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ABSTRACT

An EOL system G is called ambiguous if its language contains a
word with (at least) two different derivations in G. An EOL language
is called inherently EOL-ambiguous if évery EOL system generating it is
ambiguous. It is demonstrated that there exist inherently ambiguous
EOL Tlanguages and in particular that the language
n 2 4N

{ambz tlsmsn}ou {am bz :1<ms<n} is inherently EOL-ambiguous.




INTRODUCTION

The class of EOL languages forms a very natural extension of the
class of context free language$ and it is a very central class in the
theory of parallel rewriting sy§tems (see, e.g., [RS] and the references
there). Quite a number of results are available concerning the

combinatorial structure of EOL languages (see e.g., [RS]).

A particularly interesting topic concerned with the combinatorial
structure of EOL languages is that of ambiguity. An EOL system G is
called ambiguous if its language contains a word with (at Jeast) two
different derivation trees in G. An EOL language is called
inherently EOL-ambiguous if every EOL systemkthat generates it is
ambiguous. The topic of ambiguity of EOL systems and languages is
investigated in [MSW], [Res] and [ER2]. In particular in [ERZ] it is
demonstrated that the degree of ambiguity of a context free language K
in the class of EOL systems is not larger than the~degree of ambiguity
of K in the class of context free grammars. Perhaps the most natural
question concerning ambﬁguity of EOL systems and languages that was open
until now is whether or not there exist EOL languages |
that are inherently EOL-ambiguous. The analogous question concerning
inherently "(context free)-ambiguous" context free languages was settled
at the beginhing stage of the development of the theory of context free

languages (see e.g., [H] and [s1]).

In this paper we demonstrate that there exist inherently ambiguous

EOL languages, settling in this way the open problem from [MSW].




0. PRELIMINARIES

We assume the reader to be familiar with the basic theory of EOL
systems, e.g., in the scope of [RS]; with the exception of some minor
changes we follow the notation and terminclogy from [RS]. To facilitate
the reading of this paper we recall now some basic notation and

terminology.

We use N, N* and RY to denote the set of natural numbers, the set
of positive integers and the set of positivereals respectively. fdenotes the
empty set and for sets A and B, A\B denotes their difference. We often
jdentify a singleton set with its element. A set Z ¢ N is called
numerically dispersed if for every r e N there exists n. e N such that
for every Mys My € 7 if N, <mp<m then my - my > r. For a real r,
[r] denotes the biggest integer n such that n<or.

For a word x, |x| denotes its length and alph(x) denotes the set .
of all symbols that occur in x. If I is an alphabet and A ¢ ¥ then
presy is the homomorphism of 2" defined by: for b e I, presz,A(b) = b
if b e A and presE,A(b) = A if b e INA. We will write pres, rather than

press , whenever the alphabet & is understood.

An EOL system is specified in the form G = (£, h, w, A) where I is
its alphabét, h its finite substitution, w its axiom and A its terminal
alphabet. If z ¢ Z+ and z:£>'yib‘y2 where Yy Yp€ Z*'and b ¢ Z then we
say that b is reachable from z and we write z < b. If b <b then we say
that b is recursive. We assume that G is reduced, i.e., w < b for
every b e I. If G is synchronized then F is the synchronization symbol
of G; if additionally w e Z\A then we use W(G) to denote the set

s\(Au{F,w}) and S(G) to denote the set of all sentential forms z such



that alph(z) < W(G) u {S}. If G is a DOL system then E(G) denotes its sequence.
Since problems considered in this paper become trivial otherwise, we
consider only infinite EOL systems and languages. Also, we deal with
propagating EQOL systems only.
We recall now from [ER1] the notion of a DOL system with rank.
This notion forms a very essential tool in the proof of our main result.

We assume the reader to be familiar with the topic of DOL systems with rank.

Definition 1. Let G = (I,h,w) be a DOL system where w ¢ I.

(1). For a letter b ¢ I the rank of b in G, denoted ranke(b), is
defined inductively as follows.
(i). If L(Gb) is finite, then rankG(b) = 0, where Gb = (1,h,b).

(ii). Let, for i = 1, Z<.) = I\{a ¢ I: Pankﬁ(a) < i} and let f(i)

;

be the homomorphism of £ defined by:

f(i)(a) = a for a e Z(i) and f(i)(a) = A for a e X\Z(i). Then let
)(h(a))-

If b is such that the Tanguage of the DOL system <Z(i)’ h(i)’ b) is

: . * . ' _
h(i) be the homomorphism of Z(i) defined by h(i)(a) = f(

finite then rankG(b) = 1,
(2). We say that G is a DOL system with rank if every b ¢ I reachable
from w has a rank. The rank of G is the highest of the ranks of
letters reachable from w. [

We define now the basic notion of this paper.

Definition 2.
(1). Let G = (I,h,0,A) be an EOL system such that w e I A. We say that
G is unambiguous is every word in L(G) possesses precisely one derivation
tree in G. Otherwise G is ambiguous.
(2). Let K be an EOL language. We say that K is imherently EOL-ambiguous
if every EOL system generating K is ambiguous. Otherwise we say that K

is EOL—ﬁnambiguous. (1




In the sequel we say simply "inherently ambiguous" and "unambiguous"

rather than "inherently EOL-ambiguous” and "EOL-unambiguous" respectively.

Lemma 1. Let G be an unambiguous EOL system. There exists a constant
+
a ¢ R such that, for every derivation D in G of a word w, |w| = «|D{,

where |D| is the length of D. 9
Proof. ;

This Temma follows directly from the fact that G is propagating and

unambiguous. O

seme

We define now a subclass of the class of EQOL systems.

Definition 3. An EOL system G = (I,h,S,A) is clean if it satisfies
the following properties.
(1). S e I\A and, for each b ¢ L, B ¢ h(b), S ¢ alph(B).

(2). Ifaeh(S)andac (W(G))™ then la] = 2.
(3). G is propagating.

(4). G is reduced. ‘ ’

(5). G is synchronized.

(6). If b e W(G) then for every n « N there exists a word B e (N(G))+

such that 8 e h"(b). k

(7). 1If b e W(G) then the set {BeS(G): bealph(B)} is.infinite.

(8). If b ¢ W(G) then h(b) n A" = 9. O

The usefulness of clean EOL systems for our considerations stems from tha%
following result. Its proof is standard (using the speed-up technique)

and so we leave it to the reader.



Lemma 2. For every unambiguous EOL language K there exists an

unambiguous EOL system G such that L(G) = K and G is clean. [J



I. THE MAIN RESULT

In this section we prove that there exist inherently ambiguous
EOL Tanguages.
Theorem. There exist inherently ambiguous EOL languages.

Proof.
m, 2" m2 ik ~
Let K0 = {ab” : lsmsn}, K1 ={a b~ : l<sme<n} and K2 = KO U Kl'

We will prove that K, is an inherently ambiguous EOL language.

To see that K2 is an EOL language consider the following EOL system

!

G, = (Ez,hz,s,{a,b}) where

Zy = (s, X, %, U, A, B, 3, F, a b}

and h2 is defined as follows:
, 02 s
(s) = (X 8%, A BEY, hy(X) = X, U, a}, hy(B) = (8%, b,
2
{UTX, a}, hZ(U) = {U, a}, hZ(A) = {A, UC 9, a},

(0% 5, a}, h,(C) = (U°C, a}, hyla) = {F}, ny(b) = {F)

h2

h,(X)

]

2
h2($)
and hZ(F) = {F}.

i

It is rather easy to see that L(GZ) = KZ‘

To prove that KZ is an inherently ambiguous EOL language we proceed

as fbi]ows,

~ ~

Assume that G = (%, h, S, A)is an unambiguous EOL system generating
Kz;by Lemma 2 we can assume that G is clean. We need now some additional

terminology and notation.

In the sequel we‘identify derivations with their traces; that is a
derivation in G is a sequence (XO’XI’ ,..,xk), k 2 1, such that xi==> X
for 0 <4 <k -1. (This will not Iead'to a confusion, because we have

defined ambiguity through derivation trees!). Given a derivation

i+l

.
i
%
t
i




D ='(x0,...,xk)yits Jength, denoted |D|, is equal to k and its result,
denoted res(D), is equal to xk.‘ We also say that D is a derivation of

X D s a derivatfon from x4 and for 0 < i sk, x, is the i'th level of D.
D is called complete if x4 = S and X, € A+.> We use BG to denote the set

of all derivations in G and DG £o denote the set ¢f all complete derivations
in G. Correspondingly, we use ?G to denote the set of all derivation

trees (forests) in G and TG to denote the set of all complete derivation

trees in G (that is trees corresponding to complete derivations in G).

Given a tree (forest)in T, we call it deterministic if the nodes
with the same labels are rewritten in the same way; otherwise the tree

is called nondeterministic.

Given a letter X ¢ W(G) we say that

- X 1s directly t-nondeterministic if h(X) contains two different
+

words 81,82 e b,

- X is directly nt-nondeterministic if h(X) contains two different words
. ‘

8,08, ¢ ((E))".

We say that X is t-nondeterministic (nt-nondeterministic) if there

exist a directly t-nondeterministic (directly nt-nondeterministic)

letter Y such that X < Y. We say that X is nondeterministic if it is

either t-nondeterministic or nt-nondeterministic; otherwise X is deterministic.

Now through a (long) sequence of Temmas we will demonstrate that

the assumption that G is unambiguous leads to a contradiction.




Lemma 3. Let 0 be a finite a]phabet and let b be a symbol not
in6. let Kco'b® be an unambiguous EOL language such that
(i). there exists a growing function f: NY o N such that, for every
z e K, Iprese(z){ < f(ipresbzl) and
(ii). {!presb(z)]: ze K} is numerically dispersed.
There exists an unambiguous EOL system M = (I, h, S, A) such that A =6u{b},
L(M) = K, M is clean and if a ¢ h(S) then either a « 1" or o = AB where

A, B ¢ W(M) are such that L(MA) = 0" and L(MB) cb.

Proof of Lemma 3.

Let H be an unambiguous. clean EOL system such that L(H) = K;

let H= (2, R, S, A) where & is as in the statement of the lemma.
Consider a symbol C ¢ W(H); C is called b-determined if for every -

m e N* there exists an r ¢ N* such that if z ¢ hm(C) n e*b+, then pres, Z = b".
First we prove the following claim.

Claim 1. If C € W(H) such that L(H.) n 6°b" # @, then C is

c)
b-determined.

Proof. Let C be as in the statement of the claim. The fact that
C is b-determined is proved by contradiction as follows.
Assume that C is not b-determined. Consequently there exists a

positive integer m and Z2ys 2, € hm(C) N 6*b* such that presy (Zl) # pres (22).
: r r
Without Tloss of generality assume that presy (21) =b 1 and pres; (22) = b 2

where ry>ry > 0.
Since {]presb (z)] @ z € K} is numerically dispersed, there exists

a nonnegative integer n. such that for every My, My € {Ipresb (z)] + z € K}
1

if nrl <My o< My, then m, - my > rq. “Since H is clean and C € W(H),

{B € S(H) : C € alph (B)} is infinite. Let w € S(H), C € alph (W) and

k4
. Then w = Xq C X where X1s X, € W(H) .

w| > f(nrl) +n 1




For i = 1, 2 let Y; € hm(xf) n A*. Then T EIRTE K and Yy 2, Yq € K.

}

Moreover [yl z4 y2! > f(nrl) + nrl. Hence }presb (yq 24 yz)[ > nrl since
otherwise Dﬁ z, y2| = ipres@ (vq 7 yz){ + uu@sb (y1 z yz)] < f(nr1)+~nr1.
So we have }presb (y1 z4 yz)[ > Ipresb (yl 2y ¥,)| > nrl and

lpr@sb (y1 Z4 yz)[ - ]presb (yl Z, yz)! =y - ry <y, which contradicts (i1).

This ends the proof of Claim 1. O

Consider now all derivatioﬁ trees in TH. Given 'a derivation tree

T e Ty of aword z ¢ K we relabel all the nodes of it (except for its root
and its leafs) in such a way that if the label of a node e is E and e
contributes to z a subword in o then we change E to Ee; if e contributes

to z a subword in b then we change E to Eb; if e constitutes to z a

subword containing an occurrence of a letter from 6 and an occurrence of

b then we change E to E@’b'

After we relabel all derivation trees in TH’” we get (in the obvious
way) the set of (indexed) productions Pin corresponding to the way that
indexed nodes of relabelled trees are rewritten. The productions in Pin

are over the alphabet V = {S} v A v Ve-b vV u Vb v {F} where

Ve;b = {Ee;b: Ee W(H), vy = [Eg: EcW(H) 3, Vy = {E, - E‘GN(H)}»

Now let V=V y V£ v V. where 2= {[Y,lszesve;b} and
= {[Y,r]: Ye Ve;b]'

<

Based on Pin we construct two sets of productions R and R as follows.
IfS+ace Pin is such that either o « A+ or a ¢ Vg V; then S + o ¢ R.
IfY—+oce Pin where Y ¢ V9 U Vb then Y = a ¢ R.

*
IS aep,  wherea=a) Ua,witha eV, U« V,p and o, v”b
then S + al[U,ﬂ] [u,r] a, e R.

If Y > o c P where Y e Voyp and o = ajo, with o e vg, o, ¢ v; or

oy € 6+, a, € b" then [v,e] >y e Rand [Y,r] + dy € R.
’ *
IfY»>ae pin where Y ¢ v@;b and o = allJaZ with ay € Ve,

then [Y,£] » o, [U,£] ¢ Rand [Y.r] = [U.rla. - T

UeV

*

6;b° %2 € Vp

R T
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Now for each letter X ¢ V} we choose one fixed (but arbitrary)
production o from R of the form X + a with a e b' and one fixed (but
arbitrary) production %g from R of the form X - o with'a ¢ b, Both
productions (nx and %g) are added to R; we also add tg R productions of

the form x -~ F where x ¢ A. Moreover, the only productions in R are the

productions specified as above.

Now we change R to the set of productions R1 as follows.

o + .
(1). If S~ a e, ¢ R where a) e Vg and a, e V,then we replace this
production by three productions S - AB, A » ul,B > 0, where A, B are
two new symbols. We take care that the sets of symbols {A,B} used for

different productions are pairwise disjoint.

(2). 1f S+ o, [U,21[U,rJ oy € R where o) € Vg, ay < VY, [U,L] ¢ T,
and [U,r] e V},then we replace this production by three new productions
S > AB, A~ al{U,ﬂ] and B e~[U,r]a2 where A, B are two new symbo]sfx
We take care that the sets of symbols {A,B} used for different productions
(accounting also for productions from (1) above) are pairwise disjoint.

(3). A1l other productions from R go unchanged to Rlo

Finally we set M = (Z,h,S,A) where £ = V and h is the finite
substitution corresponding to productions in Rl‘ Clearly M satisfies
the concfusion of the lemma. The equality L(H) = L{M) is guaranteed by
the construction of R1 and by Claim 1 above. It is easily seen that M
is unambiguous.

Thus Lemma 3 holds. [

~ o o~ [

Recall that G = (2, h, S, 8)is an unambiguous EOL system such that
L(G) = KZ‘ By Lemma 3 we can assume that G satisfies the conclusion of
Lemma 3 where 8 = {a}. Let S+~ AB be a production in G where A,

B € W(G) are such that L(GA) c a’ and L(GB) c b*.
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Lerma 4. let z ¢ S(G )\L(GB) and let X ¢ alph(z). Then X is

B

deterministic.
Proof of Lemma 4.
Assume to the contrary that X is nondeterministic. Hence for some

directly nondeterministic letter Y we have X < Y.

(i). Assume that Y is t-nondeterministic.

Hence b" ¢ h(Y) and b° ¢ h(Y) for some 1 < r <s. Since G is clean, -

+ . + -
for every m ¢ N there exists a n e N, n >m, such that

n n
ab2 € Kzand gbz +(s-r) e:szhere o, B e {a}+. This clearly yields a

contradiction. ;
(ii). Assume that Y is nt-nondeterministic. g
Hence a, Beh(Y), where a = B8, a, B ¢ (W(e)*. Since G is clean, 4
for every n ¢ N+ there exists a m ¢ N+, m > n,and a derivation D € DG of a

word w of length (m+2) such that on the level m of this derivation (at least

one) Y occurs and it is rewritten by a. Since G is unambiguous, if we

now change D in such a way that this one fixed occurrence of Y is rewritten

by B (and on the level (m+l) letters from B are rewritten into a word from k

+
b, with all other letters on the (m+1)th level being rewritten as in D)

then we get a derivation of a different word w such that.presb(m) # presb(w'). -

+ S
Thus for each r ¢ N there exists a s ¢ N+, s > r,such thatszz e K
S

27+ +
and ab” "% ¢ K where a ¢ a" and q is a constant dependent on G only. This

clearly yields a contradiction. :

From (i) and (i1) it follows that X must be a deterministic letter. [

If S+ AB is a production in G where A, B ¢ W(G) then we call B a

right letter and A a left letter; RG denotes the set of right 1etters in G

and LG denotes the set of Teft letters in G.



-1 3~

Thus Lemma 4 tells us that with each right letter B we can associate
the DOL system G(B) and the HDOL systems 3(8) as follows. G(B) includes
all letters in W(G) that are reachable from B; if C is such a letter then

the'production for it in G(B) is C =+ y where vy ¢ h(C) and v ¢ (W(G))+.

A
The HDOL system G(B) has G(B) as its underlying DOL system and the
homomorphism g mapping L(G(B)) is defined by g(C) = v' if and only if
A
v' e b" and v e h(C). By Lemma 4 both G(B) and G(B) are well defined.

The following result is very crucial in our further considerations.
1t establishes a lower and an upper bound on the length of a complete

derivation D in terms of the length of presb(res(D))‘

Lemma 5. There exist constants g € N+ and €15 &5 € R+, £ <1,

1 < & such that if (wO = S, Wy o= AB, ..., Wk+1) is a derivation in G where

k=1, Ais g left letter, B is a right letter such that L(G(B)) is infinite,

n
- 2 “ + > < <
and Wi =Y b® for some v ¢ a and n = Y then gq N = k <

ey M.
Proof.

Let G(B) :'(ZB, hB’ B). Since L(G(B)) is infinite and
n

L(G(B)) < {b2 :n =1}, B is a letter without rank.

Hence (see, e.g., [ ER1]) there exist integers My 1 = 0 and My o > 0
m 3 3
such that B g’l Xy« and « 8.2 Xo @ X, a X. Where a € 2, and
1 %% Q 3 4 5 B
G(B) (B)
X1 X2 X3 %4 %5 € 2p:

. +

Let E(G(B)) = Wys @15 e Then clearly there exist QlB’ QZB € R,

QlB > QZB > 2 such that for every nonnegative integer i and 0 = j < mB,Z’

Qg < 1o vin a5l < ng 2,
mg +img 5+
-m8,1~3 1
m m m +1m +1m
B,? B,2, Mg,1t'Mg 2" Mg 1*1Mg 2"
QZB (QZB ) = Iwm + ’ QlB

B,171Mg o™

L
-~
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Let gy = min{Q,,"8,2 . B right letter, L(GB)) infinite},
1

m
q, = min{ng’2 : B right letter, L(G(B)) infinite}

and q3 = max{QlB : B right letter, L(G(B)) infinite}.

Then if we choose j such that Mg 1+1m8,2+3 =k,

q, qg = o | = q§ . Now let r' = min{g(a) : a € 25} and s = max{g(a) ra € 2g}.
Then r' a4 qg <M< qg and consequently if we denote r' 9y = '
Tog, r + k log, q, =n = log, s + Kk 1og, 45.

Since 1092 9, > 0 and 1092 93 > 0 we get

n - 10g2 5 n - 1092 r
1092 95 1og2 9,
Consequently there exist constants ny € N and Eqs € € R+, eq = 1,
81 < & such that for every n = no, e N =k = o N . 0

Remark 1. We will often apply Lemma 5 in the sequel. To avoid
unnessary technicalities we will assume that ng = 1 and that L(G(B)) is infinite
for each B € R(G). Since the number of words z € L(G) such that
[presb (z)] < 2"0 or
pres, (z) € {w 1w ¢ L(G(B)), B € Ry and L(G(B)) is Finite}, is finite, it

is easily seen that such a simplifying assumption does not affect the validity

of our proof of the theorem. O

We will analyze now EOL systems GA where A ¢ LG. So let A ¢ LG

and let Y ¢ W(G) be such that A < Y.

If Y is a deterministic letter then for every Y' such that Y < Y'
there is precisely one production of the form Y' + o where o € (N(G))+
and one production of the form ¥' 5> B where B ¢ a+. Thus, once again,
we can associate with Y the (unique) DOL system G(Y) and the (unique) HDOL

cvstem @(Y).
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Lemma 6. G(Y) is a DOL system with rank and moreover rank(G(Y)) < 2.

Proof of Lemma 6.

From the form of words in K2 it follows that G(Y) is a DOL system
with rank.

Assume that rank(G(Y)) = 3.

Thus there exist constants“p, g e R, p> 0 such fhat ify dérives

in G(Y) a word o in k steps, then |a| 2 pk3 + q.

£
Let £ be an integer such that we have S =>AB=>y Y-YZ B=§>
N M n ' i ! *

2
Y; e, B =>vyb~ for some A ¢ LG’ B e RG’ Y1sYpsY] 5Yp BB €I,

n=1andvye a+.

Thus by Lemma 5, €4 N < £+ k < €51, where €15 € € R+ are constants

dependent on G only. Hence k 2 ey N -¢ and consequently

Since (1) and (2) must hold for arbitrary long y's, we get a
contradiction. Consequently it must be that rank(G(Y)) < 2 and the lemma

holds. [

Hence all deterministic nonterminals reachable from nonterminals

in LG have associated DOL systems either of rank O or of rank 1 or of

rank 2.

Remark 2. Notice that the above conclusion 3130 holds if we consider
a nondeterministic nonterminal (reachable from a letter in~LG),where we
choose for it, and for each nonterminal reachable from it, one arbitrary:
but fixed production with its right-hand side consisting of nonterminals.

In this way we have "selected" a DOL system for the nonterminal considered.
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We will analyze now nondeterministic nonterminals reachable from

Tetters in L.

Lemma 7. Let T be a nondeterministic letter reachable from a letter

in LG; If z ¢ S(G) is such that T ¢ alph(z) then z contains exactly one

occurrence of T.

Proof of Lemma 7.
Aséume to the contrary that there exists a word z e S(G) such that

7z contains two occurrences of T. Let X be a directly nondeterministic

letter reachable from T. Hence there exists a word z' ¢ $(G) such that

7' contains two occurrences of X.

We consider separately two cuses.
(i). X is directly t-nondeterministic. Hence there exist a;, a, « a+,
ay # Gp, such that X m»(xl and X =>0,. We consider then two ways of
rewriting z' in a termfnai word. In one way the leftmost occurrence
of X in z' 1is rewritten by ay and the rightmost occurrence of X in z' s
rewritten by Gy in the other way the leftmost occurrence of X in z' s
rewritten by ay and the rightmost occurrence of X in‘zi is rewritten by
Qs all other occurrences of all Tetters ave vewritien in the same way in

both cases.

Consequently we get two different derivation trees of the same
word in L{G); this contradicts the fact that G is unambiguous.
(ii). X is directly nt-nondeterministic. The reasoning fs analogous
to the one above except that there is a step in-between z' and a

terminal word.

Thus the lemma holds. 0O

é
E
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We will demonstrate now that one can assume that G satisfies also
the following condition:
each element of S{G) contains at most one occurrence of one letter that is

Lo 1T LR =3 11111 v K o PP (3)

From Lemma 7 we know that if z ¢ S(G) contains an occurrence of a
nondeterministic letter then z contains precisely one occurrence of this
letter; consequently z contains no more than a bounded number of occurrences

of nondeterministic letters. Each of these occurrences is reachable from

(an occurrence of) a letter in LG and (consequently) each of them will
(eventually) contribute a (sub) word from af if z is considered to be a word
in a specific derivation. The key observation now is that z can be |
written in the form z = zy 2, where 4 consists of (occurrences of) letters
reachable from a letter in LG and Z, consists of (occurrences of) 1ett¢fs
reachable from a letter in RG' But if we consider z to be a wqrd used in

a specific derivation of a word in L(G) then permuting (occurrences of)
letters in z4 with the fixed application of productions attached to
(occurrences of) letters being permuted (and to their descendants) does

not affect the final result of a derivation (which is a word in L(G))!!!

Formally this observation leads us to the following transformation

of G.

For z ¢ S(G) we define its type, denoted type(z), to be the subset
of alph(z) consisting of all nondeterministic Tetters in élph(z). Clearly
thé number of different types of words in S(G) is finite. Let
TYPE = {WcX : W=1type(z) for a z e S(G)}
and let
= {Z, : t e TYPE}

be a new set of letters.
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lLet A ¢ LG.
Each production from G of the form

A~ aONl aiNZ"' anm )

where m 2 1, Nl""’ Nm are nondeterministic letters and Ggs O s ...,amezz

do not include nondeterministic letters is replaced by the production
A~ Gy oo amZt where t = {NI""’Nm}‘

A1l other productions from G are not changed.

For symbols in Il we add the following productions.

.., N_are nondeterministic letters and,

If t = {Nl’ ..,,Nq},where Nl" q

for 1 <1 <q,

. .. 0., N.oo ... N. o. ;
N1 “i0 N11 il 2 img im, ;
, . ¥ ) ' '
is a production in G, where me 2 a, igs oes Oy € L do not contain

‘nondeterministic letters and Ni N. ~ are nondeterministic letters,

4 SO im,
then we add the production

7, +a

t 7 %0 %, %20 0 %om

1

where t = {Nll"“’N1m1’°'“’qu""’N }

(and we set formally I = A if t=p).

Lemma 7 and the "permutational property" discussed above guarantee
that the so obtained EOL system is equivalent to G. Obviously the so
constructed EOL system has all the properties that we have required so

far from G and additionally it has the property (3).

To avoid a cumbersome notation, rather than to consider the new
system constructed above, we simply go on analyazing G but we assume from

now on that G satisfies (3).

Let M be a nondeterministic recursive letter. A M-derivation

(YO = M, Yo ees ym)such that m > 1, M ¢ alph(yi) for 1 <1< m-1 and

M e ath(Ym) is called elementary.
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Lemma 8. Let M be a nondeterministic recursive.letter. There exists
precisely one elementary M-derivation

Proof of Lemma 8.
We prove the lemma by contradiction.

Assume that there exist two different elementary M-derivations:

(YO = M,yl, ...,yml) and (YG =M, Yl,...,YmZ). i

Let us consider the derivation

(8, = Sy 85855 00y 8 s 6 s eves O )
0 1*72 kd~1 %TZ ﬁfk*l

where kg 2 0, M ¢ aZPh(Si) for 1

A

T <k, Me azPh(d%fl)’ k >m= max{ml,mz}

and § =3 b2n for some n =2 1, Y € a%
kgk+1 =7 Y = b :

T % ——— e & 7 4 4 8

Tk

Thus there exist at least 2" different derivations in G of words
n

of the form ybz , where v ¢ a+. But Lemma 5 implies that k0 + k2 elh

where €y € R™ is a constant dependent on G only. Consequently there are

len-k,)
at least 27 1 0
n

form sz , where v ¢ a+. Since KZ contains no more -than 2n different >

different derivations in G of words of the

words x. with the property presb(x) = 2", for n big enough we get several

different derivation trees of the same word, which contradicts the -

fact that G is unambiguous.

Consequently, there exists precisely cne elementary M-derivation. [ E

Let M be a nondeterministic recursive letter and let us consider

the unique elementary M-derivation, (M,YZ,...gY ), denoted elem(M). We ¥

m
know that Yo ¥ Ym1 M Yo where Ym1® Ym2 do not contain nondeterministic

st

letters. Then we can write Y1 = Y(mul)le~1 Y(n-1)2* Ym-2 Y(m-2)1

Mu-2 Y(m-2)2> =--» Y1 = Y11 My Yyps where M, is the ancestor of M in »

-
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Yo Moop 18 the ancestor of M, in v 4y .0 ... N Ml is the ancestor of

M2 in Yo The sequence MO =M, Ml’ RPN Mm~1 is referred to as the

elementary cycle (of M).
The following result is ohvious.

Lemma 9. If M is a nt-nondeterministic recursive letter then the
elementary cycle of M contains a directly nt-nondeterministic recursive

letter. 0O

Let M be a nt-nondeterministic recursive letter and let

Mg = M Mys oo Wy

such that Mi is a directly nt-nondeterministic recursive letter (by Lemma 9

be the elementary cycle of M. Let 0 < i < m-1 be

we know that such an i exists). Thus Mi has at least two productions in G
with the right-hand sides consisting of nonterminals from WG): one

of these is the production used in‘elem(M)s it is of the form

My o+ o Moo By (where for i = m-1, i + 1 is set to 0) and the other one
is of the form M, » &, for some &, « (W), Let NT(61) be the set

of nonterminal letters reachable from (the letters in) 65.

Lemma 10. NT(Si) does not contain recursive nt-nondeterministic

letters.
Proof of Lemma 10.

Assume to the contrary that NT(éi) contains a recursive

nt-nondeterministic letter, say y = U, Let the elementary cycle of U be.

Uy, U s U

0 U170 tr Pral

nt-nondeterministic; let Uj > pj be a production that is not used by Uj

in elem(U). Consider then a derivation depicted by the following derivation

and let 0 < j < r-1 be such that Uj is directly

tree.




for some n 2 1

b2




—

Part I of the derivation staris at the sentential form where M
is for the first time derived (in kO steps from A); it ends at the
sentential form containing Mi which will be rewritten (to get the next
sentential form) using pz‘oduction,Mi > 61. Part Il of the derivation
starts at the sentential form where U is for the first time derived
(from 61); it ends at the sentential form containing Uj which will be

rewritten (to get the next sentential form) using production Uj + pj’

The whole derivation is of length kO + k + 2, where part I is of
length at least %—and part 11 is of Tength at least %n
Now we can modify this derivation (within its subtree rooted at A)

as follows.

When the production Mi -+ 5§ is used, we say that we exit the

elementary cycle of M and when the production U, » pj is used we say that

J
we exit the elementary cycle of U. Thus within the part I we can exit
the elementary cycle of M on the 1st or 2nd or ... or({é%j)th occurrence
of Mig similarly within part II we can exit the elementary cycle of U

on the Ist or 2nd or ... or(tgéJ)th occurrence of Uj. (Within these

changes "the rest of the derivation" remains intact.)

. ki .. s
In this way we get at 1east;E§§J-[??J different derivations
on
(of the same length) of words x such that presb(x) = b" . By Lemma 5

we know that k2 2 sf n2 for some constant €y € R and consequently we

get at least s n2 different derivation trees_gfnwords‘xAsuchmth@t
n

presb(x) = b2 (where s is a constant dependent on G only). Since we

may take n arbitrary large and since K2 contains at most 2n words X

n
such that pres, (x) = b2 , G must be ambiguous; a contradiction.

b
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Consequently NT(éi) does not contain recursive nt-nondeterministic

letters.

Hence the lemma holds. [

Let us summarize now what we know already-about the structure of

derivations in G.

Consider a derivation D of a terminal word z from S where D is of

length at least two, D = (WO’wl""’wk+1)’ kiz1,wy=5,w z.

k+1 ~
Thus wy = AB where A e L, and B ¢ Rg. The Tast step of D (wk =ﬁ>wk+1)
is a finite substitution into (subsets of) {a,b}+. In our classification
of derivations in G we will ignore this final step and so we consider the
derivation D = (WO""’Wk)‘

Thus, except for the first step (S =>AB), D consists of two

derivations ﬁL and ﬁé "running in parallel"; ﬁL is the derivation
originating in A and 5§ is the derivation originating in B. The situation

may be illustrated as follows:
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B
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5ﬁ is a DOL derivation, it is a derivation in the DOL system G(B)

(without rank).

In cpnsidering DL we distinguish several cases.
(I). Only deterministic letters occur in {words of) 5L. Then EL is a
derivation in a DOL system with rank and the rank of the system is ndt
bigger than 2. If the DOL system corresponding to BL is of rank 1,
0 < i <2, then we say that D is of type Ii.
(IT1). Nondeterministic letters occur in ﬁL. We consider here separately
two cases.
(Ila). The derivation tree T(ﬁL) corresponding to BL is deterministic.
Then the situation is as in (I): ﬁL is a derivation in a DOL system with
rank and the rank of this system is not bigger than 2. If the DOL system
corresponding to ﬁL'is of rank i, 0 < i < 2, then we say that D is of
type 111. |
(I1b). The derivation tree T(EL) is nondeterministic. Hence on a path
of T(ﬁL) we have (possibly repeating) the elementary cycle of a recursive
nt-nondeterministic letter, say M, from which the exft is taken at some
point {that is a production leading out of the cycle is applied to a
directly nondeterministic letter from the cycle). From this moment on the
tree T(ﬁL) is deterministic. As a matter of fact we have the following
situation. ﬁL is ﬁhe‘%uperposition"of two derivations ﬁﬁl) and ﬁfz).
ﬁfl) is a derivation in a DOL system with rank where the rank of the
system is not bigger than 2. Also ﬁfz) is a derivgtidn‘in a (different)
DOL system with rank where the rank of the system is not bigger than 2.

If the DOL system corresponding to ﬁél) is of rank i and the DOL system

corresponding to ﬁ{z) is of rank j, 0 < i, j < 2, then we say that ﬁL

(and also D) is of eype (i,3).
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Clearly there is only a finite number of DOL systems that (either
directly or by their superposition) generate all (types of) derivations

discussed above,

We have classified now all complete derivations in G{for the sake of

completeness, let one step complete derivations be derivations of type 0).

Given a type X (of a derivation) we use C(X) to denote the set of

all words in L(G) that have a complete derivation of type X. Hence

L(G) = ¢(0) u szoc(n) u_kf)oc(m) o () eim).
i= 1=

i=0" 3=0

We will also use the following notation:

) cri) = o) ana %) ¢ (114) = c(1D);
i=0 i=0 «

also we write C(i,3j) rather than C((i,3j)).

Since G is assumed to be unambiguous, C(X) n C(Y) = 0 if X = Y.
Also, it is clear that a derivation of type (2,0) cannot exist and so
c(2,0) = 9.

Lemma 11. There exist constants p, r ¢ N+ and q € R+ such that

n
Z ¢ €(0,1) v C(1,0), where Z = {amb2 :p<m<qn and n = r}.
Proof of Lemma 11.
In considering how Z (which will be constructed "on line") is

generated by G we will eliminate systematically all C(X) except for

X e {(0,1),(1,0)}.

n
Clearly there exists P, € N* such that if anz e €(0) v c(10)

then m S Py
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]
a™b? ¢ C(I1) u C(I2) and w is derived in (k+2) steps

if

If w

+
in G then m > alk where a € R* is a constant dependent on G only. Thus,

by Lemma 5, m > a,n for some constant a, € R dependent on G only.

Hence indeed, there exist Pys 1y € N+ and Gy € R% such that

on ' -

{a"bc pysmsqy nand nxr} n (C(0) v C(I)) = P.

By similar arguments we eliminate C(II), ¢(0,0), c(1,1), c(1,2),
C(2,1) and €(2,2); that is we demonstrate that there exist p, r e Nt

and q « R such that 7 n E = §, where

#

n
7 = {a"b? - p<ms<agn and n 2 r} and

E

I

¢(0) v (1) v c(11) u €(0,0) v C{1,1) uc(i,2) v c(2,1) uc(2,2).

To eliminate C(0,2) we will demonstrate that if it is not true

that Z ¢ €(0,1) v €{1,0) then it is also not true that

Z ¢ ¢(0,1) u ¢(1,0) v €(0,2), To this aim we proceed as follows.
First of all we can assume that if it is not true that
Z ¢ ¢(0,1) u C(1,0) then it is not the case that 7Z\(C(0,1) v ¢(1,0))

is finite. (Otherwise we adjust parameters p, q and ¥ and obtain Z such

that%g C(Oal) U C(lﬁo)->

n

Let M= {m: a" b2 € 7 for some n} and
n
M' = {m: a" b% € C(0,1) U C(1,0) for some n}.
n
Observe that for sufficient big n, if a b° € C(0,1) U C(1,0), m = T, then

n
by "pumping in the DOL system of rank 0" also a" b2 : € C(0,1) U C(1,0) where

G ng=zm

Also observe that using "pumping in the DOL system of rank 1" one can prove

the existence of a positive integer Ny such that ifme M', m=> Pos then

alsom+ s € M. o

The above two observations imply that M\ M' contains (at least one) infinite

arithmetic progression.



78—

+ +
Clearly, for every s ¢ R there exists a t ¢ R such that, for every

nzr, i

n
#{m: Snbz e ¢(0,2) and m< s} st J;
and consequently, for every n z r,
n — =
#{m . a™b? e €(0,2) and m < gn} < tv¥gn

— ¥
for some t ¢ R .

Thus on the one hand we know that, for each n 2 ¥, the number of

elements in the set
A n n
e tmea™b? € 73\ (m:a"b? e c(0,1) v C(1,0) }

is at least t'?{n for some positive real constant t' dependent on G only.

On the other hand we know that, for each n = r, the number of elements
in €(0,2) n % is not larger than'fJegg. Since for n large enough
t gn >'€¢r§7“, we have proved that if it is not true that
7 ¢ ¢(0,1) v C(1,0) then it is also not true that Z < C(0,1) v c(1,0) ve(0,2) .

Consequently we have ”e]iminated“‘C(O,Z) and the lemma holds. (I

Lemma 12. ~(c(0,2) v c(1,2) ve(2,1) ds infinite.

Proof of Lemma 12.

!
(1). It is easily seen (using Lemma 5) that if z = a"b?  and

z ¢ C(10) v C(I1) v C(II0) v ¢(111) v €(0,0) v €(0,1) uvC(1,0) v c(1,1) ,

then m < pn for some constant p e Nt dependent on G only.

n
(2). If z = a" b2 € C(I2) U C(I12) U C(2,2) then, again using Lemma 5

— —_ 4+ -
it is easily seen that there exist n e N+ and p € R such that for n 2 n,

m2 7 nl.

(3). C(0) contains only a finite number of words.
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Thus if n2nand pn <7 < E?nz, then, with perhaps a finite number

of exceptions,

2
JTbﬁ ¢ (C(I)uC(IT)uc(0,0)uC(0,1)uc(1,0)uc(l,1)ucC(2,2)).

Thus the lemma holds. 0O

Lemma 13. Each of the languages: €(0,2), €(1,2) and C(2,1) is finite.
Proof.
We will separately consider each of the three cases.

(1). c(0,2).

A derivation of type (0,2) looks as follows

§

the first step is S =>AB where A ¢ L. and B ¢ R

G G?
then in the part of the derivation originating in A we have

H

kl > 1 steps of rewriting in a DOL system G1 of rank 0,

'

k2 2 1 steps of rewriting in a DOL system 62 of rank 2, and

2"0

'

m .
the final derivation step yielding a word a 0 b°  in L(G).

By Lemma 11 we know that there exist constants p, r e N+ and q € RF
such that
m 2n’ ‘
Z={a b" : psms=sgnand nzr} ¢ €(0,1) v ¢(1,0).
But for n big enough, gn-p is alsc big enough so that by taking k1
m n
big enough we can generate a word a 1 b2 1 where p < my < qny. Then

n

m 2 ml in .
however, a b e €{0,2) and a *b” € ¢€(0,1) v C(1,0); a contradiction

to our assumption that G is unambiguous.

Hence C(0,2) must be finite.
(2). c(1,2).

A derivation of type (1,2) looks as follows

i
i
E
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the first step is S =>AB where A ¢ LG and B ¢ RG,

- then in the part of the derivation originating in A we have

i
e
v

1 steps of rewriting in a DOL system Gl of rank 1,

v

1 steps of rewriting in a DOL system G2 of rank 2, and

n
the final derivation step yielding the word amb2 for some m, n 2 1.

Let G1 = (Vl, fl’ al) and GZ = (VZ’ fz, az). Clearly the following
properties hold.

(1) There exists a positive integer r depending on GZ only such that
h™(a) =z r K2 for each k > 0 and a a symbol of rank 2 of G,
A(Z) There exists a positive integer p depgnding on @T only such that
if a ¢ V, where a is of rank i, i € {0, 1} and «a Jip X5 @ Jgp X, then

pr’esvl 1' (xl) = pres,

rank i of Gl'

Choose kl and k2 to be multiples of p such that

(x2) where \/1 ; denotes the set of all symbols of
1,1 ’

k1 + k2 + 3 # V1 p

k1 >p (# V1 +4) and r kg > (el as in Lemma 5).
£
1 :
Now k1 is big enough such that on a path of the corresponding derivation

tree there is a node on levels }1 p and 1? p, 1 = ]1 < 12 <=p (# Vl + 1)

labelled by M such that M is a (recursive) letter of rank 1. Repeating
such a "cycle" (with the rest of the derivation remaining "tthe same") once
again, then twice and then three times, we get three new derivations in G

My oM, m, .n My o0 L
deriving words a 1 b2 1, a 2 b2 Z:and a 3 b2 3«

Observe that after level p and hence after level 11 p the number
of symbols of rank 1 of G1 cannot grow any more. The above observation, (1)

and the fact that k; > 1, p + 3 p yield that m, mlg m, and m, form an

arithmetic progression.

Sre e,
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The choice of k2 together with (2) yield
ke + k, +3 (#V.)p
. 1 2 1
m, My, My, My > and
1

kl + kz + 3 (# Vl) p

Mo Nys Moy Ny =
&1

Consequently m, mys M, and my are all squares , This, however, contradicts

the well known fact from number theory (see, e.g., [D] p. 404) that in the

set of squares there is no arithmetic progression of length larger than 3.

Consequently C(1,2) must be finite. [J
c(2,1).

This case is proved analogously to case (2).

that there exists an unambiguous EOL system G generating K

Hence the lemma holds. [J

However, Lemma 13 contradicts Lemma 12 and consequently our assumption

5 is false.

Thus K2 is inherently  ambiguous and the theorem holds. [J
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