Real Time Coordinated Pair Systems

A. Ehrenfeucht, H. J. Hoogeboon G. Rozenberg*

CU-CS-259-83 September 1983

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

*This research was supported in pert by NSF Grant number MCS 83-05245.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ABSTRACT

Coordinatéd table selective substitution systems (cts systems tor short)
were introduced in [R2] where it was demonstrated that they form z unifying
framework for many types of grammars and automata (machines) considered in
formal language theory. In this paper a submodel of the cps system model is
considered: it is called coordinated pair system (cp system for short). It
models very closely the work of a push-down automaton. We consider real {ime
cp systems, il.e., cp systé‘ms in which each computation step of a "successful
computation” generates one letter of the word defined by the computation. We
demonstrate that real time cp systems constitute a normal form for the class of

cp systerns (as far as defined languages are concerned).

INTRODUCTION

The theory of selective substitution grammars (see, e.g., [R1], [K] and [KR])
provides a general framework for rewriting systems (grammars). It has turned
out to be successful in the sense that, within this theory, several central notions
of formal language theory were captured in a natural way and a number of

interesting new notions {and results) have emerged.

This theory was expanded in [R2] to the theory of coordinated toble selec-
tive substifution systems (cts sy&téms for short) which provides a genefal
framework for grammars and automata {machines). It is demonstrated in [R2]
how quite m‘ény types of grammars and automata considered in the literature

are easily modeled (formalized) within the framework of cts systems.

In the present paper a particular specialization of the cts system modal to
the case of two coordinates (one for "input' and another for "store") is con-
sidered. The model is called coordinated pair system. (cp systems for short).
Roughly speaking a cp system & consists of
(1) two grammars G; and Gy such that G, is a right linear grammar and G is a
right boundary grammaer (which is like a right linear grammar in that it rewrites
always the rightmost symbol of a sentential form but it does not distinguish
between terminal and nonterminal symbols), and
(R) a set R of pairs of productions {called rewrites):, one from &, and one from
Go.

Then the rewriting in G consists of coordinated rewriting in G, and G, in the
sense that al a given derivation step a production m; in &} may be used and a
production m; in Gz may be used if (),) is a rewrite in G. It is easily seen
that cp systems:-model closely push-down automata, however we deal with

rewriling based on. context-free productions rather than with transition func-

tions in a rother involved machine mo del.

In this paper we consider real {ime cp systems that is cp systems in which
at each step of a computation (where a computation is a sequence of coordi-
nated rewritings) an "input symbol” is generated by G, (that is G, does not have
chain productions). We demonstrate that the class of languages generated by
real time cp systems and the class of languages generated by cp systems coin-

cide.

Hence we get a "real-time normal form result” for (a model closely related
to) push-down automata without using context-free grammars (hence without
using Greibach normal form). The relationship between our method and the
method for getting the same type of result for another general machine model

presented in [G] is discussed in the last section.

0. PRELIMINARIES

We assume the reader to be familiar with the basic formal language theory
and in particular with the thecry of context-free grammars and the theory of
h-down aut ta { {H1 S
push-down automata (see, e.g., | and .
In order to fix the notation and the terminology for this paper, we will recall
now a number of basic notions.

For aset Z, #2 denotes its cardinality.

{

For a word z, |z | denotes its length, mir(z) denotes its mirror image and,
if x is nonempty, then lest(z) denotes the last letter of z; A denotes the empty

word.

Let z, ¥y be words. The right quotient of x by y, denoted z /y, is defined as
follows: if ¥ is a suffix of z, then z /Yy = 2, where zy = z; otherwise z /Yy is not
defined. \

Let K, L be languages. The 7ight gquotient of K by L, denoted K/L, is
defined by K/L = {z | 2y € K for some ¥y in L}.

If ¥ and A are alphabets such that A C Z, then presg , is the homomorphism
of £° defined by zresga{e) =a if ¢ €A and presgala) =Aif el —A I Zis
understood form the context, then we write pres, rather than presy ,.

A contexi-free grammar, abbreviated cf grammar, is specified in the form

G =(Z, P, S, A) where ¥ is its alphabet, P its set of productions, S its axiom and

ki
ACX its terminal alphabet. For z,y € $* and m€ P we write z =y if x

directly derives y using m. Productions of the form X -» Y, where X and I are

nonterminal symbols (i.e., the elements of £—A) are called chain productions.

A right-linear grammar, abbreviated 7l grammar, is a context-free gram-

mar G = (&, P, S, A), which has its productions in the set (Z-A)XA* ((Z-A) IAY).

A derivation (in G)is a sequence o = 7{0), o(1), ..., o(n), n =0, of words from s

™
such that, for every 1 €1 =n, o{i—1) =—E> o(i), where m; is a production from F.

The sequence Ty, ..., i is called the control sequence of o and denoted by
cont{o); if n = 0, then cont (o) is the empty sequence. Ifoln) < A", then both ¢
and cont (o) are called successful.

A Tight-boundary grammar, abbreviated b grammear, differs from a right-
linear grammar in the fact that it does not distinguish between terminal and .
nonterminal symbols. A rb grammar is specified in the form of a 3-tuple
G = (%, P, S), where I is its alphabel, P cuxy® is its set of productions and
S € ¥ its axiom. As in the case of a rl grammar, productions‘ are applied to the

last occurrence in a word only. Thus, for z,y €L* and m=a > W &< P,z

ki)
directly derives ¥ (in G using), written = =~;;> y,ifxr =20 andy = 2W for some

E 3
z €.

Two language generating "devices” are said to be equivalent if their

languages differ at most by the empty word.

BASIC NOTIONS.

In this section the basic notion of this paper - a coordinated pair system - is

introduced and several key notions pertinent to it are discussed.

Definition 1.1. A coordinaled pair system, abbreviated cp system, is a triple

G = (G, Gg, R) such that

(1) G, = (2, P1, S1. A) is arl grammar,
() Gz = (Zg, Pg, Sg)is arb grammar, and
(3) R CPxP, *

Elements of R will be referred to as rewrites of G. If m=(m, mp) is a
rewrite of G, then m; and 7y are referred to as the first and second production of
7 respectively. S
The set of all first {resp. second) productions of all rewrites in R is denoted by
proj(R){resp. projz(R)). In this paper we assume that P, =proj(R) and
Py = projy(R).

Definitior. 1.2. Let G = (G, Go,F) be a cp system, where G, = (Z,, P;, Sy, A)
and Gp = (Zg, Pg, S2).

(1) Letz = (z,,), ¥ = (¥, ¥o) € T, XZy. z directly computesy (in G), denoted

i
z wﬁ‘»—g Yy, if there exists & rewrite m = (m, mp) € B such that ==Y, and
, ¢,

T2 b

Iy =G‘—-,> Y2 ; we write then z =G=> y and we say that x directly computes y (in G)
2

using .

* *
"—§> denotes the reflexive and transitive closure of ? Ifz =:G;> Yy, then we say

that z computes y (in G).

(28) Let (z,y)<eXLixXy. A (zy)-computation (in G) is a sequenca

p =p{0), ..., p{n) of elements from Z:XZ;, n = 0, such that p(0) = (z, ¥) and ,

for 1<1<mn, p(i—1) Z?p(i). p is an n—step computation and, for 1 <7 <n,
p{i—1) = p(i) is called the i-th step of p.
For each 0=1i<mn, p(i) is referred to as a snapshot of p. If p is a (S;, Sg)-

computation in G, then p(i) is a snapshot (of G).

(3) Let p=p(0),..,p(n),n=1, be a computation in G. The sequence

™
7. Tg, ..., Tp Of rewrites from K such that, for 1 =i <n, p(i—1)=G> p(i) is called

the control sequence of p and denoted by cont{p). If p = p(0), then we define
cont{p) to be the empty sequence.

(4) Let p =p(0), ..., p(n), n =0, be a computation in G. p is a successful com-
putation if p(0) = (S,, Sg) and p(n) = (w, A) for some w € A*. Then the result
of p, denoted res (p), is defined by res{p) = w.

{5) The language of G, denoted L{G), is defined by L{G) = {res{p) | p is a suc-

cessful computation in G{. =

The language of a cp system is referred to as a cp language.

In order to avoid separate considerations of "trivial' cases we will assume
that every cp system considered in this paper "computes" at least one

nonempty word.

2. MINIMIZING THE ROLE OF THE FIRST COMPONENT.

In this section two normal forms for cp systems are presented. The idea of
the transformations considered in this section is to minimize the role of the first

component in successful computations as much as possible.

We start with a definition that formalizes several ways of making the first
component of a cp system "irrelevant”. A cp system is called simple if the non-
terminals of the first component do not influence the computations: one cannoct
distinguish "states" (there is one nonterminal only) and moreover, if it is possi-
ble to finish a computation on the second component then it is also possible {by
choosing the appropriate rewrite) to end the computation on the first com-

ponent.

We say that a cp system is consistent if its computations are such that beth
components "finish"” at the same time; thus a snapshot pf a computation has a
terminal word on the first component if and only if its\ second cemponent is
‘empty.

Definition 2.1. Let G=(G,,G,R) be a cp system, where
Gi=(,P,,S8,.40), Ga=(Es, Py, Sp)and "' = I;-A.
(1) Gis 1-minimadl if #I" = 1.
() G is simple if G is 1-minimal and moreover, for each mp € Fz and each
weA”, (S, w, m) € Rifand only if (S| » wS,,) € R.
(3) G is consistent if, for every snapshot (u,, up) of G, u, € A” if and only i

'U,g:A. &

Theorem 2.1. For each cp system & there exists an equivalent l-minimal

and consistent cp system.

Proof.

Let G =(G,, Go, B) be acp system, where
G, = (21, Py, S, A), Ge=(22, P2, S, and let I' = Z;—A.

Then let G = (G, G2, R) be a cp system, where
@12(21,.751,5;1,&)and(?3:{§3, P,
= AUES L S £ A,
S, =X, Y, Z] | X€Zy, Yl UM and Z €1,
S,=[Sz2,A,S5;]and
R, P, and P, defined as follows.

For each rewrite = (m;, m) in & we construct the set E(m) of rewrites in
the following way.
(1) Ifm=8->wC, w e A® and C €7, then
(1.1) if =D Dy Dy . m=1D ¥ forall 1<i=mn, then E{r) consists
of all rewrites
(3, > wS,, [0, X, Bl > [Dy, X, X1)(Da, X1, Xe] - - L X1, C))
such that X e TUN and X, ..., K €T,
(1.2) if w3 = D > A, then F{m) consists of the single rewrite
(§,»wS,,[D,C.B]-»A).
() Ifm=B-w,we¢ A* and 7 is as under (1.1), then R(m) = 2,
otherwise, if mp is as in (1.2), then F{m) consists of the single rewrite
(S, -»w, [D, A B]-A).

Then K = Upﬁ(n), P, = proj(R) and P, = proja(R).

TEeHa
From the construction of G it easily follows that G is both 1-minimal and

consistent.

To show that L{G)=L{G} we proceed as follows. (Given a letter

oce[X, Y, Z] € E;we use 1(0), 2(c) and 3(0) to denote X, Y and Z respectively).

10

(i) L{(G) < L(G).

Let p be a m-step successful computation, such that, for all 0 =i <m -1,
p(i) = (wB;, Dy - - Dy n) with w; € A", By €l'and D;; € Lp for 1 =7 =n,, and
p(m) = (w,, A) with w,, € A",

We will construct a m-step computation 5 in G as follows.
First of all we require that, for each 0<i=m-1, p(i) = (w;S,, Fy, - - Fin)
with F; ; € Spfor 1 <7 <mn; and 2(Fiz4y) = 3(Fip) forall 1<k < ny—1.

Thus to specify p(1) it suffices to specify |
1(Fia) oo WFin), 3(Fia), -, 3(Fipn,) and 2(F;), which is done in the following
way.
WF;) =Dy for 1=7 <n; and 2(F;) = A
For each 1 =k <n; let g, =1 be the smallest integer such that in the (g, +1)st

computation step the occurrence U, . = [is rewritten on the second com-
ponent of p(qe). Then 3(F;x) = By,. Note that g, = 1.

Let p(m.) = p(m).

From the definition of K it easily follows that 7 is successful. Thus
res(p) = res{p) € L(G) and consequently L(G) < L(G).

(ii) L{G) C L(G). Consider a m-step successful computation p in G. Note
that by point (1.1) of the definition of K, for each 0<i<m-1, if
p(1) = (wiSy, Fiy- - - Fip) where Fiy, .., Fin € g, then 2(Fiee) = 3(F) for
all 1<k <mn.

Now we construct a successful m-step computation p in G as follows: for

0=i<m, p() = (Wid(Fin) UFn) - HFip)) and p(m) = (Wi, A).

From the observation above and the definition of R it easily follows that p is

a computation in G (and moreover, for all 1<1i <m, if p;, ='—’;>pi using a

11

rewrite 7 in R (), then p; =>pi using the rewrite).
Consequently L{G) € L{G).

From (i) and (ii) it follows that L(G) = L(G) and so the theorem holds. =

Theorem 2.2. For each cp system G there exists an equivalent simple cp

system.
" Proof.

Let G=(G,, Gz, R) be a cp system, where G;= (8,,P,.5,.4) end
Gz = (82, Pz, S2). By Theorem 2.1 we may assume that G is both minimal and

consistent.

We will construct now a cp system G which differs from G only in that pro-

ductions and rewrites are changed in the following way.

From each m € ¥, }Né(ﬂ') is the set consisting of two rewrites, defined as fol-
lows.

¥ either 7 =(S,>w,m) or m=(S, »wS,, mg) for some we A", then
R(m) = (1 » w,), (Sy » wSe, mR)3.

Let R = U R(r) and let G= (E?l, Gp, F), with G =(Z,, proy’l(}%}, Sy A and

neR
Gy = (%o, Proja(R), Se).
Then clearly Gis simple.
To see that L{G) = L(G) we proceed as follows.
(i) L(®) < L(B).
This is obvicus because G results by "expanding” G.

(ii) L(G) < L(G).

12

Assume that there exists a word z € L(G) such that z £ L(G). Thus there
exists a m-step successful computation p in G such that res (p) = z.

For some 1<% <m p(i—1) ? p{i) does not hold, because p is not a com-
putation in G.
Assume that we have chosen the minimal 4 with the above property.
If i <m, then to obtain p(i) from p(i—1) in G a rewrite m = (S, »wS,, m) in

R—FR was applied. Thus (by the definition of fré), the rewrite (S, » w, 1) is an

element bf R, Which contradicts the fact that & is consistent.

Similarly we get a contradiction in the case of i = m. Thus L{G) ¢ L{G).

Consequently L{G) = L{G) and so the theorem holds. ®

We would like to make the following "side comment'.
As a "by-product” of the above theorem we can prove that cp languages are

context-free (since cp systems mecdel so closely push-down automata this is also

implied by the classic results of formal language theory).

The proof at this point is really easy because we have made the first com-
ponent irrelevant and so one component only will suffice to get the language of a

cp system - in this way we get the desired context-free grammar.

Coroilary 2.3. If Gis a cp system, then L{G) is context-free.

Prool.

Let G =(G,, Gz, R), where G, =(Z,, P, S;,A) and G = (82, Ps, Sy) be a
cp system. We may assume that & is simple.

Let # = (Z, P, S, A) be the context-free grammar such that

EZEQUA,S=Sgand

13

P ={X »w mir(u) | R contains the rewrite (S, » wS,, X - u)

for some w € A*, Xe€els,uc€ Z;;.
It is easily seen that: for each successful computation p in G one can construct a
derivation of res{p) in H and conversely, for each leftmost derivation T of a word

w in L(H) one can construct a successful computation p in G such that

res(p) = w. Hence L(G) = L{H) and the corollary holds. =

14

3. MAKING INTERNAL REWRITES GROWING.

In this, rather short, section we will show how one can transform & cp sys-
tem in such a way that rewrites violating the real-time restriction cause the

growth of the second component of the snapshot being rewritten.

Definition 3.1. Let G = (Gy, Go, F) be a cp system with G, = (£,, P, , S, A)

and Gg = (23 y Pg , Sg)

"

(1) Arewrite m = (4 » w, mp) of G is called internal if pres,(w) = A; otherwise 7
is called external.
(2) Aninternal rewrite m= {4 - w, X » u) of G is 2-growing if |u| = 2.

We say that G is 2-growing if each internal rewrite of G is 2-growing.

%*

(38) G is called 2-nonblocking if for each 4 € I3, A = A =
2

*
Remark. (1) If we deal with a simple cp system G and 4 = A, then there
: 2

exists a successful (S;, A)-computation in G (provided our assumption
P, = projo{R) holds). It is easily seen that 2-nonblocking cp system form a nor-
mal form for the class of simple ¢p system.

{2) If G does not have internal rewrites, then G is called a real time cp system.
In this case, if p is a successufl computation with © = res{(p), then p is at most a
|z | -step computation; hence u is computed (generated on the first coordinate)

in real time. =

The main idea in the proof of the following lemma follows closely the classi-
cal proof that one can remove chain and erasing productions from context-free
grammars (see, e.g., [S]).

Lemma 3.1. For each cp system G there exists an equivalent cp system &'

that is simple, 2-nonblocking and 2-growing.

15

Proof.

Let G =(G;, Gg, R) be a cp system. According to Theorem 2.2 we may
assume that & is simple. Moreover we assume that & is 2-nonblocking: it is
easlly seen that after the removal of rewrites which have "blocking” variables on
the second component the resulting cp system is simple if the original cp sys-
tem was simple.

Let G1 = (%, Py, 51, A) and Gg = (5, Pp, Sa).

We divide the letters in X into three categories.

Category 1 consists of all letters A € ¥, satisfying the following propérty: ifpisa
successful {5, , A)-computation, then cont (p) consists of internal rewrites only.
Category 2 consists of all letters 4 € X, that are not of category 1, but for which
there exists a successful (S, , 4)-computation p such that cont {p) contains only
internal rewrites.

All letters that are neither of category 1 nor of cétegory 2 belong to category 3.
Thus, categories 1, 2 and 3 contain letters that in successful computations
are always (respectively sometimes, never) rewritten on the second component

without contributing terminal symbols to the first component.

Now G' results from G by performing the following construction.
Step 1.

Erase all letters of category 1 from the right-hand sides of all second pro-
ductions of all rewrites in /. Any internal rewrite resulting in this way such that
its second production is an erasing preduction is removed. Note that in this way
all rewrites with letters from category 1 on the left-hand side of their second

production are also removed.

Let A, be the resulting’set of rewrites.

16

Step 2. Each rewrite (mr;, X » u) from R, is replaced by the set of rewrites
of the form (m, , X » @), where @ € mapyg(u) and map; is the finite substitution
of 22* defined by:

{§a,,./\§ , if o is a letter of category 2,

map(a) = ia , otherwise.

Any internal rewrite resulting in this way such that its second production is an

erasing production is removed.

Let R, be the resulting set of rewrites.

Step 3.

We say that an internal rewrite is a chain rewrife if it is of the form

(S, > S,,A > B) for some A, B €%, For every A € &, let chain{A) be the set

*
of all B € ¥y such that (S;, A) => (S, , B) using chain rewrites form A only.

Then for every A € X, and every B € chain{A) we adka to K, the rewrites
(ry, A » w), where (m , B » w) € B, is either an external rewrite or it is 2-
growing.

Finally we remove from Fp all chain rewrites; let R' be the resulting set of
rewrites. Let Py = proj(R'), Pz = proja(R') and let Iy be the set of letters

occurring as left-hand side of productions in Ps.

Then let G =(Gy,Gz,R'), where Gy =(%;,P;,S51,4) and

It is easily seen that L{G') = L{G) and so the lemma holds. =

17

4. REMOVING INTERNAE REWRITES.

In this section we prove the main result of this paper: internal rewrites
may be removed form cp systems without changing the class of languages gen-
erated.

We start by introducing a number of important technical notions needed in
the proof of our main theorem.

Definition 4.1. Let G =(G,, Go, R) be a simple cp system where
& =‘(Zl , Py, Sy, A) and Gy = (5, Py, So).

(1) An input segment (of G) is a word w € A* such that R contains a rewrite
(S, » uS,, mp) for some production 7z € Pa.

(2) Let A € X3 and let u be an input segment. Then &, is the set of all words w

*

such that (S, 4) ?(Sl , Z) = (uS,, w) for some z € 5.
(3) Let Q(G) = §{S2}}Ut@su | A € Zzand w is an input segment 1.
Let &(G) be the closure of Q(G) with respect to right quotients with letters from

Iz and let C(G) = C(G)—{2] =

The following result follows easily from the above definitions.

Lemma 4.1. Let & be a simple 2-growing cp system.
(1) Each element of Q&) is a regular language.

2) C(G) is a finite family of regular languages. ®
g

We are now able to prove our main theorem.

Theorem 4.2. For each cp system (there exists an equivalent cp system &'

that is simple and which has no internal rewrites.

Proof. (The reader may wish to read this proof together with Example 4.1

which illustrate the main constructions we use.)

i8

Let G=(Gy, Gy, R) be a:cp system, where G,=(%,,F”,,S,,4A) and
Go= (%, Py, Sz). We assume that G is simple, 2-growing and 2-nonblocking;
according to Lemma 3.1 we can do it without loss of generality.

Let F be a bijective mapping from C(G)—{{A}} onto a new alphabet O {ele-
ments of O are used to name sets from C{G)—{{A}]). For convenience we define
7 =4

A new set of rewrites £ is defined as follows.
For each @ € C{G), each A € Xy and each input segment © such that §/4 and
@4, are nonempty, F' contains the rewrites
(D (S1-uSy, f(Q) » f(Q/A)f(Quw)) and (S1~>u, f(Q) > f(Q/A)f(Qax)),
(I (S1-wS,. f(@)~ f(Qsu) and (S1>w . F(Q) » F(Quu)) A€ Q/A,
() (S, » uSy, £(Q) » f(Q/A)) and (S, > u, f(Q) > f(Quu)) if A€ @y, and
(V) (S,»uS,, f(@)»ANeand(S;~u, f(@)»NifAc@/Aand A< Q. .

Nowlet G'= (G}, Gz , R) with Gy = (L, Py, Sy, A)‘:\and
Gz = {0, Py, £(§51})), where P, = proj(R'), Py = projs(R)).

Note that Lemma 4.1 guarantees that &' is well-defined.

Clearly (' iz simple and moreover ' does not have internal rewrites. Hence
to prove the lemma it suffices to prove that L{G') = L{G). This is done as fol-
lows.

(D) L{(G) c L(a).

Consider a successful n-step computation p in & and let for each 0 =1 <=,
p() = (1,5, ,) and p(n) = vy , wy). Thus w, = A

For 1 <1 <n, the snapshot p{1) is external in p if |v;| > |v;_;|. Moreover
p(0) = (S1, Sy) is considered to be an external in p. Then the subsequence of
p(ie) . p(Z1), ..., plim) of p consisting of all snpashots of p that are external in p

is called the external subsequence:of p and is denoted by ezt (p).

19

We observe immediately that 1,, = n. This follows from the fact that in the
last step of p a rewrite 7 is used such that its second production is an erasing
production; since each internal rewrite of G is 2-growing p{n) must be external
inp.

Consider the j-th step in p, where 4,_, <j <% for some k €{1, ..., mi.
Since in this step an internal rewrite is used and G is a 2-growing cp system,
funj g] < Jwy].

So for each k € {1,..., m} it is possible to find a word w EE; such that
wy, = (w;,_\A)w, where A =lost(w;_). Note that w can be empty only if

?:;5 = ’I',;,v-_.l'f"l.

- * *

Let 7= (v, w)or 1= {wS,, w), for somev €A, w € Iz be a snapshot of p.
A parse of Tis & pair (¥, ..., Us; 21, ..., 2;) With s, £ =0, u;, ..., 4y € A" and
#1,..,2 €55, suchthat v =u, - "y, ifs=>1, v =Aifs =0 w=2; 2 i

f=landw = Aift = 0.

We will use £ to dencte the empty sequence.
Now, based on exzf{p), we construct a computation u = {0}, ..., u{m) in G

in order to see clearly how u relates to our original computation p we will

o

assign to each external snapshot T of p a "canonical" parse can{T); u(l) and
can{o{4,))) are related in the following obvious way.

FOo={=m, thencan{p{iy)) ={uy, ..., ; 2,,..., 2;) and

py="{(u, - wSy, f{(Q) - f{Q)) for some ¢t > 0 elements @, , ..., § of C{&F)

suchthatz; € @ for 1 =7 <.

Mcereover canf{p(in)) = (&, ..., Uy s)and w{m) = (- Uy , A).
Let u(0) = (51, [({S2})) and can{p(ig)) = (£: Sa).
Assume now that for an {,0<! <m, u(l) and can{p(;)) are defined. Let

can{p(i)y = (uy,,w 2y, ...z)and u{l) = (u, - - - wSy, F(Q) F{&)).

20

Then can(p{i;s)) = (¥y, ..., Wy , Yy s @), Where uy - wwyy = vy, and u{l+1)
is obtained from u{l) by applying the rewrite 7 to u(l).

Here o and 7 are defined case-wise as follows.

Let A = last {2z;) = last (wy) and let z be such that (wy\A) z = wy .
(1) It z\A#A and 2z #A then «=(z;,..,2,-,2\4, 2) and
m=(s1 2> wSy, F{&) > [(@N\A)S (Qay,,)

() It zZ\A =A and z # A, then a={(2,...,2%-1,2) | and
= (S > WS, f(Q) - f(QA,uHI))-

(3) If z\NA#A and =z =A then a=(z,,..,2..2\4) and
7= (S > wnS1, F{@) > F(@N\A)).

{4) Ifz,\A =Aand z = A, thena={z,, ..., 2;y) and 7 = (S » Wy, F{&) »> A),
ifl+1=m, 7=(S; » vy, S, F{Q) - A), otherwise.

It is easily seen that the given relation between p(4,), can{(p(i,)) and w(l)
generally holds. \

- Hence we conclude that g is a well defined successful computation in &' and
res{u) = res{p).

Thus L{G) < L{G").

(i) L{G") < L{G).

Let w=u(0), ..., w{m) be a successful computation in G', where, for
0si<m, wuli)=(S,, f(&1) - f(&nrn)) with v« A", my=1 end
G €C(G)-{{N)] for 1<j<mny and u(m) = (U , A), ¥ € A*.

We shall show that now there exists a successful computation p in & such
that res{p) = res{u). In order to do that, we assign to each u{i), 0<i<m, a
parse p(i) = (a; ; B;) of a snapshot in G.

As before we have the following relation between the parse p(i) and the

corresponding snapshot u(i).

For each O0=i=m, p(i)=(wy, U2, ..) where z;; € & ; for
17 =mn; (here we taken,, = 0).

First we give the construction of the sequences q;.

Let og = ¢ (the empty sequence). We proceed inductively.
4 A £ A 1
s -7 - -
If oy ={ug,), 01 <m, then g1 = Uy, o, Ye), where
'U,i 'L{L'u5+1 = 'lrl

The sequences B, are defined inductively in a "bottom-up" fashion.
Thus we define 8, = ¢.
Forisi=m, 5 depends cn §; as well as on the production m; used in the I-th
step of the computation u. Let 8; = {2, ..., 2;) for some t = 0.

We distinguish between the following cases; they correspond to points (I)
through {(IV) in the deflnition of K. & € C(G), A € Iy and u € A" are assumed to
be chosen appropriately. _
£ = (S, uSy, F§) > £/ AV (8:)), then f_y = (2, ..., 2, 1 A).
(S1->uSy, F(@) » F{@au)) then 81 = (21, .., 21, A).

F(@) - f{Q/A)), thenBi_; =(2,, .., 2 A).

fom=(S,»uS,,f{@) A o, in the case that I =m, Iif

-
Y]
R
el
Ly
A
i

(3) Iftm=(S;»uS,,f

~~
-
et

m={S1~>u, f(@)» A, thenf_, ={2,, .., 2 ,A4).
Finally, for 0= <m, we define p(i)=(u; S, 2z, - z’i-"%) and

o(m) = (g - iy | A).
Thus in particular we have p{0) = {5, , Ss), because u(0) = (S, f(§S3!)) and
consequently p(0) = (¢; Sa).

Now, using the definition of the sets &,,, it can be shown that

& *

pli—1) =>p(i) tor all 1 <4 =m. Hence (S, S2) = p(0) =>p(m) = (U, A).

Consequently res () € L{G) and so L{G") C L{G). Thus the theorem holds. =

22

mample 4.1. We will illustrate now the construction used in the proof cf the
above theorem.
Let G=(G,, Gz, R) be the cp system where G, =({5,a, b}, 7,5, (a, b},
(7o = {{A,B], P, S) and R contains the following rewrites:
(S > 8,A-BA),(S>S,4-A4B), (S - S, B - ABA),
(S »aS,A-A),(S>0aS,B~A4),(S->bS,B-A).
Since we assume that & is simple, for each of the above mentioned rewrites

(S » uS, mg), K contains the rewrite (S - u, 7).

The following transition diagram gives all sets @y, for X € {4,8} and

u € fa,bl
Figure 1.

For example to find out what &, 4 is we consider the node _A as the initial node, a
as the finel node and then the language of the so resu\l’cing finite automaten
yields &, 5.

Hence it is easily seen that

Q1= Qao = L¥IAAAL

Qe = Gap = L*14],

B3 = Gpa = {AJUIAB]L* (A AA] and

Q1= Bpp = INUIAB]L*{A], where L = {B,4AB].

Computing right quotients yields
Qu/A=L*Al =0y, @/ B = L*{AAA] = @,
Yo/ A= =T ,0:/ 58 =2,

o/ A =0, Go/ B = Qs

Qu A=ABIL*=U,Q/ B =0,
T/A=0,T/8 =80,
U/A=@and U/ B = @a.

23

In order not to complicate the notation we use ¢, , 7 and U to denote the
languages @ . 7 and U as well as their names f (&), £ (7T) and f(U).

Let f ({4}) = S and, as in the proof, f ({A]) = A.

Now using rule {I) from the description of X' in the proof above we get the
following rewrite in £'. (In the list below we use (u, m3) as shorthand for the two

rewrites (S; » wS,, m2) and (S, » u , 7g).)

(a,@, > 020)) (a,@3~ @4&y) (a5 - &)
éb,Ql > Q202) %b.Qs - Q4ng (6.5 » &s)
0, - €,05) {a,&5~> @30,
(b-Ql - Q1Q4> (b’Qs - Q3Q4)

((I,Qg - TQI) (Q,Q4 - UQI)
(0,02 > TQ2) (b.Qs~ UQy)

(a,.T > 6,Qs) | (a,U - @303)
(6.7 » @19s) (b,U » @30Q4)

“

The other rewrites (those constructed using rules (II) through (IV) of the
description of £’ in the proof of the theorem) can be obtained from the above
rewrites by erasing in the second productions names of the languages that conr-
tain the empty word, e.g., from {(a, & - T@,) one obtains the rewrites
{a, @; > T),(a, Q2 » @) and {(a, @z » A), where we use our "shorthand notaticn”
again.

The following diagram illustrates a computation p of e3ba®ba in G together

with parses of its external snapshots and a corresponding computation g in &
Figure 2.

It is instructive to notice that if we are given a cp system & and according
to the proofs of Theorem 2.1, Theorem 2.2, Lemma 3.1 and finally Theorem 4.2
we construct an equivalent cp system ' {which is simple and has no internal

rewrites), then the following holds.

24

If a positive integer & bounds form above the length of any input segment of &
(the meaning of the term "an input segment’ for non-simple cp system should
be clear) then also the length of any input segment of G' is bounded by k.

Moreover without loss of generality we may assume that each {(nonernpty) input

segment of our original cp system G has length 1.

Combining these observations with the proof of Theorem 4.2 we have the fol-
lowing final result.

Corollary 4.3. For each cp system & there exists an equivalent cp system
G =(Gy, Gy, R)ywith G, =(Z,, P,, S;,A) and G, = (5, Py, Sp) satisfying |
(i) Zi=AaUS
(ii) P, CiS,»aS,|acAyUiS,»a|achl,
(iii) for each ¢ € A and each m € Pp, (S, ->aS;,m) € £ if and only if
(1> a,m) € R, and

(iv) PpciZ > XY|Z <% and X,Y € LUAY. =

25
DISCUSSION.

From the technical point of view our construction can be seen as follows.

First we translate an arbitrary cp system into a simple cp system, i.e., & cp
system with an "irrelevant” first component. Hence, in the terminology of [R2],
we have obtained a cp system equivalent to a one coordinate cts system. (It is
argued in [R2] that one coordinate cts systems correspond to grammars - hence
we translate, using the standard triplet construction, cp systems into '"gram-
mars").

Then within the framework of simple cp systems we apply standard tech-

niques to remove "chain-rewrites” and "A-rewrites".

To the so obtained cp systems we apply the 'regular set construction”
where taking right quotients corresponds to erasing a letter {a "pop" instruction

in the terminology of push-downs).

As a matter of fact the last step is the only "involved" step used in our
proof; the other two constructions are variations on rather standard techniques

in formal language theory.

The same idea of "regular set construction” - the representation of a regu-

lar set by a single symbol - is already present in [G].

Goldstine’'s paper presents a general theory of autornata which deals with
"machines’ more general than push-downs.
As an illustration of technical notions presented in his framework he provides a
construction which for an arbitrary push-down automaton yields an eguivalent
real-time push-down automaton. However this construction goes through a
number of intermediate steps where machines are obtained that are not push-
down automata. So in this sense one cannot translate the techniques used by

Goldstine into our framework.

26

Moreover in the construction form [G] another (apart from the one pointed out

above) involved step is used - in this sense our construction seems to be simpler.

We hope that the proof we have presented illustrates that usefulness of the

formalism of cp systems for dealing with push-down automata.

ACKNOWLEDGEMENTS.

This research was supported by NSF grant number MCS 83-05245.

27

REFERERCES.

(G]

[H]

[¥]

[KR]

[R1]

[R2]

[S]

Goldstine, J., "Formal languages and their relation to autornata: what
Hoperoft and Ullman didn't tell us", in R. Book, ed., formul languoge
theory. Perspectives und open problems. Academic Press, New York,

1980.

Harrison, M., Introduction to formal language thecry, Addison-Wesley,

Reading, Massachusetts, 1978.

Kleijn, H.C.M., "Selective substitution grammars based on context-free
productions”, Ph.D. thesis, department of Mathematics, University of

Leiden, The Netherlands, 1983.

Kleijn, H.C.M. and Rozenberg, G., "Context-free like restrictions on selec-

tive rewriting,” Theorelical Computer Science, v. 18, 237-269, 1981.

Rozenberg, G., "Selective substitution grammars {towards a framework
for rewriting systems), Part I. Definitions and Examples," Flekiron,
Informationsverarbeif, Kybernetik, v. 13, 455-483, 1977.

Rozenberg, G., "On coordinated selective substitutions: Towards a unified
theory of grammars and machines,” Theorelical Compuler Science, to

appear.

Salomaa, A., Formal languages, Academic Press, London-New York, 1973.

Figure 1

a computation p.in &

t

parses of the external

snapshots of p

the corresponding
computation p in G'

(s,4)

(S, AB) ~
(S, 44)

(aS, AAB)
{aS. A4ABA)
(caS, AAAR)
(aaS, AAAABA)
(aaaS, AAAAR)
{a®bS, AAAA)
(a®bas, AAA)
{a®ba”S, 44)
(a®badS, 4)
{a®a’S, AB)
(a®be®p S, A)
{a®ba’ba, A)

(& A)

{a; AA)

(a,a; AAAB)

N (NN N TN N

 AAAAB)
. AAALA)
. AAA)

o ALA)

o A)

. A)
L E)

Figure 2.

(Sl s SZ)

(aSy. @)

(@S, Q261)

<a351 , B2610,)
(asbsl @260101)
(abaS;, @26,)
(265, @2Q%)
(a®badS,, @)

(a’sbasbsl ' QZ)
(a®ba®ba , A)

