produce the input to the tool are added to the
parameters specified for the P-HOMOMORPHISM tool. This is used
primarily when a tool is to be applied recursively to its results, in which
case it is desirable that the parameters be passed along to the recursive

invocations.

-39 -

APPLY

The APPLY internal tool is similar to the HOMOMORPHISM tool, except
that the derivation to be performed is stored in a file rather than
specified in the derivation graph. Unlike the HOMOMORPHISM tool which
applies one derivation to each of the elements of its input file, the APPLY
tool applies each of the derivations in its first input flle to its second input
file. The APPLY tool provides the ability to generate at runtime the

derivations to be performed.

KEY

The KEY internal tool generates a file containing the key of the input

file. This is the key that would be used by the Odin selection operator.

CAT

The CAT internal tool produces a simple file from a compound file by
concatenating together the contents of all simple files that are elements
of the compound file. The order of concatenation is the same depth first

order of the FLATTEN and UNION internal tools.

ERROR

The ERROR internal tool produces a simple file from an arbitrary
input file. This simple file contains all error messages generated by any

tool in the process of creating the input file.

WARNING

The WARNING internal tool produces a simple file from an arbitrary
input file. This simple fille contains all warning and error messages

generated by any tool in the process of creating the input file.

-40_

SENTINEL

The SENTINEL internal tool produces a compound file from an
arbitrary input file. This compound file will consist of all sentinels that

depend on the input file.

NAME

The NAME internal tool produces a simple file from a compound or
composite file consisting of the names of all the elements or members of

the input file.

COPYCHK

The COPYCEK internal tool produces a composite flle from a simple
file. The input file must be a sequence of simple transfer commands. The
composite file generated consists of two compound reference files - the
first a list of the origin files for the transfer commands and the second a

list of the destination files for the transfer commands.

COPYTST

The COPYTST internal tool produces a compound reference flle from
two compound files. The first input file is an arbitrary list of Odin objects.
The second input file is a list of two compound files, the first of which is a
list of origin files for transfer commands and the second of which is a list
of destination files for transfer commands (as produced by the COPYCHK
tool). The output of the COPYTST tool is a list of objects corresponding to
those in the first input file, where each object is modified to show what
the effect would be of performing the specified set of transfers. This teol
in conjunction with the COPYCHK tool is used to implement guarded

commands (see "Command Scripts”).

-41 -

3.2.3.2. External Tools

An external tool is selected in a derived file specification with the
keyword USER followed by the name of a host system command file that
implements that tool. This host system command file is written with
macro names in place of the various input files it will use and output files
it ‘will produce. When it is necessary to generate a given derived file
whose tool is an external tool, Odin creates a copy of the command file
with macro names replaced with actual file names. This modified

command file is then given to the host system to execute.

For example, if the obj_f type was specified in the derivation graph as

follows :

obi_f <
obj-f "Fortran7? object module"*
obj_key-f "Fortran?7 source code file name’'*
obj_src-f ~null "Fortran?7 source code"*
> "Fortran77 object module information”* :
USER obj_f.cmd
. f

: fkey
. PARAMETERS(debug)
then the "obj_f.cnd” file for a Berkeley 4.2 Unix machine could be :
cd $(RUNDIR)
set source = ‘cat §(fkey)’
if ($source:e != 'f’) set source = $source.f
In -s $(f) $source

set flags ="
if {(-e $(PRM)/debug) set flags = '-g’

(f77 $flags -c $source) >&! ERRORS

sed -n '/rror/p’ < ERRORS >! $(ERROR)

sed -n ' /arning/p’ < ERRORS >! $(WARNING)
if (-e $source:r.o) mv $source:r.o ${obj-f)
echo "$source’" >! $(obj_key-f)

echo "$(f)" >! $(obj_src-f)

echo 0 >! $(0K)

- AD -

The command file for an external tool is considered to be one of the
inputs that affects any object that is produced by that external tool. This
implies that any time a command file is modified, all objects produced

from that command file will be regenerated.

Macros

Command file macros consist of a dollar sign ('$). a left parenthesis
(), a macro name, and a right parenthesis (")), with no embedded

spaces. Examples of macros would be:

$(f)
$(ERROR)
$(<2)

Input File Name Macros

An input file is specified in a command file with a macro name that is
the derived file type name for that input. For parameter inputs, there is
a standard directory whose macro name is PRM into which all files for
parameter inputs are placed by name. Therefore a parameter input is
referenced by $(PRM)/parameter-name. For example, with the preceding
specification for obj_f, the macro $(f) would stand for the input file of type
£ the macro $(fkey) would stand for the input file of type fkey, and the
macro $(PRM)/debug would stand for the input file associated with the

debug parameter.

In case the parameter value is a compound file, the elements of the
compound file will be linked into a directory that can be referred to as
$(PRM.DIR)/parameter-name. The name of an element in this directory

will be the same as its Odin key.

An alternative specification of an input file is with a macro name that

consists of a left angle bracket ('<’) followed by an integer. Assuming k is

- 43 -

an integer, $(<k) would refer to the k'th input in the derived file type
specification. In the example above, $(<1) would be equivalent to $(f),
and $(<2) would be equivalent to $(fkey). The purpose of this alternate
method is to allow one command file to be used for several different but
related external tools even when they have different input file types. For

example, in the following specifications :

inc_ref-i (null@) "list of m4-style included files"*:
USER inc_m4.cmd
T 1
inc_ref-mf (null@) "list of m4-style included files"*:

USER inc_m4.cmd
: mf

the process that is run on a file of type i is the same as the one that is run
on a file of type mf. In this case, $(<1) would have to be used in the
inc_m4.cmd command file to refer to the input flle. For example, on a

Berkeley 4.2 Unix machine, the following inc_m4.cmad file could be used :

cd $(RUNDIR)
($(TOOL)/inc_m4.exe < $(<1) >! $(>1)) >&! $(ERRCR)
echo 0 >! §(0K)

In addition to the macros for input files, there are three standard
macro names, CURDIR, RUNDIR, and TOOL. $(CURDIR) stands for the
directory containing the host system file from which the output file is
derived. $(RUNDIR) stands for a temporary working directory in which
the command file will be executed. $(TOOL) stands/for the standard
directory in which is placed the executables for external tools that are

not provided by the host operating system.

Output File Name Macros

An output file is specified in a command file with é macro name that
is the derived file type name for that output. For simple, reference, and
compound reference derived file types, there would be just one output
file. For compound source derived file types there would be one output
directory in which each element of the compound source file will be
created. For composite derived file types, there would be one output file
for each member of the composite type. For example, with the
specification :

run <
stdout "standard output from a test run {when +out is set)”
output [data] "output files from a test run”
core-run ""core dump of & test run”*
> "test run”:
USER run.cmd
: exe

the output from the test run would be placed in the file $(stdout), the files
generated by the test run will be placed in the directory $(output), and
the core dump if any will be placed in the file $(core-run). An example of

a run.cmd file for Berkeley 4.2 Unix would be :

cd ${output)

($(exe) >! gstdout) >& $(WARNING)
if ($status != 0) echo run failed >>! $(ERROR)

if (-e core) mv core $(core-run)

echo 0 >! $(CK)

Analogously with input files, an output file can be specified with a
macro name that consists of a right angle bracket > followed by an
integer. Assuming k is an integer, $(>k) would refer to the k'th output in
the derived file type specification. In the example above, 3(> 1) would be

equivalent to $(stdout), $(>2) would be equivalent to $(output), and $(>3)

- 45~

would be equivalent to $(core-run).

In addition to the macros for output files, there are three standard
macro names for error reporting : ERROR, WARNING, and OK. If any fatal
errors are encountered, these should be written to the file specified as
%(ERROR). If any recoverable errors are encountered, these si'lould be
written to the file specified as $(WARNING). Finally, when the script
terminates, a line consisting of the character '0’ should be written to the
file specified as $(0K). The file $(0OK) will be used by Odin to determine if
the script was able to terminate - if the script itself dies $(0K) will be left
empty and Odin will assign abort status to the output of the tool. If the
script did not abort, the files $(ERROR) and $(WARNING) will be used by
Odin to determine if error or warning status should be set for the output

of the tool.

- 48 -

3.3. Linking File Types

A linking file type is declared in the derivation graph by specifying
the name of the linking file type followed by the keyword DERIVED and a
string that provides a short English description of that type of file.
Linking file types are used to specify relationships between other file

types in the derivation graph.

It frequently occurs that the input necessary to produce a given
derived file type, TypeX, can be provided by two or more different file
types, Srcl and Src2. Rather than specify two derived file types, TypeX1
and TypeX2, where TypeX1 can be derived from Srcl and TypeX2 can be
derived from Src2, it is more convenient to link the two possible input file
types to a new file type, SrcX, and specify that this new file type is the

input file type to produce TypeX.

For example, suppose that input to produce an executable binary file
type "exe" can be provided by both the file type "obj-c” produced by a C
compiler and the file type "obj-f" produced by a Fortran compiler. Rather
than specifying two different file types, e.g. "exe-c” and "exe-f', that
produce executable binaries from "obj-c" and "obj-f" files respectively, a
linking file type "obj" can be specified :

obj DERIVED "relocatable binary”

This "obj" file type is then specified as the input to the tool that produces
an "exe” file type. Equivalence links are then specified to indicate that

either "obj-¢" or "obj-f" can be used as an ""obj" file type.

3.3.1. Equivalence Links

A equivalence link is created by specifying the "from" file type

followed by an arrow ("=>") followed by the "to" file type. In the preceding

-47 -

example these links would be added to the derivation graph :

obj-c => obj
obj-f => obj

3.3.2. Cast Links

It sometimes occurs that a file type that is derived from a given file
type can be used in the same way that the given file type could be used.
The commonest example of this would be a program formatter. The
output from the formatter can be used in all the ways that the original
file could be used - it can even be formatted again. This situation is
indicated in the derivation graph by specifying a cast link from the
derived file type to the given file type. A cast link is speciflied like an
equivalence link except that the head of the arrow is a vertical bar ("=]").
For example, to indicate that formatted ¢ code can be used whenever ¢

code can be used, the following would be specified :

fmt-c =| ¢

_4_8._

3.4. Pre-Defined File Types

Four pre-defined file types are provided by the specification language
to facilitate the construction of generic tools that accept virtually any
text or data as input. An example of such a tool would be a "diff"" tool that

detects differences between two files.

These pre-defined file types could be thought of as being specified in

a standard derivation graph prelude of the form:

.composite ATOMIC "Any Composite File"
.compound ATOMIC "Any Compound File"
.derived ATOMIC "Any Derived File"

.simple ATOMIC "Any Atomic or Simple Derived File"
The diff tool could then be specified as :

diff "list of differences between a set of flles” :
USER diff.cmd
: .compound

In addition, to allow control over how a given object is displayed, the

linking file type
.view DERIVED "The Form in which an Object is Displayed”

is provided. Before any object is displvayed or transferred, the Odin
system will attempt to perform the ".view" derivation from that object. If
no such derivation can be performed, the original object is used. For

example, if the derivation graph contains the specification :

c-narme => .view
c-name 'names of the elements of a composite file"*:
NAME
: .composite

then whenever a composite object is requested, the names of members of

the composite object will be displayed.

-49 -~

3.5. Comments

Comments can be placed anywhere within the derivation graph. A
comment is initiated with the sharp character ("#) and is terminated by

the end-of-line character.

-50-

4. IMPLEMENTATION

The Odin command interpreter is currently implemented in the
language C on a VAX 11/780, consisting of 13,000 lines of source code. It
is being used to develop the TOOLPACK [Ostr 82] software environment,
and a subset of Odin has been translated into FORTRAN-77 to be used as
the command interpreter and tool integration mechanism for the

portable TOOLPACK/IST software environment.

The Odin derivation graph compiler is also implemented in the
language C on a VAX 11/780, and consists of 3,000 lines of source code.
There exist Odin derivation graph specifications for the objects produced
by most popular Unix tools, for all TOOLPACK objects, and for the objects
created by the TREGRM/FSCAN [Clemm 83, Clemm 81] parser generating

system.

....51_

5. ACKNOWLEDGEMENTS

Stu Feldman's Make process [Feld 79] and Lee Osterweil’s Virtual File
System [Ostr 81] are critical elements in the design and implementation
of Odin. The need and motivation for a system such as Odin was provided

by Lee Osterweil and the Toolpack project [Ostr 82].

[Clemm 81]

[Clemm 83]

[Feld 79]

[Ostr 81]

[Ostr 82]

-52-

REFERENCES

G. M. Clemm, "FSCAN Report”, University of Colorado

Technical Report #CU-CS-202-81, 1981.

G. M. Clemm, "TREGRM Report and User's Manual’,
University of Colorado Technical Report #CU-CS-249-83,

1983.

Stuart 1. Feldman, '"Make--A Program for Maintaining
Computer Programs,” Software—Practice and Erperience 9
(April 1973) pp. 255-263.

L. J. Osterweil, "Preliminary Toolpack Architectural Design”,

Dept. of Comp. Sci., Univ. of Colo., Boulder, Colo., 1981.

L. J. Osterweil, "Tooclpack - An Experimental Software
Development Environment Research Project”, Proc. 8th Int.

Conf. on Software Eng., Tokyo, pp.166-173.

-53 -

Appendix A:
Syntaz of Odin. Commands

Command
-> Display
-> Transfer
-> History
-> Script
-> HostCommand
-> Help
-> Variable ;

Display
-> DerivSpec ;

Transfer
-> DerivSpec '>’ DerivSpec
-> DerivSpec Editor ;

Editor
->'>' "' ToolNamne
>

History
_> '!l
-> 1" Editer
-> 'V HistoryEntry
-> 'V HistoryEntry Editor ;

Script
->'<' DerivSpec
-> <" '|" DerivSpec ;

HostCommand
->'% "Word''+ ;

Help
>
->'?" Topic
_> l:l l?’
-> DerivSpec *:' '?
-> DerivSpec '+' "7
-> DerivSpec '+ '?" "' Derivlype ;

Variable
-> I?I !=l
-> VarName '=" "7
-> VarName '=’
-> VarName

‘=" VarValue ;
DerivSpec

-> AtomicFN

-> AtomicFN Operations ;

Operations
-> Operation+ ;

Operation
->'+'Prm
-> "' Derivlype
->'@" Element ;

Prm
-> PrmKey

-> PrmKey '=' PrmVal ;

PrmVal
->"Word"
->'(" PrmValFile)" ;

PrmValFile
-> DerivSpec ;
AtomicFN
_> si»
->"Word" ;

DerivType -> "Word"

HistoryEntry -> "Word" ;

Topic -> "Word"" ;
PrmKey -> "Word" ;
ToolName -> "Word" ;

Flement -> "Word" ;

-55-

Appendix B :
Syntaz of Odin Specifications

DerivationGraph
-> DGEntry + ;

DGEntry
-> Derivation
-> EquivalenceArc
-> CastArc
-> LinkingType
-> AtomicType ;

Derivation
-> OutputSpec ToolSpec SourceSpec ;

EquivalenceArc
-> FileType '=>' FileType ;

CastArc
-> FileType '=|' FileType ;

LinkingType
-> FileType 'DERIVED’ FileTypeDesc ;

AtomicType
-> FileType 'ATOMIC' FileTypeDesc ;

OutputSpec
-> QutputType FileTypeDesc ':" ;

OutputType
-> FileType "<’ Members ">’
-> KeyedType ;

Members
-> MemberSpec+ ;

MemberSpec
-> KeyedType FileTypeDesc ;

KeyedType
-> FileType '[" CmpdType ']’
-> CmpdType ;

CmpdType
-> FileType (" RefType ')’
-> FileType '~' RefType
-> FileType ;

RefType
-> FileType '@’
-> FileType ;

-56 -

ToolSpec
->'USER’ "Name"
-> 'STRUCT'
-> 'COMPOUND’
->'COLLECT"
-> 'FLATTEN'
-> "UNION’
-> '"HOMOMORPHISM' HomomorphismSpec
-> 'P-HOMOMORPHISM’ HomomorphismSpec
->'APPLY’
->'SELECT
->'KEY'
->'CAT'
-> ERROR’
-> "WARNING'
-> 'SENTINEL
-> "NAME'
-> 'COPYCHK’
->'COPYTST" ;

SourceSpec
-> ("’ SourceType) + ;

SourceType
-> FileType
-> (" FileType ')’
-> 'PARAMETERS’ '(" (PrmKey // ') ")

->"String" ;

HomomorphismSpec
-> Operation+ ;

Operation
->’+’ PrmKey '=' FileType
->'' FileType ;
FileTypeDesc
->"String” '*
-> "String"” ;

FileType -> "Name" ;

PrmKey -> "Name" ;

-87 -

Appendix C:

Ezample of an Odin Specification
Standard Specification Header

err "errors generated while producing derivation for display” :
ERRCR
: (.stat)

warn "warnings generated while producing derivation for display” :
WARNING :
: (.stat)

.derived => .stat

c-name => .stat
c-name => .view

c-name "'names of the elements of a composite file"*:

NAME
: .composite

cat => .stat
cat => .view

cat "contents of a compound file" :
CAT
: {.compound)

name '"names of the elements of a compound file" :
NAME
: .compound

error "errors generated while producing derivation” :
ERROR
: (.derived)

check (.null) "check the effect of a copy command file"*:
COPYTST
: {(copy_sntU)
: {copy_dsc)

copy_sntU (.null) "sentinels of the destinations of a copy command file"* :
UNION :
: (copy_snt)

copy_snt (.null) "sentinels of the destinations of a copy command file"*:
HOMOMORPHISM (:sentinel)
: {copy_dst)

-58 -

copy_dsc {.null) "description of copy command'* :
COLLECT
: écow._org)
: {(copy_dst)
copy_chk <
copy_org (.null) "origin files in a copy command file
copy_dst (.null) "destination files in a copy command file"*
> "files in a copy command file''* :
COPYCHK

: .simple

™

compound (.null) "files named in a reference file"*:
COMPOUND
:.simple

key "key values (for selection)” :
: .simple
s-name => .view

s-name "names of the sentinels watching a file"*:
NAME

: sentinel

sentinel {.null) "sentinels watching a file" :
SENTINEL
: .simple
:"|: compound"”

.simple => .view

Text

fmt-txt "formatted text' :
USER nroff.ecmd
s txt
: {(all_so_ref)
: PARAMETERS(m)

all_so_ref {null) "list of nroff-style transitively included files"*:
COLLECT
:ind_so_ref
: so_ref

ind_so_ref (null) "list of nroff-style indirectly included files"*:
HOMOMORPHISM |all_so_ref
: so_ref

-59 -

so_ref (null®) "list of nroff-style included files"*:
USER inc_so.cmd
s txt
txt ATOMIC "text with nrofI constructs”

tbl => txt
tbl "output from tbl processor” :
USER tbl.cmd
s bxtt
txtt ATOMIC "text with tbl and nroff constructs”

eqn => txtt
eqn "output from eqn processor” :
USER eqn.cmd
:txte
txte ATOMIC "text with eqn, tbl, and nroff constructs”

#RCS

c-res 'C RCS version"* :
USER co.cmd
1 ve
: PARAMETERS(date, rev, state, who)
c-recs =>c¢

ve ATOMIC 'C code stored in rcs format”
ve =>rcs

f-rcs "Fortran RCS version’* :
USER co.cmd
cvf
: PARAMETERS(date, rev, state, who)
frrecs =>f

vf ATOMIC "Fortran?7 code stored in rcs format”
vi => res

log "log of changes to a source file" :
USER ricg.cmmd
:res

: PARAMETERS(date, rev, state, who)

Fibonacci (every language must implement Fibonacci)

fib “Fibonaceci function value’ :
USER fib.cmd
1 int
: (fib_dep)
: PARAMETERS(val)

-60 -

fib_dep (fib) "input files needed to compute fib(n)""*:
APPLY
tint
: fib_dep_desc

fib_dep_desc "two integers needed to compute fib(n)''*:
USER fib_dep.cmd
;int
: PARAMETERS(val)

int ATOMIC "an integer”

Parsing

parse_src (fcast) "source files for a tree-building parser/scanner program'*:
COLLECT
; f-parse
1 t_main
parse_src => cmpd
f-parse (f) "source files for a tree-building parser/scanner module”*:
COLLECT
T tgt
: nodes
:t_drive
1 pgt
: p_drive
: fst
: f drive

tregrm <
tgt "tree-building tables"*
tgt_lst "tregrm compiler listing”*
pgl 'parser grammar’*
nodes "parse tree node types’*
t_drive ~fcast@ "tree-building driver routines™*
t_main ~fcast@ "tree-building parser default main program’*
> "tree-building tables and parser grammar'™*:
USER tgt.cmd
s tgl
: fst
tgt = f
nodes =| £

tgi ATOMIC "tree-building parser grammar”

-61 -

Ir <
pgt "parser tables"*
pgt_lst "parser listing"*
p_drive ~fcast@® "parser driver routines'*
> "parser tables”*:
USER pgt.cmd

: pgi
pgt = f
scan_src (f) "source files for a scanner program''*:
COLLECT
: f-scan
: f_main

f-scan (f) "source files for a scanner module”*:

COLLECT
: fst
: | drive
fscan <

fst "scanner tables”*
fst_lst "fscan compiler listing”*
f drive ~fcast@ "scanner driver routines”*
f main ~fcast@ "scanner default main program'*
> "scanner tables"*:
USER fst.cmd
: fs1
fst =| f

fsi ATOMIC "scanner grammar”

tgifsi <
tgiptr ~tgi "parser grammar'*
fsi_ptr ~fsi "scanner grammar’*
> 'parser grammar - SCanner grammar pair’'*:
v.:) =]
STRUCT
: tgiref

tgiref ATOMIC ""tree-building parser/scanner grammars’

Fortran-77 Formatted Source

fmt-f "formatted version of Fortran77 code" :
USER pol.cmd

. f
: PARAMETERS(pol)
frmt-f =| f

-B62 -

C Formatted Source
fmt-c "formatted version of C code” :
USER pol_c.ecmd
ic
fmt-c =| c

C and Fortran-77 Symbolic Debugger

dbx-flw <
exe-flw ~null "executable for a dbx run"*
srcs-flw (null) "sources for a dbx run''*
keys-flw (null) "names of source files for a dbx run'*
core-fiw "core dump for a dbx run”*
> "analysis of a core durmnp from a dbx run” :
USER dbx_flw.cmd
: dbx_fiwin
: PARAMETERS(id)
dbx =| dbx_flwin

dbx <
exe-dbx ~null "executable for a dbx run”*
sres-dbx (null) "sources for a dbx run''*
keys-dbx (null) "names of source files for a dbx run"*
core-dbx "core dump for a dbx run”*
> "Berkeley symbolic debugger run" :

USER dbx.cmd
: exe

: éobjsch)

: (objkeyU)

: PARAMETERS(id)

Program Test Run

run <
stdout "standard output from a test run {when +stdout is set)"”
output [data] "output files from a test run”
core-run "core dump of a test run”*
> "test run":
USER run.cmd
: PARAMETERS(id,input,stdin,stdout)
:exe

-B63 -

irun <
script "transcript of an interactive test run
stdin "standard input for an interactive test run"*
istdout "standard output from an interactive test run”
ioutput [idata] "output files from an interactive test run”
core-irun "core dump of an interactive test run"*
> "interactive test run'*:
USER irun.cmd
: exe

: PARAMETERS(id. in)

(™

Library Archive

libmake <
lib "object library archive”
lib_lIst "listing from an archive creation”*
> "object library archive'*:
USER lib.cmd
: {objU)

Executable Binary

exe "executable binary' *:
USER exe.cmd
: obj
: PARAMETERS(debug,lib)

exe-C "executable binary from set of source flles"*:
USER exel.cmd
: {objU)
: PARAMETERS{debug,lib)

exe-C => exe

Compiled Load Module

obj DERIVED "object module”

objU{obj) "set of object modules'*:
UNION
: (o&jC)

objC{obj) "list of object modules"* :
HOMOMORPHISM |obj
: {(cmpd)

objkeyU{obj_key) "set of source names for object modules”* :
UNION
: {objkeyC)

- 64 -

objkeyC(obj_key) "list of source names for object modules"*:
HOMOMORPHISM |obj_key
: {cmpd)

objsrcU(obj_src) "set of source files for object modules’* :
UNION
: {objsrcC)

objsrcC(obj_src) "list of source files for object modules"* :
HOMOMORPHISM |obj_sre
: {cmpd)

C Source Code

obj_c <
obj-c "C object module'*
obj key-c "C source code file name"*
obj_srec-¢ ~null "C source code'*
> "C object module information”* :
USER obj_c.cmd
: PARAMETERS(debug)
: {(all_c_ref)
: ckey
ic
obj-c => obj
ob]_key-c => obj_key
obj_src-c => obj_src

all_c_ref {(null) "list of C-style transitively included files'*:
COLLECT
:ind_c_ref
:c_ref

ind_c_ref (null) "list of C-style indirectly included files"*:
P-HOMOMORPHISM |all_c_ref
:c_ref

c_ref-c (null@) "list of C-style included files"*:
USER inc_c.emd

: PARAMETERS(ignore)

ic

c_ref-c => c_ref

ckey "'name of C file"*:
KEY
ic

c ATCMIC "C source code”

-85 -

C Include Files

c_ref-h (null@) "list of C-style included files"* :
USER inc_c.emd
: PARAMETERS(ignore)
:h

c_ref-h => c__z:ef

h ATOMIC "C Include Data”

M4 Pre-Processor for Fortran77

f-m4 "Fortran?7 output from M4 pre-processor'* :
USER m4.cmd
: PARAMETERS(pdef)
: (all_m4 _ref)
:mf
f-m4 =>f£

all_m4_ref (null) "list of M4-style transitively included files"*:
COLLECT
cind_m4 _ref
1 m4_ref

ind_m4_ref (null) "list of M4-style indirectly included files"* :
P-HOMOMORPHISM |all_m4_ref

:m4_ref

m4_ref-mf (null@) "list of M4-style included files'*:
USER inc_m4.cmd
: PARAMETERS(pdef)
:mf
m4_ref-mf => m4_ref

mf ATOMIC "Fortran7?7 source code with M4 constructs”

M4 Include Files

m4_ref-i (null@) "list of M4-style included files'*:
USER inc_m4.cmd

. PARAMETERS(pdef)

i1

md _ref-i => m4_ref

1 ATOMIC "M4 Include Data”

-66 -

Fortran-77 Source Code

obj_f <
obj-f "Fortran77 object module"*
obj_key-f "Fortran77 source code file name''*
obj_src-f ~null "Fortran?7 source code'*
> "Fortran77 object module information'* :
USER obj_f.cmd
: PARAMETERS(debug)
: fkey
 f
obj-f => obj
obj_key-f => obj_key
obj_src-f => obj_src

fkey "Fortran?7 source code file name'*:
KEY
o f
f ATOMIC "Fortran77 source code”

fecast =/ f

Reference Files

cmpd-c£(f) "files specified in a "ref" file" :
COMPOUND
rref
cmpd-cf => cmpd
cmpd DERIVED "files specified in a

ref ATOMIC "reference file containing a list of file names”

-B67 -

Appendix D :

Fxamples of Odin Command Files

Following are the Berkeley Unix 4.2 command files for the derivation
graph example in Appendix C.

co.cmd :
cd $(RUNDIR)

set dflag =

if (-e $(PR\/[)/date) set dflag = -d‘cat $(PRM)/date’
setrflag ="

if (-e $(PRM)/rev) set rflag = -r'cat ${PRM)/rev
set sflag ="

if (-e $(PR\/[)/state) set sflag = -s'cat $(PRM)/state’
set wflag = "'

if (-e <‘*(PR\/I) /who) set wflag = -w'cat $(PRM)/who'

In-s $(<1) $(<),v ‘
(co-p -q $dflag $rflag Ssflag Swilag $(<1),v >! $(>1)) >&! $3(ERROR)

echo 0 >! ${0K)

dbx.cmd:
cd $(RUNDIR)

mkdir src

set scurces = ‘cat $objsrcU)

set keys = ‘cat ${(objkeyU)"

@i=1

while (3i <= $#sources)
In -s $xources[$x] src/‘cat $keys[$i]*
@i=%+1
end

dbx -I src ${(exe)

echo $(exe) >! ${exe-dbx)

cat ${cbjsrclU) >! $(sres-dbx)
cat $(objkeyU) >! $(keys-dbx)
if (-e core) mv core $(core-dbx)

rm -f -r src
echo 0 >! 3{0K)

-68 -

dbx_fiw.cmd:
cd $(RUNDIR)
set dbxENV = ‘cat $(dbx_flwin)’

set exeptr = $dbeNV[[1]
set sreptr = $dbxENV[2]
set keyptr = $dbeNV§3]
set core = $dbxENV[4

mkdir src

set sources = ‘cat $sreptr’

set keys = ‘cat $keyptr'

@i=1

while ($i <= $#sources)
In -s $sources[$i] src/ cat $keys[$i]'
@i=8%i+1
end

if (! -z $core) cp Score core

dbx -l src $exeptr
echo $exeptr >! $(exe-fiw)
cat $sreptr >! $(sres-fiw)
cat $keyptr > Hkeys-w)
if (-e core) mv core ${core-flw)
rm -f -r src
echo 0 >! $(0K)
eqn.cmd :

(eqn < $(txtt) >t $(tbl)) >& $(ERROR)

echo 0 >! $(0K)

-69-

exe.cmd :
cd ${(RUNDIR)
cp $(obj) SOURCE.o

set compiler = 'cc’

if ("'nm -gp SOURCE.o | fgrep 'T _MAIN_"" I~) set compiler = {77
set flags ="

if (-e $(PRM)/debug) set flags = '-g’

set libs ="

if (-e $(PRM)/lib) set libs = ‘cat $(PRM)/lib’
($compiler $flags SOURCE.o $libs -o $(exe)) >&! $(ERROR)
echo 0 >! ${0K)

exel.cmd :
d $(RUNDIR)
set files = ‘cat ${objU)"
set search = ‘nm -gp $fles | fgrep T _MAIN_"
set compiler = 'cc’
if ("$search” I~ ") set compiler = {77
set flags ="
if (-e ${(PRM)/debug) set flags = '-g’
set libs ="
if (-e $(PRM)/lib) set libs = ‘cat $(PRM)/lib’
($compiler $flags $files $libs -o $(exe-C)) >&! $(ERROR)

echo 0 >! 3(0K)

-70 -

fib.cmd :

@ val = ‘cat $(int)*
if (-e $(PRM)/val) @ val = ‘cat $(PRM)/val’

if ($val < 2) then
@ result = $val
else
set vals = ‘cat $§ﬁb_de)
@ valone = ‘cat pvals 15)‘
@ valtwo = ‘cat $vals[2]'
@ result = $valone + $valtwo
endif

echo $result > $(fib)

echo 0 >! $(0K)

fib_dep.cmd :

@ val = ‘cat $(int)

if (-e $(PRM)/val) @ val = ‘cat $(PRM)/val’

if ($val > 1) then
@ valone = $val - 1
@ valtwo = $val - 2
echo '+val=' $valone fib’ > $(fib_dep_desc)
echo '+val=' $valtwo ":fib’ >> $(fib_dep_desc)
endif

echo 0 >! ${CK)

fst.cmd :
cd $(RUNDIR)
($(TOOL)/fscan < $(fsi) >! $(fst_Lst)) >&! $(ERROR)
if (-e TABLES) mv TABLES $(fst)
echo $§TOOL)/f3t_drive.f >l $€f_drive)
echo $(TOOL)/fst_main.f >! $(f_main)

echo 0 >! $(0K)

-71 -

inc_c.cmd :
cd $(RUNDIR)

e

set ignore =
if (-e $(PRM)/ignore) set ignore = $(PRM) /ignore

($(TOOL)/inc_c.exe $(CURDIR) $ignore < $(<1) >t $(>1)) >&! $(ERROR)

echo 0 >! $(0K)

inc_md.cmd :
cd ${RUNDIR)

set pdef = """
if (-e $(PRM)/pdef) set pdef = ‘cat $(PRM)/pdef’

($(TOOL)/inc_m4.exe $pdef < $(<1) >! $(>1)) >&! $(ERROR)

echo 0 >! $(0K)

inc_so.cmd :
cd $(RUNDIR)
($(TOOL) /inc_so.exe < $(<1) > $(>1)) >&! ${(ERRCOR)

echo 0 >! $(0K)

irun.cmd :

cd ${ioutput)

if (-e $(PRM)/in) then
$(TOOL)/catchio.exe -i $(stdin) -o $(istdout) -e S{WARNING) \
-s $(script) $(exe) < ‘cat $(PRM)/in‘
if ($status != 0) echo run failed >>! $3(ERRCR)

else
$(TOOL)/catchio.exe -i $(stdin) -o $(istdout) -e (WARNING) \
-s $(script) $(exe)
if (§status != 0) echo run failed >>! $3(ERRCR)

endif

if (-e core) mv core $(core-irun)

echo 0 > $(0K)

-2 -

lib.cmd :
cd $(RUNDIR)
set files = ‘cat ${objU)"
rm -f $(lib)
(ar rv $(lib) $files >! $(lib_lst)) | sed */creat/d’ >&! $(ERROR)
(ranlib $(lib) >>! $(lib_lIst)) >>&! $(ERROR)

echo 0 >! $(0K)

m4.cmd :

set mac = m4
if (-e $(PRM)/tie) set mac = $(TOOL)/TIEMAC

cd $(CURDIR)
(m4 < ${(mf) >! $(f-m4)) >& $(ERROR)

echo 0 >! $(0K)

nrofi.cmd :

set mflag =""
if {-e $(PRM)/m) set mflag = -m‘cat $(PRM)/m"

cd $(CURDIR)
{(nroff $mflag < $(txt) >! $(fmt-txt)) >& $(ERROR)

echo 0 >! ${0K)

-"73 -

obj_c.cmd :
cd $(RUNDIR)

set source = ‘cat $(ckey)*

if (8source:e !='c’) set source = $source.c
In -s $(c) $source
set flags ="'

if (-e $(PRM)/debug) set flags = "-g’
(cc -c $flags -I$(CURDIR) $source) >&! ERRORS

cat ERRORS
sed -n */rror/p’ < ERRORS >! $(ERROR)
sed -n '/arning/p’ < ERRORS >! ${WARNING)

if (-e $source:r.o) mv $source:r.o ${obj-c)
echo "$source” >! $(obj_key-c)
echo "$§(c)" >! $(obj_src-c)

echo 0 >! $(CK)

obj_f.cmd :
cd $(RUNDIR)

set source = ‘cat $(fkey)"
if ($source:e !='f’) set source = $source.f
In -s $(r) $source

set flags =
if (- $(PRM)/debug) set flags = '-g’

(£77 $flags -c $source) >&! ERRORS

sed -n’/rror/p’ < ERRORS >! ${(ERROR)

sed -n '/arning,/p’ < ERRORS >! $(WARNING)
if (-e $source:r.o) mv $source:r.o ${obj-f)
echo "$source” >! $(obj_key-f)

echo "$(f)"" >! $(obj_srec-f)

echo 0 >! $(0K)

pgt.cmd :
cd $(RUNDIR)
($(TOOL)/Ir < $(pgi) >! $(pgt_lst)) >&! $(ERROR)
mv TABLES $(pgt)
echo $(TOOL)/pgt_drive.f >! $(p_drive)

echo 0 >! $(0K)

-'74 -

pol.cmd :
cd $(RUNDIR)
ep $(f) SOURCE

if g-e 8(PRM)/polish && ! -z $(PRM)/polish) cp ‘cat $(PRM)/polish* P77PAR
if ((! -e PY7PAR) || -z P77PAR) cp $(TOOL)/P77PAR P77PAR

($(TOOL)/polish) >&t $(ERROR)

sed '/~ *$/d’ < ERRPOL >> $(ERROR)
sed '/~ *§/d’ < WRNPOL >! $éWARNING)
sed’'s/ *$//' < PRETTY >! $(fmt-f)

echo 0 >! ${0K)

pol_c.cmd :
cd 3(RUNDIR)
(indent $(c) $(fmt-c)) >&! $ERROR

echo 0 >! $(0K)

rlog.cmd :
cd $(RUNDIR)

set dflag ="'

if (-e $(PRM)/date) set dflag = -d'cat $(PRM)/date’
set rflag ="

if (-e $(T3RM)/rev) set rflag = -r'cat $(PRM)/rev*

set sflag ="

if (-e $(PRM)/state) set sflag = -s'cat $(PRM)/state’
set wllag ="'

if (-e $(PRM)/who) set wflag = -w'cat $(PRM)/who'

In -s §(<1) $(<1),v
(rlog $dflag $rfag $sflag $wilag $(<1),v >! $(>1)) >&' $(ERROR)

echo 0 >! $(0K)

-75-

run.cmd :
cd $(output)

if (-e $(PRM.DIR)/input) then
set input = ‘(cd $(PRM.DIR)/input; ls)*
endif
if (-e $(PRM)/stdin) then
set stdin = ‘cat $(PRM)/stdin'
endif
if (-e $(PRM)/stdout) then
set stdout = '$§(stdout)’
endif

if ($?input) In -s $(PRM.DIR)/input/*.

if ($?stdin && $?stdout) then
($(exe) < $stdin >! $stdout) >&! {(WARNING)
else if ($7?stdin) then
$(exe) < $stdin
else if ($?stdout) then
($(exe) >! $stdout) >&! $(WARNING)
else
$(exe)
endif

if ($status != 0) echo run failed >>! ${ERROR)
if ($?input) then

rm -f $input

endif

if (-e core) mv core $(core-run)

echo 0 >! $(0K)

tbl.ecmd :
(tbl < $(txtt) >! $(tbl)) >& $(ERROR)

echo 0 >! $(0K)

-76 -

tgt.cmd :
cd $(RUNDIR)

In -s $(fst) INPUT2
($(TOOL) /tregrm < $(tgi) | sed 's/ *$$// >! $(tgt_lst)) >&! $(ERROR)

if (-e TABLE1) mv TABLE1 $(tgt)
if g-e TABLE2§ mv TABLE2 $§pgi)
if {-e TABLE3) mv TABLES3 $(nodes)

echo ’$éTOOL)/tgt_drive.f‘ >! §(t_drive)
echo '$(TOOL)/tgt_main.f’ >! $(t_main)

echo 0 >! $(0K)

