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Selective substitution grammars provide a rather general framework

for the grammatically oriented formal language theory (see, e.g., [R1],

(K], and [KR]). They were generalized in [R2| to coordinated table

unifying framework for both grammars and machines (automata).
The present paper investigates coordinated pair (cp) systems which
form a subclass of cts systems corresponding in a very natural way to
push-down automata: thus cp systems generate context-free
languages (all and only). This paper investigates the structure of

computations in cp systems.

INTRODUCTION

Selective substitution grammars provide a general framework for rewriting
systems (see, e.g., [R1], [K], and [KR]|). Through the notion of selective substitu-
tion they formalize the notion of "rewriting of selected occurrences in a string".

The theory of selective substitution grammars developed until now has turned



out to be successful in the sense that, within this theory, several central notions
of formal language theory were captured in a natural way and a number of

interesting new notions (together with results concerning them) have emerged.

The theory of selective substitution grammars is "grammatically oriented”
in the sense that it directly formalizes the notion of a rewriting system (gram-
mar) and so it concentrates on grammars as the way of defining formal

languages.

In [R2]| the notion of a selective substitution grammar was extended so as
to provide a unifying framework for both grammars and machines; the new
model is called an (eztended) coordinated table selective substitution system,
abbreviated ects system. This extension has turned out to be rather simple and
natural: rather than to rewrite strings one rewrites n-tuples of strings, where
the way strings on various coordinates are rewritten is "coordinated” by n-
tuples of productions. In this way one can easily formalize the notion of "the
way the input is read”, "access to the memory" and "processing of the input and
of the memory" which are certainly very central notions in the theory of
machines (automata). It is demonstrated in [R2| how quite a considerable
number of known machine (and grammar) models can be expressed as ects sys-

tems.

The present paper continues research on the theory of ects systems by ini-
tiating the investigation of "concrete" submodels of ects systems. We consider

the notion of a coordinated pair (cp) system which seems to be a very natural



submodel of the ects model and which at the same time captures in a very
natural way the push-down automaton model. A cp system is essentially a pair
of grammars, the first one right-linear and the second right-boundary (roughly
speaking a right-boundary grammar is a right linear grammar in which no dis-
tinction is made between terminal and nonterminal symbols - productions are
still applied to the last occurrence in a word only) which work in a coordinated
(in the sense of ects systems) fashion. The main aim of this paper is to provide
a rather detailed analysis of computations in cp systems - in this way we "try
out" the cp systems approach to the investigation of computations in push-down
automata. Since push-down automata occupy a very central role in (machine
oriented) formal language theory, we feel that such an analysis is worthwhile -
we believe that it sheds a somewhat different light on the nature of context-free
languages. Although some of the results we present are known (either "directly”
or in the "folkore of push-down automata'), this analysis provides useful techni-
ca;l tools and is absolutely necessary for further formal investigation of cp sys-
tems. As a matter of fact the usefulness of this analysis and of the formalism
we present in our paper was demonstrated already in [EHR2] and [EHR3| where
a new approach to the investigation of pumping properties of context-free

languages is presented.
The paper is organized as follows.

In Section 1 the basic notion of this paper - a coordinated pair system (cp

system for short) - is introduced. In Section 2 several ways of describing compu-



tations in cp systems are considered - such descriptions assign to each "success-
ful computation” (i.e.. a computation leading to a word of the language of a ¢p
system) in a cp system a word. It is demonstrated that the set of all such
"description words" for a cp system can be computed by a cp system - one
might say that the class of cp systems is "descriptionally closed”. In Section 3
we investigate how "to recover” the language computed by a cp system from
(one kind of - the so called "weak") descriptions of its successful computations -
this analysis yields an alternative proof of the Chomsky-Schutzenberger
theorem for context-free languages. In Section 5 the "exchange theorem' is
proved which says how one can "sweep” subcomputations between two (not

necessarily) different computations in a cp system.

0. PRELIMINARIES

We assume that the reader is familiar with basic formal language theory
and in particular with the theory of context-free grammars and the theory of

push-down automata (see, e.g., [H] and [S]).

In order to fix the notation and terminology for this paper we will recall

now some more specific points.

Given an alphabet ¥, ¥ will always mean the alphabet {a | a € £} and it

is assumed that X [ 15 = @.



For a word z, |z| denotes its length and, if 1 <k < |z|, then z(k)

denotes the k—th letter of z; \ denotes the empty word.

D .. denotes the set of (semi-)Dyck words over X Uy, where, for each letter

N -

a in X, its matching "right parenthesis” is ¢ in X. More formally, D is the

minimal language L over & UY that satisfies

(i) \eL,

(ii) if w € L, then awa € L for every a € ¥, and

(i) if w,, w, € L, then w w, € L.

A letter to letter homomorphism is called a coding and a homomorphism
that maps each letter either into a letter or into the empty word is called a
weak coding. If X and A are alphabets such that A C X, then presy | s the
weak coding of S defined by: presg \(a)=a if a €A and prese \(a) = A if
a € X\A. Whenever the alphabet & is understood from the context, then we

write pres | rather than pres. ..

A context-free grammar, abbreviated cf grammar, is specified in the form

G = (X%, P, S, A) where X is its alphabet, P its set of productions, S its axiom

i

and A C X its terminal alphabet. For z, y € " and 7 € P we write z =y
G

if z directly derives y using 7. Productions of the form X — Y , where X and
Y are nonterminal symbols (i.e., the elements of ¥\A) are called chain produc-

tions.



We use L(CF) to denote the class of context-free languages.

A right-linear grammar, abbreviated rl grammar, is a context-free grammar
G =(Y, P, S, 1), which has its productions in the set
5 s :
(E\A)XA ((E\Y) Ufa)).

A derivation (in G) is a sequence o =0(0), o(1), ..., o{n), n >0, of words

T
¢

*
from X such that, for every 1 < i < n, o{i—1) => ofi), where 7, is a produec-
G

tion from P. The sequence 7 7. is called the control sequence of o and

Lo
*
denoted by cont(o); if n = 0, then cont(0) is the empty sequence. If o{n) € A |

then both o and cont(o) are called successful.

A right-boundary grammar, abbreviated rb grammar, differs from a right-
linear grammar in the fact that it does not distinguish between terminal and
nonterminal symbols. A rb grammar is specified in the form of a 3-tuple
G = (2, P, S), where X is its alphabet, P C ¥ X o is its set of productions
and S € X its axiom. As in the case of a rl grammar productions are applied to

*
the last occurrence in a word only. Thus, for z, y €Y and T=a — w € P,

r directly derives y (in G using ), written ¢ => y, if z = 2¢ and y = zw for
G

*
some z € X .

1. BASIC NOTIONS



In this section the basic notion of this paper - a coordinated pair system - is

introduced and several key notions pertinent to it are discussed.

Definition 1.1 A coordinated pair system, abbreviated cp system, is a triple
G = (G, G,, R) such that
(1) G,=(X,, P, S,, Q) is arl grammar,

=1

(2) ¢

s = (29, Py, S,) is a rb grammar, and

(3) R CPxP,. O

G, and G, are referred to as the first and second component of G respec-

tively. Elements of R will be referred to as rewrites of G.

Remark. It is easily seen that a cp system is a special case of a sequential
uniform ects system (see [R2]) with two coordinates only. We have simplified
the notation and terminology in a way that seems more convenient to deal with

a simple subcase of a rather general definition. O

Definition  1.2.  Let G =(G, G, R) be a cp system, where
G,=(X, P, S, A)and G, = (X, P, S,).

*

¥
(1) Let z = (:cl, zz), y = (yl, Y,) € Zl XZz .

T directly computes y (in G), denoted z => y, if there exists a rewrite
G

Ty Ty T

7= (7, 7,) € R such that z, = y, and z, => y, ; we write then z = y and
G, G, G



we say that z directly computes y (in G) using 7.
* *

=> denotes the reflexive and transitive closure of =>. If z = y, then we say
G G G

that z computes y (in G).

(2) A computation (in G) is a sequence p = p(0), ..., p(n) of elements from

Z;XZ;, n >0, such that p(0)'= (S, S,) and, for 1 <1 < n, p(i—1) => p(i).
G

We say that p is successful if p(n) = (u, \) for some u € NS

(3) Let p=p(0), .., p(n),n >1, be a computation in G. The sequence

Ty Tgs wony T, of rewrites from R such that, for 1 <1 < n, p(i—1) => p(i) is
G

called the control sequence of p and denoted by cont(p). If p = p(0), then we
define cont(p) to be the empty sequence. If p is a successful computation, then
we say that cont(p) is a successful control sequence.

(4) Let p = p(0), ..., p(n) be a successful computation in G. Then the

result of p, denoted by res(p), is defined by res(p) = u, where p(n) = (u, A).
(5) The language of G, denoted L(G), is defined by

L(G) = {res(p) | pis a successful computation in G}

L(G) is also referred to as a coordinated pair language or cp language

for short. O

If G is a cp system, then we say that G computes the language L (G).

The class of all cp languages is denoted by L({CP).



Remark. (1) We realize that we somewhat abuse the notation by writing
sequences in the form p = p(0), ..., p(n) rather than p = < p(0), ..., p(n) >
(this leads to somewhat ambiguous expressions like, e.g., p = p(0)). However,
using brackets to delimit sequences would lead to an additional burden on the
already involved notation. We hope that abuses of notation of this type will
not lead to misunderstandings.

(2) It is instructive to note that (in the notation as above) if p = p(0), ..., p(n)

is a computation in G, then for each 1 <: < n there is a unique 7 € R such

that p(¢—1) = p(v). Hence the notion of control sequence is well defined. O
G

Ezample 1.1. Let G = (G’l, G, R) be the cp system, where

(a) G, =({X,7Y,a,b,¢}, P, X, {a,b,c})with

P ={X —aX, X —0bY,Y —bX, 7V —cV, ¥V —c},

(b) G, =({4, B}, P,, A) with P, ={4 — BA, A — \, B — A, B — \},
(c) R consists of the following rewrites:

5, = (X — oX, A — BA),

by = (X —bY, A — ),

(Y — bX, B — 4),

I

%
Y, =(Y —-c¥, B —\)and

hy=(Y — ¢, B —\).



Consider in G the successful computation p = p(0), p(1), ..., p(6), where

p(0) = X, 4 )
(1) = a X, Bd )
p(2) = ( e a X, BBA),
p(3) = ( e a b Y,BB ),

p(3)=( a a b b b Y, B )
p(6)=(a a b b b ¢ , ).

For this computation we have cont(p) = Uy, Uy, Wy, g, U, U, U

[t is easily seen (see [R2|) that a push-down automaton may be interpreted as a
cp system and that a ¢p system may be interpreted as a push-down automaton.

These observations yield the following result.

Theorem 1.1. L(CP)=L(CF). O

Remark. In order to stress the fact that in this paper we deal with (push-
down automata via) the formalism of cp systems only, we will use the phrase
"cp languages” rather than "cf languages” - according to above theorem the two

phrases are equivalent. O

2. DESCRIPTIONS OF COMPUTATIONS



In this section we will consider several ways of describing computations in
a cp system. We will consider descriptions which assign to each successful com-
putation in a cp system a word and then we demonstrate that the set of all

such descriptions can be computed by a cp system.
Let G =(G,, G,, R) be a cp system, where G, = (X, P, S, A) and

G, = (%, P2,’ S,) and assume moreover that ¥ M Y, = @.

In order to simplify our notation we will assume that: G s an arbitrary cp

system, but it 1s fized for the considerations of this section.

Definition 2.1. Let
C={S;8,Ulm1]7=(r,4 w)ER, i ENand0<i < wl}
(1) Let 7= (7, 4 —w) ER.
The trail of 7, denoted by tri(7), is the word over [ defined by
tri(m) = 7, 0] (7, 1] -+ [, )

(2) Let p be a computation in G with control sequence 7 = 7, ..., 7_, for some

1’
n=>0m,.,7, €ER.
The trail of p, denoted tri(p), is the word over " defined by

tri(p) = [S;S,) tri(m)) -+ - tri(x,). O

1

Remark. Note that if p = p(0) = (S, S,), then tri(p) =[S ; S,]. O



Definition 2.2
(1) ctb is the homomorphism from " into A" defined as follows.
For 7€ [, ctb(7) equals
- u, if 7=[7 0 for some 7€ R where either 7= (X —uY,w,) or
T=(X —u, ) with X, Y €S\A, u € A,
-\, oﬁherwise.

*
For a word o € [ | ¢tb() is referred to as the contribution of c.

(2) Let © =X \dand let = =3, Ue Us, UL,
des is the homomorphism from r’ into E* defined as follows.
For 7 € [, des(7) equals

-8, 8, , ifr=[5,; 8,

-XuA , ifr=[7 0], where 7= (X —u, A —w)ER,
-w(k) , fr=[7 k|, whereT=(X —u, A —w)ERand 1 <k < lwl.

' ¥
For a word & € ' | des(c) is referred to as the description of cv.

US,)” defined as follows.

*
3) wdes is the homomorphism from [' into (=
2 2

For 7€ [, wdes(7) equals

-8, ,ifr=1[8,; 8

1 2}’
-A ifr=[7,0], wherer= (7, A —w)ER,
-w(k), f 7=[7, k|, where 7= (7,4 —w)ER and 1 <k < jwj.

*
For a word @ € I' | wdes(c) is referred to as the weak description of v. O



If p is a computation in G, then des(tri(p)) (wdes(tri(p)) respectively) is simply

called the (weak) description of p.

The set of (weak) descriptions of all successful computations in G is denoted by

dsc(G) (wdsc(G) respectively).

Ezample 1.1. (continued)

o =
tri(p) = [X;A] {?,/)1,0} [1/;1,1} ['{i‘l,‘z} {*zi‘l,()} {7&1,1] [ZL'I,Q{ [10,,0] [‘253,0] [zéfg,l} [z’,'2,0] &'zﬁz’o,()}
cth(a) = A a A A a A A b b A b

des() = XA XaXA B A  XaXA B A  XbYA YbXB A  XbVA

For a successful computation p, both ¢ri(p) and des(¢ri(p)) carry "all” infor-
mation about p and in particular they carry the information about res(p). As a
matter of fact it is obvious that
res(p) = ctb(trl(p)) = pres \(des(trl(p))).

Thus we have the following result.

Theorem 2.1. pres (dsc(G)) = L(G). O

YcB



Furthermore we can prove the following "self-descriptional” property of cp
systems as far as the set of descriptions of successful computations is concerned.
Theorem 2.2. dsc(G)is a cp language.
Proof.
Let Z be a symbol not in X, US2 and let ©® = {ala € El\;&}.
Let P be the set of rewrites defined as follows.

(1) 7,=(Z2—5 8,5 ,5,—8,)€P.

(2) Ira=(7,7) €ER, 7y =X —uY, where u € A and ¥ c X \4,
then (X — des(tri(7))Y , 7,) € P.
3) Ir=(m,m) ER, 7 =X —u, where u € A*,
then (X — des(tri(m)) , 7,) € P.
(4) Ounly productions obtained as in (1) through (3) above are in P.
Then let H = (H, , H, , P) be the cp system such that H, = G, and
H =(= s U{Z},PL,Z,E), where P, consists of all productions which occur as
first components of rewrites in P.
Now we observe the following, easy to prove, properties of H.
(i) The cases (2) and (3) of the above definition of P define a bijection ¢ from
R to P — {/TZ}.

(ii) A sequence 7 7 ,n >0,in R is the control sequence of a (suc-

192 gy e Ty

cessful) computation p in G if and only if 7,,0(7)), ..., o(7,) is the control



sequence of a (successful) computation 7in H.

(iii) Moreover if p and 7 are successful computations related as above, then
res(c) = des(trli(p)).

From the above observations it follows immediately that L(H) = dsc(G).

Unlike des(tri(p)) , wdes(trl(p)) carries only some information about the
computation p. In particular, if p is successful, then it does not carry any infor-
mation about res(p). But, again, the set of weak descriptions of all successful

derivations in G can be computed by a cp system.
Theorem 2.3. wdsc(G) is a cp language.
Proof.

One notes that wdsc(G) = pres (dsc(G)). Since it is easily seen that
<, Us,

the class of cp languages is closed under weak codings, the theorem follows from

Theorem 2.2. O

Theorem 2.4. wdsc(G) C D

Proof. (sketch)

We sketch here the main idea only leaving the formal (perhaps tedious)

proof to the reader.



(iii)

Observing the behavior of second components of a successful computation

0= p(0

~—

. ..., ¢{n) one notices that the symbol to be rewritten at a given
step is the last symbol previously "written into" the second component that
has not been rewritten yet. (If in a step a word a,...a, is written "at the
end of" the second component, then we will assume that the symbols

a,,...a, are written in in this order.)

For a computation p in G , wdes(trl(p)) closely represents this sort of
behavior, where
\

- a symbol from 1, corresponds to the addition of a nonterminal on the

second component,

- a symbol from 22 corresponds to rewriting of a nonterminal on the second
component.

Moreover, in a successful computation every symbol that was introduced on

the second component will eventually be rewritten.

From these observations our theorem easily follows. O

Ezample 1.1 (continued)

wdes(0) is a Dyck word over {4,B} U{A,B}. Its balanced structure is as fol-

lows:



FIGURE 1.

We would like to conclude this section with the following remark.

Remark. As a matter of fact descriptions of computations translate
"directly” trails of computations into words more explicitly connected to the
working alphabet (the alphabet of both coordinates) of the cp system con-
sidered.

One could also work directly with trails of successful computations. Then
Theorem 2.1. would be reformulated as: "ctb(tsc(G)) = L(G)"
and Theorem 2.2 would be reformulated as "ts¢(G) is a cp language”,

where tsc(G) denotes the set of trails of successful computations in G. O

3. THE CHOMSKY-SCHUTZENBERGER THEOREM

As we have observed already, in general the language wdsc(G) does not

carry any information about L(G).

In this section we will consider the so-called smooth cp systems for which it

is possible to recover the language from the set of weak descriptions (of its



successful computations). Recovering this information and analyzing the form
of words in wdsc(G) yields the well-known Chomsky-Schutzenberger theorem
for context-free languages (see, e.g., [S]).

We begin by establishing a normal form result for ¢p systems.

The following result can be obtained by either considering the 2-Greibach
normal form for cf grammars and then translating this into the theory of cp
systems or by proving a "real time normal form" directly within the theory of cp

systems - this turns out to be a nontrivial task (see [EHR1]).

Theorem 3.1. For each cp language K there exists a cp system
G =(G,G,,R) such that K = L(G), where moreover
(1) G, =({s,} Ua P ,5,2), where
P, C{S, —aS |a €]} U{S1 —aja €A}
(2) G,= (£,,P,,8,), where all productions in P, are in one of the following
three forms:
A —\,A —BorA — BC, with A,B,C € Y,, and
(3) foralla € A7, €P, we have
(S, —a,8,,7,) € R if and only if (S, —a,m)ER. O
An important property of a cp system G satisfying Theorem 3.1 is that the

first component cannot "block” a computation, since

(1)  there is only one nonterminal to which every rewrite of G can be

applied, and moreover



(2)

¥ *

if (§,,5,) = (v, S, \) for some u € A*, then (S,,S,) == (u,\).
G G

We now define the basic notion of this section.

Definition 3.1. A cp system G = (G ,G,,R), where G, = (X ,P,S,,A) and

G, =(%,,P,,S,), is smooth if

(1)

gy
all px"oductions for S, and S, are chain productions, S, and S, do not

occur at the right-hand side of any production,

Zl\A contains only one symbol besides S, say Z,

there exists a weak coding A : Z; — A* such that, for each
(X —u,A —w)€ER , pres (u) = h(4), where h(4) =\ if and only if
A =S5, and

for every u € A U{\} and 7, € P,,(Z —uZ ,7m,) €R if and only if

(Z —u,m)eR. O

Smooth cp systems are "universal” in the following sense.

Theorem 3.2. For each cp language K there exists a smooth cp system G

such that K = L(G).

G

Proof.

Let K be a cp language and let G = (G;,G’;,R'), with

=({S,} UL\,P;,SI,A) and G; =(Z;,P;,Sz), be a cp system such that

L(G)=K; we assume that G satisfies the normal form requirements of



Theorem 3.1.

)

% N . o ¥ . -
Let ¥, =14 /4 €Y,, 2 € A} and let pu be the coding from Y, into (X,)

“ta 2

defined by

(A,) = A, for every A EZ; , a € A.

We define a new set R of rewrites as follows (Z is a new symbol).

(1) (§,—2,8,—(S,),) ER, for every a € A,

*

(2) (Z —>aZ,A, —w)ER, if wEX,,a €A and
(S, —aS,, A — ‘w,) € R for some w’Eu(w).

¥

27

'

3) (Z—a,A, —w)€ER, If wel aGAand(S’léa,Aﬁw')ER

for some w € w(w).
(4) R contains no rewrites other than those defined under (1), (2) and (3)

above.

Let G =(G,G,R) with G, =({sS,2} UAP,S,A)  and
G, = (Zz U{SZ},PZ,SZ) be the cp system with above set of rewritgs, where P,
and P, are the sets of productions occurring on the first, respectively second,

coordinate of rewrites from R.

1

It is easily seen that L(G) = L(G). Moreover, G obviously satisfies the
requirements (1), (2) and (4) of the definition of a smooth cp system.
Finally, let A be the weak coding from (%, U{SQ})* into A defined by

h(S,) =\, and



h(A,) = a, for every A € L; ,a €A

Now, obviously, h is the required weak coding (see Definition 3.1.(3)) and

consequently G is smooth. Thus the theorem holds. O

Theorem 3.3. Each cp language K is the image through a weak coding of

the intersection of a regular language and a Dyck language.

Proof.
Let K be a cp language and let G = (G ,G,,R), where G| = (ZI,PL,SI,A)

and G, = (%, P,,S,), be a cp system computing K. By Theorem 3.2. we can

assume that G is smooth; let 2 be the weak coding satisfying the definition of a

smooth c¢p system.

Let H be a cp system generating wdsc(G).

We define the weak coding g:(, UZZ)* A in the following way:

fora €, , g(a) = \ and g(a) = A(a).

Then it follows directly from the definition of a smooth c¢p system that

.................................................................

g(L(H)) = L(G)
Let @ be the following regular language:

Q = Sy {wdes(tri(m)|m = (S, = Z ,7,) ER)

{wdes(tri(7)) 7 =(Z — u T,) ER}

where Z is the unique nonterminal in X,



To conclude the proof of the theorem it suffices now to prove the following

result.

Lemma3.1. L(H) = D. M Q.

Proof of Lemma 3.1

By Theorem 2.4. L(H) = wdsc(G)C D...

-2

It is easily seen that L(H) C @ ( see Definition 2.1. and Definition 2.2.(3)).

Hence L{H) C D M Q.
On the other hand let w € DSz M Q.

By the definition of @ there exists a sequence x = 7 T, ,n 21, of

17 -

rewrites 7; € R such that w = wdes([S, ; S,|tri(7) - - tri(m,))-

By property (4) from Definition 3.1. (of a smooth cp system) we may

s

assume that 7 =(7 —u and for 2 <i<n , 7 =(Z —u 2, 7,)

n’ n,?.)

where u,, .., u, € A. Moreover, by property (1) from Definition 3.1,
=08 =7, 771’2)'
In order to prove our lemma we will show that Ty s Ty -y 7, IS a success-

ful control sequence in G.

We will consider the effect of x on each of the two components separately.

Let 7 = (7‘"1.’1 , 71'1.,2) for every 1 <7 <n and let «, = Tppsr o Ty and



First we observe that ~. induces a well defined derivation in G1 of a word

1
*

in A - this follows from the above assumption.
Secondly, we observe that ~, yields a derivation in G, of the empty word

(because w € D). Hence x is a successful control sequence in G, w is the
3
weak description of its trail; consequently it is in L (H).

Hence L(H) D D, (1 Q and the lemma holds. O

Now Theorem 3.3. follows from (1) and the above lemma. O

4. THE EXCHANGE THEOREM

In this section we consider the possibilities of "swapping" pieces of (not

necessarily different) computations in cp systems.

Let G be the cp system specified at the beginning of Section 2. Again we

will assume that G s arbitrary, but fized for the considerations of this section.

Before we state the theorem of this section we need a lemma and some

additional terminology.

Lemma 4.1.
Let Q={trl(m) -~ trl(m,) | n 21,7, =(7,,,7,,) ER for  every

1<¢<mn,and 7 T .oy ™, forms the control sequence of a successful

110 210 n,

derivation in Gl}.



(1)

@ is a regular language.

Let w=7m,.., 7, ,n =1 be a sequence of rewrites in R and let

Then « is a successful control sequence in G if and only if

(i) € Q, and

1

(ii) S, wdes (o) € D.. U

-2

Proof.

Using the fact that G, is a rl grammar, one easily sees that @ is a regular

4

language.
Let k=7 ,..,7, ,n > 1, be a sequence of rewrites from R, where
T.= (7‘-2',1 , 7Tz.]2), 1<i<n. Letx = Top s oo Ty 0 Ko = Wgs oy Ty

and let a = ¢ri(m) - - - tri(7,).

If ¥ is a successful control sequence in G, then x, is a successful control

1

sequence in G,. Hence @ € Q. Moreover, by Theorem 2.4.,

S, wdes(c) = wdes([S, ; S,| tri(m) - - - trl(7,)) = wdes(trl(r)) € De.
This proves the "only if" part of the statement.

In the proof of the reverse implication (the "if" part of the statement) we
will consider separately the effect of ¥ on each of the two components (like
we have done in the proof of Lemma 3.1.).

& € ¢ implies that x, is a successful control sequence in G,.

If S, wdes() € Dy, then

o is the control sequence of a derivation in G,



of the empty word.

Consequently, if both «+ € @ and S, wdes(+) € D.. , then # is a successful

control sequence in G. Hence the lemma holds. O

Definition 4.1.

(1) Aword € s balanced, if wdes(c) € D .

—2
- x* .
(2) Two non-empty balanced words «v and J from [' are equivalent, denoted

o -3, if o(l) = (1) and of [} = 3(13]). O

Theorem 4.1. (Ezchange Theorem). Let p,,p, be (not necessarily different)
successful computations in G, where tri(p) = o v , tri(p,) = a,0,7, and
8, -5, Letw,= ;8,7 and w,, = «,0,7,. Then there exist unique successful

computations p,, and p,; in G such that trl(p,,) =« , and tri(p, ) = Wy,
Proof.

We will only sketch the proof: it closely follows the arguments from the

proof of Lemma 3.1..

(a) The equivalence of the exchanged parts 8, and J, assures us that each of
W, and w,, represents a unique sequence of rewrites in G (except for the

initial symbol [S,; S,]) as a sequence of their trails; let «,, and Ky, e

12

these sequences of rewrites.



and &

(b) Moreover, due to the same fact, the first components of Ko 21

"behave well" (i.e., like a successful control sequence in G,) on the first

coordinate.

(c) Finally one observes that x,, and K, Yield in G, derivations of the empty
word: this follows from the fact that the exchange of two balanced sub-

words does not "unbalance” the computations involved.

Consequently x,, and x, are successful control sequences in G - observa-
tions (b) and (c) above correspond to requirements (i) and (ii) from the state-

ment of Lemma 4.1. Hence our theorem holds. O

Remark. The Exchange Theorem, combined with the observation that
res(p) = ctb(tri(p)) allows us not only to exchange equivalent pieces of compu-

tations, but also the corresponding pieces of the results of the computations.

With the notation as in the statement of Theorem 4.2 we have
res(p,) = cto(cF,7,) = ctb(o)etb(5,)ctb (7)),
res(p,) = ctb(03,7,) = ctb (cr,)eth(3,)ctb (4,),

res(piz) = ctb(wy,) = ctb(o J,)y)) = ctb(cv)etb (5,)ctb(v,), and

res(py,) = ctb(ay)ctb (5, )etb(v,). O

Ezample 1.1. (continued). Let p:P, be successful computations in G with

— bbb b A b
cont(p,) = U, ¥, by, 0,00, and

/ ! / /

R I T :
cont(pz) =), U g, 1 W), 1, 1,15, Tespectively.



Let o, = [A; X[ ,0][x,1],

3= 02l [e0) [l 1,2 DO] L [0,20 1,001,011
7 = [0l

and let

ay = [A;X[,0] [0y, ][y, 2][1dy,0][5,0] [1hy, 1][10,0] [14y, 1],
3, = [,201, 0], 1)[¢5,,2][1,,0][ 0],

Yy = [4,0]-

Then tri(p,) = & 3,7, and tri(p,) = 3,7,
Hence
res(p,) = ctb(c)etb (3 )etb(v,) = a-aabec-c
and
res(p,) = ctb(,)ctb(J,)ctb(,) = abba-abc-c.

,61 and §, are both balanced, since
wdes(J,) = AABAABAABB and wdes(J,) = AABAAB

are Dyck words over {4 ,B} U{A , B}

Moreover, ,31 and ,32 are equivalent. Hence there exist successful computations
pyp and p,, with

tri(py) = 0,7, and tri(p,,) = 8,7, -

Obviously we can take

— bl b
cont(p,,) = L,y 0,, ¢, and

b e b I A A

cont(py,) = iy, Ly, Uy, 0,0 10U 9y Ly U



Then res(p,,) = ctb(cx )etb(3,)cth () = a-abec ¢

and res(p,,) = ctb(v,)eth(J )eth(~,) = abba-aabec-c. O

DISCUSSION

In this paper we have provided an analysis of computations in c¢p systems.
Such an analysis seems to!be useful for building up the theory of ects systems -
since cp systems form a very natural and rather simple submodel of the general
ects model they form a natural starting point for investigating the theory of
ects systems. Moreover, cp systems correspond quite closely to push-down
automata and so (we believe that) the analysis of cp systems provided in this

paper forms a new and convenient way of looking at context-free languages.

The exchange theorem given in Section 4 to provides a convenient basis for
proving 'pumping type" results for cp languages - this is demonstrated in

[EHR2| and [EHR3|.

The main aim of our paper was to express (formalize) in the framework of
cp systems a number of basic properties of push-down computations; we hope
that in doing this we have demonstrated the "naturalness” and the elegance of
the cp systems approach. Once this is done one can move to the in-depth for-
mal investigation of cp systems (as basis for the theory of push-down automata
and context-free languages). The usefulness of our paper for this purpose is
already demonstrated in [EHR2|, [EHR3|, and [EHR4|, where known results

about push-down automata and context-free languages are proved in a new



fashion; new results are given as well.
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