A Linear-Time Algorithm for a Special Case
Of Disjoint Set Union

Harold N. Gabow
R. E. Tarjan

CU-CS-261-82

\%ﬁUﬂiversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A LINEAR-TIME ALGORITHM FOR A SPECIAL CASE
OF DISJOINT SET UNION

by

Harold N, Gabow*
University of Colorado at Boulder
Boulder, Colorado

and

Robert Endre Tarjan
Bell Laboratories
Murray Hill, New Jersey

ABSTRACT

This paper presents a linear-time algorithm for the special case of the dis-
joint set union problem in which the structure of the unions (defined by a “union
tree”) is known in advance. The algorithm executes an intermixed sequence of
m union and find operations on n elements in O(m+n) time and 0(n) space.
This is a slight but theoretically significant improvement over the fastest known
algorithm for the general problem, which runs in O(ma(m+n, n)+n) time and
0{n) space, where « is a functional inverse of Ackermann’s function. Used as a
subroutine, the algorithm gives similar improvements in the efliciency of algo-
rithms for solving a number of other problems, including two-processor schedul-
ing, the off-line min problem, matching on convex graphs, finding nearest com-
mon ancestors off-line, testing a flow graph for reducibility, and finding two dis-
Joint directed spanning trees. The algorithm obtains its efficiency by combining
a fast algorithm for the general problem with table look-up on small sets, and
requires a random access machine for its implementation. The algorithm
extends to the case in which single-node additions to the union tree are allowed.
The extended algorithm is useful in finding maximum cardinality matchings on
nonbipartite graphs.

*Research partially supported by the WNational Science Foundation, Grant
MCS78-18909.

1. INTRODUCTION

The disjoint set union problem occurs frequently in the design of combina-
torial algorithms [AHU 1974, pp. 124-145, H3]. We shall formulate this problem
as follows. We wish to carry out an intermixed sequence of three kinds of opera-
tions, which access and modify a collection of disjeint sets:

makeset (z): Create a new singleton set §z] whose name is z. This operation is
only allowed if z is in no existing set.

find(z): Return the name of the set containing element z.

unite (z ,y): Create a new set that is the union of the sets containing z and y.
The name of the new set iz the name of the old set containing z.
This operation destroys theiwld sets containing z and y.

The operations must be carried out on-line; that is , each one must be com-
pleted before the next one is known. We shall use n to denote the total number
of elements (that is, the number of makesef operations) and m to denote the
total number of unites and finds.

This problem has many applications and has been widely investigated (see
[T1975]; also [DR], [KS], [T1979b]). The fastest known algorithm for the disjoint
set union problem runs in O(ma(m +n, n)+n) time and 0(n) space, where o is a
functional inverse of Ackermann's function [T1975, TV1982]. There are in fact a
number of such fast algorithms, all minor variarits of each other [TV1982]. We
call these algorithms a—algorithms. The a-algorithms run on a pointer machine
[T1979b] and, as one would expect, perform quite well in practice.

Nevertheless it is an interesting theoretical problem to determine whether
there is a linear-time algorithm for disjoint set union. Under certain technical
restrictions, {ma(m+n, n)+n) is a lower bound on the worst-case running
time of any set union algerithm on a pointer machine [T1979b]. Thus to obtain a
linear-time algorithm we must either canfine our attention to a special case of
set union or take advantage of the more powerful capabilities of random-access
machines [AHU1974, pp. 12-19]. The result of this paper combines both of these
ideas. We give an algorithm that runs in linear time on a random-access
machine for the special case of set union in which the structure of the unions, as
defined by a "union tree”, is known in advance. This case occurs in many appli-
cations, for each of which our result gives an improved algorithm. Although the
results may appear to be of only theoretic interest, experiments with an imple-
mentation of a restricted case of our algorithm indicate that in practice it is
competitive with .-algorithms and often put-performs them.

We solve the following problem, called stafic tree set union, We are given a
grooted) tree T of n nodes. Initially eveny node v of the tree is in a singleton set
v} named v. We denote the parent ofmode v in the tree by p(v); if v is the
root of the tree, p(v) has the special value null. We wish to perform on-line an
intermixed sequence of find and link :operations on the sets, where find is
defined as before and link(v) is equivalent to wnite(p(v)v): we allow a link
operation on any node v except the root of the tree. Note that each set existing
during the process induces a subtree of '; the name of the set is the root of the
corresponding subtree,

This version of set union differs from the general problem in that the "union
tree” T is known in advance. We can use our knowledge of T to precompute the
answers to finds on small sets. The resulting algorithm combines table look-up
on small sets with an a-algorithm run on a universe of size o(n), The algorithm
needs O(m+n) time and 0(n) space on a random-access machine with uniform

cost measure and log » ! word length [AHU1974, pp. 12-19].

We develop our algorithm in Section 2 of the paper. In Section 3 we sketch
an extension of the algorithm to the case in which the union tree can grow by
single-node additionsadg’,ncremental tree set union). The extended algorithm also
runs in O{m+n) time and 0(n) space. Section 4 lists eleven applications. 2.
STATIC TREFE. SET UNION

To solve the static tree set union problem, we partition the nodes of T into
microsets. This partition has nothing to do with the sets defined by the link
operations; it is:computed in a preprocessing step and remains fixed as the links
and finds are executed. The microsets have three properties:

{a) Every microset contains fewer than b nodes, where b is a parameter to be
“chosen later. '

(b) There are 0(n/b) microsets.

{c) If S is a microset, there is a node 7 £ S such that p(v) € SYir] for every
node v €.5. Node 7 is called the 7oot of microset 5. The set SUiri
induces a subtree of T with root r; thus S induces a forest consisting of
subtrees with a common parent in 7. As a special case we allow r to be
null; in this case S induces a subtree of T whose root is the root of T

We shall :describe the set union algorithm in a top-down fashion, con-
currently describing the data structures it uses. We number the microsets con-
secutively from one. Within each microset, we number the vertices consecu-
tively from one, accordingito a preorder for the induced forest (the microset is
a forest by (c)). With each vertex v, we store micro(v), the number of the
microset containing v, and number(w), the preorder number of v within its
microset. Thus the pair micro(v), numberfw uniquely identifies v. For each
microset © we build a table:node (i, ¥) such that node(i ;) is the node in microset i
with number j. (Note that node is not a two-dimensional array, since the range
of values of j depends on the value of i; rather, it is a collection of one-
dimensional arrays.) All the node tables together require a total of n words of
memory since'there is oneientry per node.

To represent the collection of sets defined by the link operations, we mark
the nodes that are set names. To store the marks, we use a table mark(i, *) for
each microset i, such that mark(i,j) = 0 if node(i,j) is marked (ie., it is a set
name), and mark(ij) = 1 otherwise. We allow the index j to have the range
1=j <b for every value of i; if j is not the number of a node in microset i,
mark(i,j) = 0. For any value of i, mark(i, ¥) is a vector of b -1 bits. By choosing
b =w where w is the word length of the random-access machine, we can fit
each mark table into a single computer word. We can also treat each mark table
as an integer (whose binary representation is the sequence of bits in the table)
and perform arithmetic onithis integer in 0(1) time.

Our implementation of the link operation is such that its only effect is to
alter the mark tables. Initially mark(i,j) = 0 for all microsets i and all values of
7 In the range 1<j7 <b. (Initializing the mark table for a given microset %
requires 0(1) time: we set mark(i, *) = 0.) We define link as follows:

1. procedure link(v);

! Throughout this paper log denotes logarithmnto the base two.

2. mark (micro(v), number(v)) ;= 1

3. end link;

Executing link takes 0(1) time. (To'do this we precompute: the ;powers of two,
?7,0=<j <b. Then Step 2 can be implemented by a simple sequence of arith-
metic operations.)

The operation find(v) must return the nearest marked mncestor of v; that
is, the nearest ancestor node(i,j) of v such that mark(ij) = 0. {We regard a
node as an ancestor of itself.) To carry out Jind(v) we use a:combination of two
methods. To give access within microsets, we use the following procedure
(whose implementation we describe later):

microfind(v). Return the nearest marked ancestor of v that is in the same
microset as v. If there is no such node {(the nearest marked
ancestor of v is in another microset), return the root of the
microset containing v.

To give access across microset boundaries, we maintain a collection of disjoint
sets, called macrosets, whose elements are the roots of the microsets (excluding
null). We manipulate the macrosets by means of the operations makemacroset,
macrefind, and macrounite. We initialize the macrosets by executing
makemacroset(v) for every micnoset root v, thus making each such root into a
singleton macroset.

There are several ways to implement the operations on macrosets. One is
to use any a-algorithm. This will be the most desirable choice in Section 3, for
the incremental version of the algorithm. Here it suffices toiuse a simpler algo-
rithm, which merely relabels the smaller set in a union [AHU, pp. 124-129]. The
time for m operations on a universe of size n is O(m +nlogmn).

We define find as follows. (Our program notation is essentially Dijkstra's
guarded command language [D 1976] augmented with procedures; we use a vert-
ical bar "|" in place of Dijkstra's box " "

1. function find(w);

2. local z;

3. =y

4. if micro(z) # micro(microfind(z)) -

5. z ;= macrofind(mierofind(z));

6. do micro(z) # micro(microfind(z)) -
7. mucrounite(microfind(z), x);
8. = macrofind(z)

9. od

10. fi;

11. return microfind(z)

12. end find;

Lemma 1. The find algorithm is correct.

Proof. For any node z, if micro(xz) # micro (microfind(z)), then microfind(z)
is the root of the microset containing z. It follows by induction that after Step
5, the node denoted by variable z inithe program is always a microset root, and
the macroset operations are executed only on microset roots. For any value of
z, microfind(z) is an ancestor of z,:and the only possible marked node on the
tree path joining x and microfind(z) is microfind(z). Another induction shows
that after any step, for any microset root 'y, macrofind(y) is the nearest ances-
tor y' of ¥y such that y' is a microset root and the operation
macrounite(microfind(y') y'), has not been performed. Furthermore the only
possible marked node on the tree path joining 3y and macrofind(y) is
macrofind(y). A third indudtion shows that, for the nodes denoted by variables
z and v in the program, z is always.an ancestor of v, and the only possible
marked node on the tree path joining v and z is z. The correctness of the algo-
rithm is immediate; termination is guaranteed by the fact that each successive

value of z is a proper ancestor of the previous value. ®

Lemma 2. If b is Q(log n) and each execution of microfind requires 0(1) time,
then the total time for m intermixed link and find operations is O(m + n).

Proof. The link operations require a total of 0(n) time. The proof of Lemma 1
implies that just before Step 7 in find, z and m'i,croﬁnd(xf) are in different
macrosets, Thus the total number of executions of Step 7, summed over all the
finds, is O(n/b). It follows that the total time for all the finds is O(m +n./ b) plus
the time for the macrounite and: macrofind operations. There are m+0{(n/b) of
these, executed on a universe of size 0(n/b). Hence the time Iis
O(m+0(n/b) + 0(n/b) log O(n /b)), which is 0(m+n) if b is Q(log n). =

If an o-algorithm is used for the macroset operations a similar estimate
shows the time is linear. Actually an a-algorithm allows & to assume values

much smaller than Q(log n). For instance in Section 3, b will be Q(log log n)
and the linear time bound still holds [T 1975].

Initializing the macroseits requires 0(n/ b) time. We must still describe how
to initialize the microsets.and their data structures and how to carry out
microfind, Let us first considerthe latter problem. We need a compact way to
represent the forest (in T) induced by a microset. With each microset i we
store its root, denoted by root(i). Thetopology of the forest is represented in a
table forest(i, *), where forest(ij) is the number of children of node(1,j). Recall
that the forest is numbered in ppreorder. Hence it is uniguely determined by
Jorest(i, *), and in fact it can be constructed from forest(i, *) in linear (0(b))
time.

We use the following encoding scheme to represent SJorest(i, ¥) by a bit vec-

tor: An entry forest(ij) =:c is encoded as 10° ® and these entries are con-
catenated together in order of increasing i. The resulting bit vector has length
less than twice the number:of nodes in the forest, i.e., at most 2b—3 bits. So if
we choose b so that 26 -3 & w we can fit each forest table into a single com-
puter word. Hence we can treat a forest table as an integer on which we can do
arithmetic in 0(1) time. In particular given such an integer we can construct
Sforest(i, *), and hence the forest itself, in 0(b) time. Conversely given the forest
we can construct the corresponding bit vector in 0(b) time.

2 (° is a vector of C zeroes.

To facilitate :microfind operations we construct a three-dimensional table
answer(f, @,). The indices f, a.and'j range over [0..2% %-1],[0..2°"1~1], and
[1..b=1], respectively.® We interpret f as a forest table, o as a mark table, and j
as a node number. We define answer(f, @, j) to be k > 0 if f is a possible forest
table and in the forest for f, node k is the nearest ancestor of node j with
a{k) = 0, answer(f, a, j) is O if f is not a possible forest table or if it is but no
node k exists,

Given the answer table, we can define microfind as follows:

function microfind(v);
local i, j, k;
1= micro(v); j ;= number(v); k =
answer (forest(i, ¥), mark(i, #),),
return if &k =0 - root (i) |
k >0 - node (i k)
end microfind,

O (s AW

Executing microfind takes 0(1) time, as required in the hypothesis of Lemma 2.

To construct the answer table, we iterate over all possible pairs of values f
in [0.2%7%-1] and @ in [0..2°7!-1], For each pair f,a, we can compute
answer(f,a,j) for all 7 in the range [1..6—1] in 0(b) time, as follows. We interpret
J according to the ‘encoding scheme for forests. If f does not represent a
forest the entries in enswer are 0. Otherwise we construct the forest for f. We
interpret @ as a mark table for f. Then we compute answer(f, a, j) for all j by
traversing the forest in preorder, always remembering the most previously

reached node £ withu (k) = 0. Details are left to the reader.

If we choose b so that 52% % = 0(n), we can construct the entire answer
table in O(n) time. Note that this construction is part of the initialization and
only occurs once. This choice of b also implies that the answer table uses 0(n)
space.

The last part of the algorithm to be filled in is the initialization of the
miarosets and their associated :data structures. We divide the tree T into
microsets by traversing it in postorder. For each node v, we maintain a count
d(w) of its remaining descendants {including itself) not yet placed in a microset,
When placing a node in a microset, we delete it from the tree. To decide when to
form microsets, we apply the following :steps to each node v in postorder (we
assume that the children of each node are ordered arbitrarily).

Stepl. Letd(v) =1 and let w be the first child of v (or nuil if there is no such
child).

StepR2. While d{v) < and w # muldl, replace d(v) by d(v) + d{w) and w
by the next child of v after w (or nadl if there is no such child).

Step3. Ifd{v) < éil-— process the next vertex in postorder. Otherwise form a
new microset consisting:of all descendants of the remaining children of
v up to:but not including w. Assign this microset the next available
number, say i. Define the root of the microset to be v. Number the

b+1

“3[7..k] denotes the set of integers i suchthatj <1 < k.

vertices u in the microset:consecutively from one in preorder, defining
micToe (1) and number(u) for each such w. Build node (i, *), mark(i, *),
and forest (i, *) (the last two encoded as bit vectors). Delete all vertices
in the microset from the tree. Let d(v) = 1. Go to Step 2.

After the tree root is processed, we form one last microset consisting of all the
remaining’vertices {including at least the tree root); the root of this microset is
null.

For the procedure to be correct, we must have b > 2. Then in Step 2 it is
always the case that d{w) < bgl Hence in Step 3 d(v) < b+1, and every
microset formed contains fewer than b nodes. (The last microset contains fewer
than 211 nodes.) Thus the microsets have property (a). (See the beginning of
this section for the definition of properties (a), (b), and (¢)). Every microset
except the last contains at least ——— nodes. Thus the total number of

2n
b-1
(c) is obvious by construction. :Constructing a microset takes time proportional

to the number of nodes it contains; thus the total time to construct the
microsets is 0(n).

This completes our descriptioniof the algorithm. Let us summarize the con-
straints on b. We need & = 2 for the microset construction, b = Q(log n) for the
time bound of Lemma 2 to apply, 2% 4 = 0(n) to construct the answer table in
0(n) time and space, and b -3 < 2w, where w is the word length, to fit each
forest table and mark table into a single word of storage. Assuming w = log n,

;]

microsetsiis at most + 1, and the microsets have property (b). Property

. i n
the choice b = 3 log(Tog =

Lemma 2,:much smaller values of & suffice when an a-algorithm is used. Thus
we obtain the following theorem:

is satisfactory. (As noted after the proof of

Theorem 1. With an appropriate choice of b, the algorithm for static tree set
union runs in O(m +n) time with 0(n) preprocessing and uses 0(n) space.

A sperial case that deserves mention is when the union tree T is a path.
This case has many applications (see Section 4) and is somewhat simpler than
the general case. Each microset can be taken as a path of b —1 nodes. (The last
microset can be padded out with dummy nodes,) This eliminates the need for
the forest encoding scheme, and the answer table becomes two-dimensional
instead ofithree. In addition the microset initialization is simplified since there
is no needifor a depth-first search of 7.

In practice some computers allow the answer table to be eliminated
entirely: When the microset is a path the answer table serves to locate the first
zero bit beyond a given bit position in a mark table. Some computers can do
thig in one or two machine instructions. For instance in the CDC Cyber family
the floating point Normalize instruction executes in constant time [Th]. If we
reverse the roles of zero and one in the mark table we can extract the answer
information from a mark table in constant time. Hence there is no need for the
answer table or the preprocessing associated with it.

The algorithm for path union trees was implemented in the C programming
language and run on a VAX 11/780. (A two-dimensional answer table was used.)

The algorithm was compared to the usual a-algorithm based on weighted union
and path compression [T1975]. Data was generated both randomly and in ways
simulating set union in the applications of Section 4. The static tree algorithm
was faster in many experiments. For instance on random data with n ranging
from 200 to 1000, the time for the static tree algorithm was .6 that of the a-
algorithm when there was one find per unite, and .7 when there were two finds
per unite (the common cases). The static tree algorithm required less data
space (eg., 1180 words versus 3000 words for n = 1000). More details are in
[Hav]. It is premature to draw conclusions from this limited experience, but
these results certainly do not rule out the possibility of our algorithm being use-
ful in practice.

3. INCREMENTAL TREE SET UNION

We can extend the algorithm of Section 2 to the case in which the tree T is
allowed to grow a node at a time. We define the incremental tree set union
problem as follows. Initially 7 consists of a single node, the root. In addition to
Jind and link operations, we allow operations of the following kind:

grow(v,w): Add w to T by making v its parent. This operation is only allowed if
v is anode in T and w is a new node not in 7.

Note that the number of grow operations is n—1.

Our algorithm for incremental tree set union is similar to the algorithm in
Section 2, with two main differences. First the forest encoding scheme for
microsets cannot be used, since a grow operation changes preorder numbers.
Instead we represent the topology of a microset by a parent table. The parent
table can be stored in one computer word if we choose b so that
{6 —1)Nlog b] <. This gives a slight increase in the size of the answer table for a
given . However choosing b as mfoé?lgon_n) (or even smaller) and using an a-
algorithm for macrosets allows the linear %ime bound to be maintained.

The second difference is in the construction of microsets, which change
over time. The algorithm for grow adds a node to a microset. When an addition
causes a microset to have b nodes, it is split into 0(1) microsets. The splitting
operation is similar to the microset construction in Section 2. Details can be
found in [GT].

We conclude:

Theorem 2. With an appropriate choice of b, the algorithm for incremental tree
set union runs in Ofm+n) time with 0(n) preprocessing (to construct the

answer table) and uses 0(n) space. =®

4. APPLICATIONS

We conclude by listing eleven applications of our algorithms. (The list is
intended to be illustrative, not inclusive.) For each problem except one, we
obtain a linear-time algorithm (improving the previously best almost-linear-time
algorithm). :

The first five applications use static tree set union in the special case where
the union tree 7 is a path of n nodes.

(1) Trwo-processor scheduling. The input consists of a collection of unit-
time tasks with a partial order. The object is to schedule the tasks on two pro-
cessors Lo minimize the last completion time. The algorithm of Gabow [G1982]
runs in 0(m+n) time, improved from O{m +n a(n,n)), when implemented using
static tree set union. Here n is the number of tasks and m is the number of
explicit constraints defining the partial order.

(2) p-processor scheduling algorithms. There are two related applications.
The first is computing a schedule from a priority list. The input is a collection of
unit-time tasks with a partial order, a pricrity list giving a total order of the
lasks, and a number of processors p <n. The object is to schedule the tasks so
that the next task to begin is the first available task in the priority list. The
algorithm of Sethi [S] runs in O(m+n) time, improved from O(m+na(n,n)),
using static tree set union.

The second application is optimum scheduling on an interval dag. The input
Is a collection of unit-time tasks with a partial order that is an interval dag, and
a nurnber of processors p <n. The object is to schedule the tasks to minimize
the last completion time. Papadimitriou and Yannakakis show that the priority
list of an optimum schedule can be found on 0(m +n) time [PY, G1981]. Using
the above algorithm for priority lists, their method runs in O(m+n) time,
improved from 0(m +na{n,n)).

(8) The off-line min problem [AHU1974, pp. 139-141]. The object is to main-
tain a set of integers in the range [1..n] under two operations: insert (i), which
adds element i to the set, and erfract min, which deletes and returns the
minimum element. If each integer is inserted only once and the entire sequence
of operations is given off-line, static tree set union applies to solve this problem
in 0{n) time, improved from O(na(n,n)).

(4) Matching on convez graphs and scheduling with release times ond dead-
lines. These two problems are closely related. In the first, the object is to find a
maximum cardinality matching on a convex bipartite graph. The algorithm of
Lipski and Preparata [LP] runs in O(n) time, improved from O(na(n,n)), using
static tree set union. Here n is the number of vertices.

In the second problem, the input is a collection of unit-time tasks, each
having an integer release time and deadline, and a number of processors p < n.
The object is to schedule each task between its release time and deadline.
Frederickson [F] gives an algorithm that uses the off-line min problem. Using
the algorithm of application (3) the run time is 0(n), improved from 0(n a(n,n)).
(The space is O(D+n), where D is the largest deadline.)

(5) VLSI channel routing. The input is a set of n two-terminal nets, The
output-is.a wire layout on a channel of least possible width. The aleorithm of
Preparata and Lipski [PL198R] runs in 0(n) time, improved from 0(n a n,n)).

The next four applications use static tree set union in the general case.

(8) Nearest common oencestors. Aho, Hopcroft, and Ullman [AHU1978,
T1979a] give an O(m+na(m +n n))-time, O(n)-space algorithm to compute the
nearest common ancestors of m pairs of nodes in an n-node tree off-line, Static
tree set union improves this method to O(m+n) time. Harel and Tarjan [H,
HT1982] have also given a linear-time algorithm for this problem. Their algo-
rithm is more complicated than the one given here but extends to solve the
"half-line" problem, in which the tree is fixed but the nearest common ancestor
requests arrive on-line, in 0(m +n) time.

(7) Flow graph reducibility, Static tree set union improves the method of
Tarjan [T1974] for testing flow graph reducibility of an n-vertex, m-edge graph
from O(ma({m,n)) to 0(m) time. (In flow graphs n = 0(m).)

(8) Two directed scanning trees. Given a flow graph the object is to find two
directed spanning trees with as few common edges as possible. Static tree set
union improves the algorithm of Tarjan [T1976] for this problem from
O(ma({m,n)) to 0O({m) time.

(9) Separatars for chordal graphs. Given a chordal graph the object is to
find a good separator (ie., one with 0(vm) vertices). Gilbert and Rose [GR]
present an O(n +ma(m n))-time algorithm. With a slight change their algorithm
can use incremental tree set union. The result is an O%n +m)-time algorithm.

The next application uses incremental tree set union.

(10) Matching on nonbipartite graphs. The algorithm of Gabow [G1976] runs
in O(nm) time, improved from O(nma(m. n)), using incremental tree set union.
Here n is the number of vertices and m the number of edges in the graph; we
assume n = O(W\L/L A more efficient algorithm discovered by Micali and Vazirani
[MV] runs in 0(~¥nm) time. Their algorithm uses disjoint set union; Micali and
Vazirani state without proof that the "special structure of blossoms" implies a
linear time bound if an appropriate a-algorithm is used [MV p. 21]. However the
proof is complicated (over fifty pages long [M]). Using incremental tree set
union gives the D(vVam) time bound directly. Both matching algorithms use
0(m.) space.

Our final example is a data manipulation problem that is a time-reversed
version of digjoint set union.

(11) The set-splitting problem. Given an initial set consisting of the integers
{1, 2, ..., n}, we wish to process, on-line, an intermixed sequence of operations of
the following twoitypes:

split (i): Split the set containing integer i into two sets, one containing all
integers less than 4, the other all integers greater than or equal to
7.

Jind(i): Return the name of the set containing integer 1.

In ‘their paper on disjoint set union [HU], Hopcroft and Ullman describe an
0((m +n) log* n)itime algorithm, where m is the number of operations and
log* n is the "iterated logarithm," the number of times the logarithm must be
taken to obtain a number less than one. Using a variant of the static tree algo-
rithm, we can solve this problem in 0(m +n) time. The method is as follows,

First note that we can solve the set-splitting problem in 0(1) time per find
plus O(n log n) time for all the splits, by the "relabel-the-smaller-half" method:
With each integer i we store the name of the set containing it; when splitting a
set, we rename the half containing fewer elements (as in Section 2, and [AHU,
pp. 124-129].)

To obtain an 0(m +n) time bound for set splitting we combine this method
with the table look-up method of Section 2. We partition the set [1.n] into
microsets that are intervals of & —1 consecutive integers. Each microset has a
root in the next microset. The n/b roots are placed in a universe of macrosets,
that is processed by the relabel-the-smaller-half method. The algorithms for
split and find are similar to those of Section 2. One change is that the split
operations update the macroset universe (as contthed with Section 2 where

log(L

Tog n) gives a linear

finds update the macroset universe). Choosing & =

10

Eﬂgcir)ithm. (Details of a similar method for a different problem can be found in
HT].

In conclusion we note thatithere are important applications of set merging
that our algorithm does not handle (e.g., checking the equivalence of two DFA’s
]EAHU p. 143-5], computing dominators in a flow graph [LT] and related problems
T1979a]). We have not been able to extend our algorithm to the general prob-
lem. Nonetheless the special case we treat appears to be significant, both in
theory and applications.

11

REFERENCES

[AHU1974] AV. Aho, J.E. Hopcroft, J.D. Ullman, 7he Design amd Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, Mass., 1974.

[AHU1976] AV. Aho, J.E. Hoperoft, J.D. Ullman, "On finding lowest common
ancestors in trees,"” SIAM J. Comp. 5(1976), pp. 115-132.

(D1976] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood
Ciffs, New Jersey, 1978,

[DR] J. Doyle and R.L. Rivest, "Linear expected time of :a simple union-find
algorithm," Inf. Proc. Letters 5, 1976, pp. 146-148.
[F] G.N. Frederickson, "Scheduling unit-time tasks with integer release

times and deadlines,” Tech. Rept. CS-81-27, Dept. of Computer Sei.,
Penn. State Univ., University Park, PA, 1982.

[G1976] H.N. Gabow, "An efficient implementation of Edmonds’ algorithm for
maximum matching on graphs," J. ACH 23 (1976) pp. 221-234.

[G1981] H.N. Gabow, “A linear-time recognition algorithm for interval dags,”
Inf. Proc. Letters 12 (1981), pp. 20-22.

[G1982] H.N. Gabow, "An almost-linear algorithm for two+processor schedul-
ing," J. ACM, 29, 3 (1982), pp. 766-780.
[GR] J.R. Gilbert and D.J. Rose, "A separator theorem for chordal graphs,”

Tech. Rept. TR B2-523, Dept. of Comp. Sci., Cornell Univ., Ithaca, New
York, 1982.

[GT] HN. Gabow and R.E Tarjan, "A linear-time algorithm for a special
case of disjoint set union,” Bell Laboratories Report, July 1982.

[H] D. Harel, "A linear time algorithm for the least :common ancestors
problem," Proc. 21st Annual Symp. on Found. Comp. Sei. (1980), pp.
308-319.

[Hav] B. Havens, "Experiments on an asymptotically optimum, special pur-
pose set merging algorithm,” M.S. Thesis, Dept. of Computer Sci.,
Univ. of Colorado, Boulder, CO, 1983,

[HS] E. Horowitz, and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Potomac, MD, 1978.

[HT1982] D. Harel, R.E. Tarjan, "Fast algorithms for finding nearest common
ancestors,”" SIAM J. Comput,, submitted,

[HU1973] J.E. Hoperoft and J.D. Ullman, "Set merging algorithms," SIAM J.
Comput. 2, 4, 1973, pp. 294-303,

[KS] D.E. Knuth and A. Schonhage, "The expected linearity of a simple
equivalence algorithm," Theoretical Comp, Sci, 6 (1978), pp. 281-315.
[LP] W. Lipski, Jr. and F.P. Preparata, "Efficient algorithms for finding

maximum matchings in convex bipartite graphs and related prob-
lems," Acta Informatica 15 (1981), pp. 329-348.

[LT] T. Lengauer and R.E. Tarjan, "A fast algorithm for: finding dominators
in a flowgraph,” ACM Trans. on Prog. Lang. and Systems 1, 1, 1979,
pp. 121-141.

[M] 3. Micali, private communication, May 1982,

[MV] S. Micali, and V.V, Vazirani, "An O(~TV]-|£]) algorithm for finding

maximum matching in general graphs,” Proc. 21st Annual Symp. on
Found. of Comp. Sci. (1980), pp. 17-27.

[PY]

[PL]

[S]

[SR]

[T1974]
[T1975j
[T1976]
[T1979a]
[T1979b]
[Th]

[TV1982]

12

CH. Papadimitriou and M. Yannakakis, "Scheduling interval-ordered
tasks," SIAM J. Comput. 8, 3, 1978, op. 405409,

F.P. Preparata and W. Lipski Jr., "Three layers are enough," Proc,
=2Ird Annual Symp. on Foundations of Comp. Sci., 1982, pp. 350-357.
Also personal communication, F.P. Preparata.

R. Sethi, "Scheduling graphs on two processors,"” SIAM J. Comp. 5
{1876), pp. 73-82.

R.E. Stearns and D.J. Rosenkrantz, "Table machine simulation,"” Proc.
10th Annual Symp. on Switching and Automata Theary, 1969, pp.
118-128.

R.E. Tarjan, "Testing flow graph reducibility,” J. Comp. Sys. Sci 9
(1974), pp. 355-365

R.E. Tarjan, "Efficiency of a good but not linear set union algorithm,"
J. ACH 22 (1975), pp. 215-225.

RE. Tarjan, "Edge-disjoint spanning trees and depth-first search,"”
Acta Informatica 6 (1978), pp. 171-185.

R.E. Tarjan, "Applications of path compression on balanced trees," J.
ACH 26, 4 (1979), pp. 690-715.

R.E. Tarjan, "A class of algorithms which require non-linear time to
maintain disjoint sets," J. Comp. Sys. Sci. 18 (1979), pp. 110-127.

J.E. Thornton, Design of a computer: The Control Data 6600, Scott,
Foresman and Co., Glenview, Illinois, 1970.

RE. Tarjan, J. van Leeuwen, '"Worst-case analysis of set union algo-
rithms," J. ACH, submitted.

