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ABSTRACT

The notion of a coordinated table selective substitution system (" a cts sys-
fem) is introduced. It provides a unifying framework for both grammars and
machines (automata) and hence a really broad framework for formal language
theory. An extensive number of examples is given which illustrate how a quite
considerable number of grammars and automata considered in the literature
may be '"'naturally” interpreted as special instances {subclasses of the class) of

cts systems.






INTRODUCTION

Two basic constructs used in formal language theory to define languages
are grammars and automata {machines). The literature (see, e.g., [H] and [S])
is full of various instances of grammars and automata where each model is
motivated by specific needs arising either from theoretical or practical con-
siderations. For a number of obvious reasons it is very deéirable to have a gen-
eral model of a grammar or a general model of an automaton which is both, gen-
eral enough to cover a considerable number of specific instances and "concrete"

enough so that one can develop its theory (prove specific resuilts).

In [R] the notion of a selective substitution grammar was introduced to pro-
vide a unifying framework for many of the rewriting systems met in the litera-
ture. Roughly speaking this model has formalized a number of essential
features basic to many grammars (rewriting systems). The two most fundamen-
tal of these features are:

(1) the rewriting of a single occurrence of a letter which is mathematically for-
malized as a substifution, and

(2) the combination (spreading) of these elementary rewritings through a word
so as to yield the rewriting of @ word corresponding to a direct derivation step,

this is formalized through the notion of selector.

The theory of selective substitution grammars developed since (see, e.g.,
[K] and [KR1}]) has turned out to be successful in the sense that several central
notions of "grammatically oriented” formal language theory got captured (and
investigated) in a rather natural way within this theory and moreover a number

of new {and clearly central) notions have emerged.

A natural next step in the build up of a "unified formal language theory" is

to construct an analogous framework for the "automata oriented formal



language theory".

However rather than to do this we propose in this paper a common frame-
work for grammars and automata. Surprisingly enough it turns out that very
many instances of grammars and automata discussed in the literature are
instances of one general model, which {using the "classic" intuition) is grammar

oriented.
Roughly speaking the basic idea is as follows.

As discussed above, a substitution together with a selector form the most

basic concept of rewriting - let's call it a fable.

Now rather than rew&rite a word let’s rewrite n-tuples of words for some
n = 1. The basic device directing such a rewriting is an n-tuple of tables called
a rewrite. Thus given an m-tuple of words (zi, ..., z,) a rewrite (T}, ..., Tp)
rewrites it into an n-tuple (¥, ..., ¥n) if, for each 1 <1i <n, T; rewrites z; into
;. Thus we deal with a coordinated rewriting {(coordinated use of cemponent

tables).

Finite sets of rewrites (together with the specification of alphabets of com-
ponents and the sets of tables "available’” at each component) form a coordi-
nated table selective substitution (cts) system or scheme depending on whether
or not one provides an axiom (equal to an n-tuple of component axioms) which

gives a uniform starting point for all computations.

Then the most straightforward (perhaps somewhat rough) division within
this model is into systems of dimension 1 {i.e, » = 1) and systems of dimension
at least 2 (i.e., n = 2) - the first class corresponds naturally to grammars while

the second class corresponds naturally to automata (machines).

In this paper the above intuition is formalized and the formal model of a cts
system (and its extension: an ects system) is introduced and then quite exten-

sively illustrated by examples. The role of the examples is to demonstrate how a



considerable number of grammars and machines may be quite easily inter-
preted as systems discussed in the paper. It is interesting to notice that indeed
most types of automata are modeled using systems of dimension at least 2,

while most types of grammars are modeled using systems of dimension 1.

We also demonstrate a rather intriguing result that the relative strength of
(types of) selectors depends rather drastically on the fact whether they are
used "directly” in the production (generation) of results (words) or whether they

are used "indirectly” (i.e. through "auxiliary storage') for this purpose.

0. PRELIMINARIES

We assume the reader to be familiar with basic formal language theory, in
particular we assume the reader to be familiar with basic grammar and machine

(automata) models, e.g., as presented in [H] and [S].

We use mostly standard notation and terminology; perhaps only the follow-
ing points require an additional attention.
For a set A, 2% denotes the set of all its subsets and #4 denotes its cardinality;

# denotes the empty set. For sets 4, B, A\F denotes their difference. If

n

Ky, ..., K,,n =1 is a sequence of sets, then Y K; denotes their cartesian pro-
i=]

duct.

We consider only finite and nonempty alphabets.

For a finite sequence p, p(n) denotes the n’'th element of p and last(p) denotes
the last element of p. In the considerations of this paper it is sometimes more
convenient to index sequences starting with 0 and sometimes it is more con-
venient to index sequences starting with 1. In the former case we will write a

sequence p in the form p(0), p(1), ... and in the latter case we will write a



sequence p in the {tuple) form p = (p(1), p(2), ...).
For a word z, |z | denotes its length and pref (z) denotes the set of all prefixes

of z; A denotes the empty word.

For a language K, pref (K) = Upref(:z).
zeX

If £, A are alphabets such that A C %, then presy, is a homomorphism of =”
defined by: presga(a) = Aif @ € \A and presyza(a) = a if @ € A. Whenever X is
clear from the context we write pres, rather than presy .

Throughout this paper barred versions of symbols are used with a "special”,
reserved meaning. Al symbols to be used are elements of the inﬁnité alphabet
AUA where A={@ : a € A} and A and A are disjoint. Whenever we will consider
an alphabet ¥ and the alphabet & = {@ : a € £ it is assumed that ¥ C A More-
over, ideny denotes the homomorphism of (X USY" defined by: ideng(@) = a and
ideng(a) = a fora € Z.

We proceed now to define a number of notions very basic for this paper.

Let ¥ be an alphabet.

A production (over L) is a pair (X, z), where X € ¥ and z € 2" it is also
written in the form X - z. Since each production is an element of EXZ*, a set of
productions A is a subset of £x%"; hence we use also the "functional notation’ -
for X e D, h(X)={z €8 (X, z) €h].

A selector (over %) is a subset of (E UD* S(EUD)T; elements of a selector
are referred to as selector words.

Definition 0.1. A table is a triple T = (£, h, K), where Z is an alphabet, h is
a finite set of productions over £ and K is a selector over Z. The alphabet X is
referred to as the alphabet of T and denoted by al(7T), h is called the set of pro-

ductions of T and denoted by prod(7T) and K is called the selector of T and

denoted by sel(T). The pair (h, K) is called the core of T and denoted by



core(T). =

For a set of tables T, al(T) = {al(T): T € T}, prod(T) = {prod(T): T €T},
sel(T) = {sel(T): T € T} and core(T) = {core(T): T € T}. We say that T is alpha-
bet (respectively selector) uniform. if #al(T) = 1 (respectively #sel(T) = 1).

Definition 0.2. Let T = (Z, h, K) be atable, z,y € %  wherez = b, - - by,
n=1and b; €2 for 1 =1 <n. We say that z directly derives y in 7, denoted
x ?y, ify =81 Bn, with £ e’ for 1<i<n, and there exists a 2z € X,
z2=a; ' a, witha; € 2L for 1 <4 < n, such that
ideny(z) =z and, for 1 <i <n,

ifa; € %, then §; = b; and if a; € L, then §; € h(b;). =

Whenever :T} y and U = core(T) we also write z :‘—(—f; Y.



1. ON cts SCHEMES

In this section the notion of a cts scheme, which is central to this paper, is

introduced and various subclasses of the class of cts schemes are discussed.

Definition 1.1. A coordinated table selective substitution scheme, abbrevi-
ated cts scheme, is a construct H =(Ty, ..., T,, £), where n =1, for each

1<i<n , T; is an alphabet uniform finite nonempty set of tables and

n

R C Xcore(T;), R # . For 1 =1 <n,T; is referred to as the i-th component of

i=1

H and elements of R are called rewrites of H; K is denoted by rew(H). =

The following terminology and notation will also be used (let A be as above).
n is called the dimension of H and denoted by dim (H).
For 1 <1 < mn, the alphabet common to all tables of the i-th compoenent is called

the i-th alphabet of H and denoted by al;{H).

Definition 1.2. Let H = (T, ..., T,, R) be a cts scheme.

n

() Let z=(xy,....20), ¥y =Yy, ..., Yn) € )((aLi(H))*. We say that z directly
i=1
compules y (in H), denoted =, if there exists a (U}, ..., U,) € F such that

xi:;;»yi, for1<i<n.
f

n
() Let z =(z,, ..., z,) € X(ali(f]))*. An z-compulation (in H) is a sequence
i=1

k(3
p =p(0), p(1), ..., p{m), m = 1, of elements of X (ali(H))* such that p(0) =z
i=1
and, forall0 <i<m-1, p(i)_-—i[';»p('i+1).
Each p(i), 0 <1 <m, is called a snapshot of p.
» *

(8) Let = denote the reflexive and the transitive closure of = If =2y



then we say that z computesy @in H). =

We conclude this section by defining a number of subclasses of the class of
cts schemes. These subclasses will turn out to be useful when we will demon-
strate (in Section 3) how various examples of grammars and machines encoun-
tered in the literature fit into the framework of our theory. Also, the notation
for (the specification of) schemes from these subclasses will be considerably

simmpler.
Definition 1.3, A cts scheme is (selector) wuniform, abbreviated

ucts scheme, if all of its components are selector uniform. ™

To simplify the notation, given a ucts scheme H = (T}, ..., T,, F), K will be

n

specified as a subset of X prod(T;); clearly such specifications are "correct” -
i=1

the information about "missing’ selectors is contained in the specifications of

Ty oy Ty

Definition 1.4. Let T be a table. T is sequential if sel(T) = E;Eg Z; for
some %, Zp LgCal(T). A cts scheme H is sequential, abbreviated

scts scheme, if every table appearing in any component of 7 is sequential. #

Remark. In [KR2] selectors of the form E: Yo 23* are called I-sequential and
their finite unions are called sequential. We have changed the terminology here
because in cts systems one component consists of a number of tables so that
various components of a sequential selector can be "spread among" tables of a

given component and one can deal with 1-sequential components only.

v

SR

Sl



To simplify the notation, given a uscts scheme H = (T, ..., T,, F) (i.e., a cts

scheme that is both uniform and sequential) K may be specified as a subset of

n

X { U prod(T)) and, for each 1<i=<mn, T; will be specified as the table
=l reTy

(al; (H), Uprod(T), K;), where K; is the selector common to all tables of the
TeT

1—th component of G.
Although, in general, from such a specification the original components of G

can't be recovered any more, the "work of G' {(that is the =;> relation) is

"correctly” specified in this way.
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2. ON cts SYSTEMS

cts systems result from cts schemes by adding a starting point (the axiom)
for computations in G. These systems are formally defined in this section and
then their extensions (ects systems), very convenient for defining languages, are

considered.

Definition 2.1. A coordinated table selective substitution system, abbrevi-
ated cts system, is a construct G =(Cy, ..., C,, R), n =1, where, for each

1<i<sn, ¢ =(T; S;), where S; is a symbol from the alphabet of tables T; and

(Ty, ..., T, R) is a cts scheme, called the underlying scheme of G ®

All the terminology and notation concerning cts schemes carry over to cts
systems in the obvious way {through the underlying cts schemes). Additionally
we will use the following terminology and notation {(let G be as above).

For each 1<1=<mn, S; is called the i'th axiom of G, denoted azr,(G), and T; is
called the 1i'th table set of G denoted tab;{G). The mn-tuple
(az (G), azo(G), ..., 0z, (G)) is called the aziom of G and denoted by az (G).

An ax(G)-computation in G is referred to simply as a computation in G COM(G)

denotes the set of all computations in &.

cts systems are {may be) used to define languages. The notion of a
snapshot plays the most crucial role here - it plays a role comparable to that of

a sentential form in classical grammars.

Definition 2.2. Let G be a cts system.

(1) The ezhaustive set of G, denoted E(G), is defined by

n

E(G)={z € X(alI(G))* z is a snapshot of a p € COM{G)}
{=1

(2) The i-th ezhaustive language of G, denoted F;(G), is defined by

%

H

3
{

st
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F(G) = {z(i): z € E(G)}.

(3) E.(G) is called the ezhaustive language of G. ®

In order to define different kinds of languages of cts systems (or in other
words: "to squeeze” various kinds of languages out of exhaustive languages) one
has to specify success conditions which allow one to classify a computation in a

cts system as successful or unsuccessful.

In general a success condition for an n dimensional ¢fs system G is an

n

n—ary (success) predicate SC X (al;(G))*. Then a computation p in G (with a

=1

given S) is called successful if S(last (p)) is true, otherwise p is unsuccessful. A
snapshot of a successful computation is called a successful snapshot. A success

predicate S is called (coordinate) independent if there exist predicates

n

SL... 8,5 ¢ (ol (G)) for all 1 =i <mn, such that S= % 5;; note that then for

i=1

n
all z = (z, ..., z,) € X (ali(G))*, S(z) is true if and only if Si{x;) is true for all
i=1

1=si=n,
We will deal with independent predicates only and moreover we will assume that
if S=(S;x 8% x§5,) is a success predicate, then, forall 1=i=n, 5 is a

regular language. We say then that we deal with regular success conditions.

Moreover {in the spirit of a very common language definition mechanism
used in formal language theory) for each component of G we will specify its ter-
minal alphabet (A) and often use these alphabets in the specifications of success
conditions (S; = A*). When we integrate the specification of a cfs system with
the specification of a success condition given as above we arrive at the following

definition.
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Definition 2.3. An extended coordinated table selective substitution system,
abbreviated ects system, is a construct G =(D;, ..., Dy, R), n = 1 where, for
each 1<i<mn, D; = (T;, Si, &), (T, S1), ..., (Tn.Sn). R) is a cts system, called

the underlying system of G and denoted by und(G), and A; is a subset of

al; (und(G)). =

All the terminology and notation concerning cts systems carry over to ects
systems in the obvious way (through the underlying cts systems). In additibn
(for G as above):

A; is the i-th terminal alphabet of G, denoted by ter;(G).
Note that if, for all 1 <i < n, ter;{G) = al;(G) then we really deal with cts sys-
tems.

In this paper we do not fix any specific "main" way of defining languages of
ects systems. Rather, as an example we give now a definition that settles a way
of defining languages that stems from a method very popular in the theory of
automata. Note that the first component of an ects systems plays a special role

here - it is interpreted as the "input"” of the system.

Definition 2.4. Let G be an ects system, where n = dim(G). The empty
store language of G denoted L¢(G), is defined by
L(G) = {z € (ter,(G))": there exists ay = (Y1, ... Yn) € E(G) ,

such thaty, =z andy; =Aforall2<i<mni. =

Note that the above definition implies that the regular success condition
S=(8x---xS,) we use is such that 5 = (terl(G))* and S; = {A] for all
2=i<n.

If G =((T,, S, Ay), R) is an ects system of dimension 1, such that #T, = 1,

then G may be specified in the form G = (Z, h, S, A, K), where S =5, A=4,
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and T; = {(Z, A, K)] with A = prod(T)N\R. Then G is really an s-grammar - the
very basic construct of the theory of selective substitution grammars (see, e.g.,

[KR1]).

If, additionally, G is sequential then, in the terminology of [KRR], G

becomes a 15 grammar.

If ¢=((T,, S, A), B) is an ects system of dimension 1, then G may be
specified in the form
G =t{Gy, ..., Gnl, where, for each 1 <1 <m,
G = (5 by, Sy, Ay ;) with £ = aly(G) and B = {(hy, K7), ..., (P, K )i
Hence, in this‘ case, (¢ is really a finite set of s-grammars all of which have a
common alphabet, terminal alphabet and an axiom. G is called a fable

s —grammar.

Moreover, if each of the &, 1=<i=m, is sequential, then ¢ is a

1S table grammar.

Even if not all bul only some componenls of an ects system are sequential
and uniform, we will specify these components as 15 grammars. Also if for an
i—th component of an ects system G we have al;(G) = ter,(G), then we may

omit ter;(G) from the specification of G

If ¢ is a sequential and uniform ects system, hence a euscts system,

G={T, S, A, ... (Tn, Sp, ML), B), then G may be specified in the form
G={(G,, .., G, }?,), where

(1) foralll=1i =n,

G = {(Z;, hy, Si, AL K, where &; = al,(G), K; is the selector common to all tables

inT; and k; = U prod(T), and

TeTy

n

(2) R C«>i<1 Ry
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Hence in this case each & is a 1.5 grammar and R'is a finite set of n-tuples

(1, ..., T ), where, for each 1 <1 <n, m; is a production from G.
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3. EXAMPLES

In this section we will give examples of various types of ects systems. The
main aim of this section is to demonstrate how various types of grammars and
machines considered in the literature can be interpreted as (are instances of)
ects systems. When demonstrating such an interpretation we will only occasion-

“ally talk about the interpretation of the languages‘of the grammars and the sys-
tems considered - the reason ’is that these interpretations are mostly obvious
(by adjusting the type of success conditions).

Example 3.1.
Let G be an s-grammar such that G = (Z, k, S, A, K), where K = Z*(E\E)E*,
S € X\A, and, for each X € A, A{X) = P.

Then G is interpreted as a conltext-free grammar. The standard success

condition for specifying the language of G is A% w

Example 3.2.
Let G ={Gy, ..., G} be a table s-grammar such that for each 1<1i <m the

selector of G; equals &1, where ¥ is the alphabet of G.

Then G is interpreted as an ETOL systemn (with "partial” tables allowed) (see

e.g., [R3]). =

FEzample 3.3.
Let G be an s-grammar such that G = (X, k, S, A, K), where K = DI
Then G is interpreted as an EOS grammar (see, e.g., [KR1]) and so we refer

to & as an EOS grammar. If ¥ = A, then G is an OS grammar. =
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Frample 3.4.
let G be an s-grammar such that G=(Z, h, S, A K), where S €I\A,
K = A"(E\R), h is such that, for each X € A, h(X) = £ and moreover: ifz € h(X)

for X € INAand z €5, then z € (AUA}) ((E\A)UAD).

Because of the obvious interpretation we refer to G as a righf-linear gram-
mar. The "usual' success condition for specifying the (so called terminal)

language of G is AT, w

FExample 3.5.

Let G be as in the example above, except that the additional restriction is

posed: ifz € h(X)for X € Z\Aand z 3", thenz € (AUIAY) (E\A) .

Then G is referred to as a strict right-linear grammar. G may be inter-

preted, in the obvious way, as a one-way finite automaton.

The "usual” success condition is of the form A" ® where 0 is a distinguished
subset of E\A, however the language of & results from "successful” words in G
by removing from them the last letter (the element of ®). One could also allow
erasing productions X » A, X € ¥\Ain G and then to have the success condition
of the form A*; clearly both models are "equivalent’ (as far as languages - as

defined above - are concerned).

Note that we allow chain productions X -» ¥, where X, Y € X\A, and so we
allow the finite automaton to make "A-moves"”, ie., to read an input symbol,
change its state and do not advance to the right. If we forbid chain productions,

then we get a finite automaton in the classical sense.

If additionally we require that "whenever X » aY and X - aZ are produc-

tions in h, then ¥ = Z", then we deal with a deferministic one-way finite aulo-

maton. =
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Example 3.8.
Let G = (Gy, Ga, R) be a usects system such that G is a strict right-linear gram-

mar and Ggis a right linear grammar with one nonterminal only.

Then G may be interpreted as a one-way finite automaton with oulput or,

in a different terminology, as a generalized sequential machine.

The obvious interpretation is that the first coordinate acts as an input tape

{and keeps the information about the current state) while the second com-

ponent acts as an oulpul tape. =

FErample 3.7.

We will discuss now the two-way finite automaton as a two dimensional cts sys-
tem.

Let A and I' be disjoint alphabets and let 8, = {{8,a]:a € A}, Oz = {{a]: a € A}

and 0 = 0,08, we assume that 0,0, = £ and ON(AUI) = 2. Let &, = AT

and Iy = AUOU{S,E, where S £ OUAT; let g4, be a distinguished element
of I
Let K, = AT, Koo = 52} Ko =0 0, Koz = 0" 0A" and Kpg=0" 88"

Let for each a € A, (core(T 40), core(Taq0)) be a rewrite such that
Tha0=(Z1 hiao. K1) and Taao = (22 heao. Kao)
where h,q ¢ is a set of productions all of which are of the form gy - aq' for

g €T and hy g, o consists of the production Sg > [8,a].
Let g = {{core(T140), core (Toq0)): a € 4.

Let for each a € A, R4 be a finite set of rewrites (core(T,,), core(Tz,q))
such that
Tia =(Z1, hig K)) and Tzq = (22, heg Ka1)
where

h, . is a set of productions of the form g - aq' for some q,q' €' and
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hg, is a set of productions either of the form [b] -» [b][a] or of the form

[8,b6] >[5, b][a] for some b € A.

Let Ry = |_JR1a .

a €A

Let Rj be a finite set of rewrites {(core (T,) , core(T3)) such that

Tl = (21 , h’l B Kl) and Tg = (22 B hz s Kz'z), where

ety i

h, is a set of productions of the form g - ql, g, with q' €'and

hpis a set of productions of the form [b] » b with b € A,

Let Fgbe a finite set of rewrites {(core (T,),core{ T5)) such that
Tl = (21, h‘l: Kl) and Tg = (22, hg, Kz,g), where
h, is a finite set of productions of the form g - q' with q, q’ €' and

h; is a finite set of productions of the form b - [b], b € A .
Let B = RyUR,RsRs .

Let T, be the set of all tables such that their cores occur as first com-
ponents of rewrites in /X and let T be the set of all tables such that their cores

occur as second components of rewrites in /.
Finally let & = ({T}, qin), (T, S2), F) .

Then G is easily interpreted as an {off line) two-way finite automaton. Vari-
ous elements of the definition of  are then interpreted as follows.
I' is the set of states, A is the input alphabet and gy, is the initial state of the
automaton considered.
On the first component we store the portion of the input already read and the
current state.
The work of the automaton is done (simulated) on the second coordinate.
Rewrites from R, correspond to the "starting condition': reading the first sym-
bol in the initial state g, .

A rewrite from K,,, @ € A, corresponds to the reading of the next {new) input
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symbol {which equals &) and moving to the right.
Rewrites from R, correspond to going to the left on the input (provided that at
"this moment" one does not read the leftmost symbol of the tape) and rewrites

from R correspond to going to the right on the input (providing one is "inside"

the already read portion of the input tape). ®

Fxample 3.8.
Let G be an s-grammar such that G = (%, h, S, Z, K), where K=3"% (or
K=%5%).

We will refer to G as a right-boundary grammar (or left-boundary grammar,
respectively); note that it differs from the right-linear grammar essentially by

the fact that it does not distinguish between terminal and nonterminal symbols.

Left-boundary (and by analogy right-boundary) grammars can be con-

sidered as a special case of Biichi regular canonical systems (see [BA)).

Here is another way of interpreting two-way automata as cts systems
equipped with a very natural "global control" condition (restriction) on their

work.

FEzxample 3.9. Let G be a right-boundary grammar in which one restricts the set
of all computations as follows. A computation in & is allowed (is legal) only if
any two snapshots of it are in a prefiz relation (Le., one of them is a prefix of the

other one).

Then it is not difficult to see that G may be interpreted as a two-way finite

automaton. ®
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Frample 3.10.
Let G = (G;, Gz, R) be a uniform and sequential ects system such that
G, is a right-linear grammar and
G, is a right-boundary grammar.

Then G is easily interpreted as a push-down automaton. If (w,q, wy) is a
snapshot of &, then w, is the portion of the input already read, g is the current
state of the automaton and wg is its stack (with the rightmost letter of w;

representing the topmost element of the stack).
A number of direct analogies are immediately observable.

A chain production in G, corresponds to a A-move in the pda A (being
"simuiated"}: if G| is chain-free, then Ais A-free. If there is a common bound k
on the number of consecutive applications of chain-rules in G;, then A operates

with delay k.

A production in &; of the form X - A corresponds to a pop and a production

in Gg of the form X - w with |w | = 2 corresponds to a push.
Acceptance by final state in A corresponds to the regular success condition

(A @, 5 ), where A, = ter (G), O, is a distinguished subset of al (G)\ter,(G)

and g = alp(G).

Accepiance by emptly store in A corresponds to the regular success condi-
tion (A, (Z.\4,), (A}), where £, = al (G).

Acceptance by both final state and empty store in A corresponds to the reg-

ular success condition (A; 0, , {A}). =

Note that if we require in the above example that alyz(G) = {S5,Z;5], where
Sz = axp(G) and Z; # S, and moreover we require that the only instructions

available for Sz in Gy are of the form S; » Sz, S » SpZ3 and Sz » A and the only
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instructions available for Z; in G, are of the form Z; » Z,, Z, » Z3Z, and Z5 > A
then we deal with one counter automaton. (This is the usual way of getting a one
counter automaton from a push down automaton: require the stack alphabet to
consist of one letter and a "bottom" symbol.) The extension of the above model
to cover n-counter automata is obvious.

FExample 3.11.

Here is another look at one counter automata.

Let G = (G, (Tz, Sz, Az), R) be an ects system such that

(1) G, is aright linear grammar,

(2) aly(G) = {Sy, Z3}, where Zy # S,

(3) if K € sel(Ty), then K = (aly(G)) 15, , Za}(alx(G))™ and

(4) if m € prod(h), then either 7 is of the form Z5 » A or  is of the form S; » A

or 7 is of the form S; »  where x contains exactly one occurrence of Ss.

Then G is easily interpreted as a one counter automafon. Clearly if
dim(G) =n > 1 and one sets restrictions on com;(G), for all 2<i<n , analo-

gous to the restrictions on comy(G) above, then one gets a (n—1) counter auto-

maton, ®

FErxample 3.12.
Let G = (G,, Gy Gs, R) be a uniform and sequential ects system such that G, is a
right linear grammar, G is a right-boundary grammar and Gy is a left-boundary

grarmar.

Then G is easily interpreted as a two-way push down automaton. =

Eromple 3.13.
We will discuss now Petri nets as cts systems.

Let A be a finite alphabet, S £ A and let O =1{S;:t €A}, we assume that



aN(BULs)) = 2.
Let n > 1 and let, for each 2<1i<n, S;,p; be two different symbols; let
Z; = §Si.pi} and I, = AUQUILSS.
Let ® = {2, ..., n} and let in and out be functions from A into 2° .
Let K; = A" (§{5}U0) and let, for2=<i<mn ,
* * — *
Ky = 2 {535 and K2 = (Siilpdd -
Let foreach t €A, (Teqa s Tt21 s - Ttm.1) be the rewrite such that

Ty =(2,, 85 » £S5}, K}) and, for 2<1 =n,

(Zi, ?.pi - Ag, K‘I) ifi € 'LTL(t),
Tean = (5, S0 » 53, Kig) if 4 £ in(t).

Let R, be the collection of all rewrites (7; 11, ..., Ttny) forallt €A .
Let for each te€A, (Tyi2.Ti2z,.... Ttnz) be the rewrite such that

Ty12=(5,,{S; » S}, K)) and, for2=<1i =n,

(Ei, 251' i Sip'i%, 1«;2) ifi € O’Ut(t)x
8127 | (8, (8, » S, Kio) if i £ out(t).

Let R, be the collection of all rewrites (T; 12, ..., Ttne ) forallt €A.

Llet # = Ry UKz .

Let, for each 1 =1 <n, T; be the set of all tables occurring as i-th com-
ponents in all rewrites of ¥.

Then let G be a cts system defined by G = ((T}, S), (Tz, S2), ..., (Tn, S,;), R).

G is interpreted as a Petri net (with weights equal one on all arcs), see, e.g.,
[B].

The interpretation of various elements of G is as follows.

A is the set of [(ransitions of the net and the components
com;(G), 2=1 =mn, are places of the net. For a ¢t € A, in(t) are all input places

for £ and outf (t) are all output places for ¢.
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Each firing of a transition £ is done in & in two phases.

Phase 1. t consumes tokens from its input places: the rewrite (Tg'm R VI
is used.
Phase 2. t spreads tokens to its output places: the rewrite (T 12, ..., Ttnz)

used. This phase follows always immediately after Phase 1.

Hence the firing sequences of the net are generated (to the left of S) on the

first component. Note that various "standard" ways of defining the language of a

Petri net can be easily accommodated by defining various success conditions. ®

A very different way of interpreting Petri nets as cts systems is discussed in

" [AR].
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4. ON THE RELATIVE POWER OF SELECTORS

In this section we will investigate and compare two different uses of (classes
of) selectors:
(1) "direct" - i.e. on the first coordinate of an ects system (where the words of
the language are computed) and
(R) "indirect" - i.e. on other than the first coordinate of an ects system (where

only "auxiliary’' computations take place).

Roughly speaking, the former mode corresponds to the use of selectors in
grammars - where they directly influence the derivation process -, while the
latter mode corresponds to the use of selectors in automata - where they deter-
mine the type of storage access and hence influence the computation of the

language only indirectly (through the storage of an automaton).

Perhaps three most popular (from the grammatical point of view) classes of
selectors are the following ones.
(1) Right-boundary (i.e. of the form 5" ¥, where ¥ is the alphabet involved): it
underlies right-linear grammars. (Although in Example 3.4 the form of the
selector used is A* (Z\A), it is easily seen that, with the given form of produc-
tions, one can also use the selector z* ).
(2) 0S (i.e. of the form 7" 52, where T is the alphabet involved): it underlies
context-free grammars. (Again, a remark analogous to the one made under (1)
but concerning Example 3.1 can be made).
(3) OL (i.e. of the form &', where I is the alphabet involved): it underlies ETOL
systems.

In this section we will investigate and compare the use of the above three

classes of selectors in (uniform) ects systems of dimension 1 (hence in direct

mode) and in (uniform) ects systems of dimension 2 on the second component
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{hence in indirect mode). In the latter case we will assume that the first com-
= ponent of an ects system is a right linear grammar - such an assumption seems
to be reasonable, because right-linear grammars on the first component
correspond to the standard input tape in most kinds of automata encountered in

the literature.

Throughout this section we will consider the standard "empty store” way of

defining languages of ects systems (see Definition 2.4).

The classes of languages obtained by using the classes of right-boundary, 0S
and OL selectors in uniform ects systems of dimension 1 will be denoted by
LY(RB), L(l)(OS) and L{Y(OL) respectively.

The classes of languages obtained by using the classes of right-boundary, 0S
and OL selectors in uniform ects systems of dimension 2 {(where the first com-
’ponent is a right-linear grammar) will be denoted by L®(RB), L®(0S) and
L®(0L) respectively.

Moreover we will use F{REG), F(CF) and F(LTOL) to denote the classes of
regular, context-free and ETOL languages. F(PN) denotes the class of languages
that are accepted by Petri nets (that is labeled marked Petri nets with final zero

marking) - see, e.g., [B].
We begin by comparing classes LV(RB), L'Y(0S) and L'V(OL).
Theorem 4.1. L(RR) ¢ LV(0S) ¢ LUYOL).
Proof.

As we have indicated already (see Example 3.8) a right-boundary grammar
is a (special case of) Blichi’s regular canonical system, see [Bi]. Consequently it
follows from [Bi], see also [KR2], that L{V(RB) ¢ F(REG). On the other hand it is

obvious that F{(REG) ¢ L'Y(RB) and consequently LY(RB) = F(REG).
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It is easily seen that L{(0S) = F(CF) and LYY OL) = F(ETOL) (see Example

3.1 and Example 3.2 respectively).

Since it is well known that F(REG) ¢ F(CF) ¢ F(ETOL), the theorem follows,

We move now to compare classes L&(RE), L?(0S) Aand‘I_;.(‘E)(OFL). First we
define formally the ects systems involved. o '

Definition 4.1. Let G = (D), D, R) be a uniform and sequential eci:s_ system
such that D; is a right-linear grammar and D, is a rig'h;c—‘talouridary grammar.
Then G is a (RL, RB) system.. = | |

L®YRB) denotes the class of languages of the _fdrm ‘LG(G), Whére Gis a

(RL, EB) system.

Definition 4.2. Let G = (D,, D, F) be a uniform and sequential ects system

such that D; is a right-linear grammar and Dy is a OS grammar. Then G is a
(RL,0S) systemn. =

L®(0S) denotes the class of languages of the form I, (G), where G is a

(RL, OS) system.

Definition 4.3. Let G = (D), Dy, F) be a uniform ects system such that D, is a

right-linear grammar and tery(G) = alp(&). If the uniform selector of all tables

from Dy is of the form (al{G))*, then G is a (RL, TOL) system.. =

L®YOL) denotes the class of all languages of the form Z;(G), where G is a

(RL, TOL) system.

s
e
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A (RL, TOL) system G will be specified in the form G = (G,, Gz, ), where
(i) G, is aright-linear grammar,
(ii) Gz = (Zz Hpg, Sa, Kz) is a TOL system with I, its alphabet, H; the set of its
sets of productions, S, its axiom and K} its selector, and
(iii) K is a set of pairs of the form (m, k), where 7 is a production from G, and h

‘is a set of productions from Hj.

We establish now the language computing power of (RL, TOL) systems.

Lemma 4.1. L®0OL) ¢ F(REG).
Proof.

Let G = (G, Go, R) be a (RL; TOL) system, where G, = (1, by, Sy, Ay, K7)
and Gg = (Zz, Ha, Sz, Ka).

Clearly, without loss of generality we may assume that for each h € H;
there exists a mw € h, such that (mhi) € £ and for each 7 € A, there exists an

h € Hy such that (m, h) € R.
Let O, ={<n> :mehland O = {{h]:h € Hyi.
Let a be the homomorphism of @; into H: defined by: «{[h]) = A for each

h € Hp; as usual we assume that each word g, - - gn € H; with gy, ... gn € Hois
(can be seen as) the composition of substitutions g1, ..., g, from Hy (each set of

productions form H, can be considered as a finite substitution).

Let v be the finite substitution of @; into @; defined by:
y([h]) = {<m> : (mh) € R}
Let él = (fl AL 5‘1, 151, fA(l) be the right-linear grammar defined by:

ﬁl = (ZI\A1>U®1» él = Sl, 81 = @1, Kl = ®;‘<_Z—:1\Z]> and E‘l is defined as follows:

(1) fOI‘ all X, YEZI\AX,

Xo <p>Yehifandonlyifr= (X >y ¥) €h, for somey € A;J{A]



(2) forall X € Z,\4A, ,
X- <m> €hjifandonly if # = (X » y) € hy for some ¥ € AjJ{A} ,
(3) R, contains only productions as defined under (1) and (2) above.

Let g be the homomorphism of @1* into Al* defined by:
for each <7m> €0,p8(<n>)=y, where wn=(X->yY) for some
XeZN\A, Y (EN\A)UIN andy € A UIAL .

Now let
Hy = {z €0z : A< (a(2))(S2)),

M, =¥(M;) and .
H = HiNL(G).

It is easily seen that Lg (G) = B{H) oooeuieeieiieiiieeeeeeee e (*)

On the other hand it was proved in [GR] that given any TOL system A and
any regular set L over the alphabet of /7, the set of I/ of all sequences of sets of
productions from H such that for each u € U, u(S)\L # ©, where S ié the
axiom of / , is regular. (The functional notation w(S) is used to denote the set

of all words that can be obtained by applying to S the sequence of finite substi-

tutions «.)

This directly implies that Mg is regular. Since F(REG) is closed under finite

substitutions and intersections, 8(#) is regular. Consequently, the lemma fol-
lows now from (*), =

Theorem 4.2. L¥(0OL) = W REG).

Proof.

This follows immediately from Lemma 4.1 and from the obvious observation

that F(REG) ¢ LR(QL). =
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It is rather evident (see Example 3.10) that (RL, RB) systems correspond to

push-down automata. Hence we have the following result.

Theorem 4.3 L(z)(RB) =FCF). =

The following result is established in [AR].

Theorem 4.4. L®(0S) = F(PN). =

Theorém 4.5.
(1) 1®(oL) ¢ A(RB).
(2) L®(oL) ¢ LA(03).
(3) L@(0S) is incomparable with L RB).
Proof.
ad.(1) This follows from Theorem 4.2, Theorem 4.3 and the well-known fact that
F(REG) ¢ F(CF).
ad.(2) This follows from Theorem 4.2, Theorem 4.4 and the well-known fact (see,
e.g.. [B]) that F(REG) ¢ F(PN).
ad.(3) This follows from Theorem 4.3, Theorem 4.4 and the well-know fact (see,

e.g., [B]) that F{(CF) and F(PN) are not comparable, =

Comparing Theorem 4.1 with Theorem 4.5 leads one teo rather intriguing
observations. The relative strength of a particular type (class) of selectors

depends rather drastically on the (direct or indirect) mode of use.

For example, while OL selectors are "stronger” than RB selectors when used
in direct (i.e., "grammatical’’) mode, they are "weaker" than RB selectors when

used in indirect (i.e. in "'machine storage') mode !
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But this "flip over"” of computing strength when switching from direct to
indirect mode is nof a rule. For example, while OL selectors are stronger than
O8S selectors when used in direct mode, they are incomparable with OS selectors

when used in indirect mode.
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5. DISCUSSION

In this paper we have introduced ects systems and motivated them by
demonstrating how various types of grammars and automata discussed in the

literature can be seen as special instances of this model.

There exist in the literature several approaches (formalisms) to a general
"abstract automata theory" (see, e.g., [E], [G], [Go] and [Sc]). Typically in these
approaches an automaton is considered as a program operating on a data type.
The automaton data type (or storage type) consists of a set C of configurations
(or snapshots) together with a set of binary relations on C (the operations on the
data type to be used by the program). Our formalism seems to be both more

general and more restricted than this abstract automata type of formalism.

It is more general because it models both grammars and automata. As a
matter of fact, our model consists only of a data type - the operations on the

data type are {viewed as) transition {derivation) relations.

It is more restricted because a configuration of a data type is always a tuple
of strings and an operation cn the data type is always a tuple of selective substi-
tutions (one for each element of a configuration). Hence considered data types
are of the sort usually encountered in grammars. However, many types of auto-
mata can still be modeled in our framework mainly because:

(i) the finite state control and input (and/or output) of the automaton can be
modeled by string(s) with selective substitution to model the state transitions
and reading of the input {writing of the output),

(ii) storage configurations of an automaton (such as, e.g., pushdown or multi-
counter) can often be modeled by strings with selective substitutions modeling

operations on these conflgurations.



32

Grammars rewriting synchronously n-tuples of words rather than single
words have been considered in the literature already (see, e.g., [Kr] or [W] for a
more restricted type). However
(i) in these models there is no distinction between various roles (input, storage,
output) of different components: the (pieces of) words of the language defined
are computed simultaneously on all components (and then the words of the
language are obtained by, e.g., catenating all words obtained on all components
at the same time), and
(ii) no means (like our selective substitutions) are provided for defining

different kinds of rewritings for different components.

Clearly before the ﬁrue value of our model (ects systems) can be asserted,
an extensive research must be carried out so that a number of basic questions
can be answered. Here are exlamples of some problems (and problem areas)
that we think are worthwhile to pursue.

(1) Various extensions of the basic ects model can be considered. For example,
allowing each component to have a set (language) of axioms rather than a single
axiom {of length 1) seems to be natural when the modeling of transducers is
considered.

() Various language defining mechanisms should be compared within this
model.

(3) The influence of various parameters of an ects system (e.g., the number of
tables within a single component, the number of components, the type of selec-
tors, etc.) on its "power” (e.g., the language defining power) should be investi-
gated. What "trade offs" hold? What "normal forms” do we get?

(4) Finding and analyzing 'matural’ classes of selectors. From the examples
given it is rather clear that sequential selectors and in particular right {or left)
boundary selectors are very natural.

(5) Investigate the influence of types of selectors and properties of rewrites on
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the decision problems or closure properties concerning various classes of
languages associated with cts systems. |

(8) While our basic model provides a unifying framework for both grammars and
automata it also suggests a division line between these constructs: dimension 1
and dimension bigger than one. Hence two very centrél research topics from
formal language theory may be now formulated in a quite general way as follows.
Let K, and K; be classes of selectors.

(6.1) Grammar synthesis problem.

Let G be an arbitrary ects system of dimension n = 1 such that its selectors are
in K; . Does there exist an "equivalent” ects system A of dimension m = 1 such
that its selectors are in Kp? What price in the "complexity” is paid when such a
translation is possible?

(8.2) Automaton synthesis problem.

Let G be an arbitrary ects system of dimension n = 1 such that its selectors are
in Ko. Does there exist an "equivalent” ects systemn A with selectors in K of
dimension m = 1? What price in the "complexity" is paid when such a transla-
tion is possible?

{7) How to formalize the notion of "weak” and "strong" coordination between
components of an ects system?

A first step in this direction would be to allow a selector over ¥ to be a subset of
(DU, rather than a subset of (ZUD)* S(ZUT)™. (As a matter of fact in this
way we come back to the original notion of a selector, see, e.g., [R] and [K]).
Hence a selector word may be now a word over 2" and "applying it” to a word
under rewriting means ""doing nothing”. Then, e.g., if 7 = (T, Tg, T3) is a rewrite
of an ects system G such that sel(7Tp) = (alg(G))* and for 7 € {1,3{ each word in
T; contains at least one occurrence of a "barred letter”, then 1 coordinates the
rewriting on the first and the third coordinate of G without "influencing’ the

second coordinate of G.
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(8) One can also easily accommodate the notion of concurrency within the
theory of ects systems. A first approach in this direction can be sketched as fol-

lows. (We assume that the notion of a selector is defined as under (7) above.)

~

Let G=(Dy, ..., D,, R), n = 2, be an ects system and let for each 1=i=n, T;

be the set of all tables from tab;(G) that do not appear at the i’th coordinate of

™ *
any rewrite of #. Forz,y € (ali(G})* we write z=>Y if either z =y orz=> ¥y
LN

n

using tables from 'f‘i . Then givenu = (uy, ..., Up), ¥ = (U, ..., Up) € )((al,;(G))*,

i=1

n
Cc
u=>v if and only if there exists a z =(z,,...,2p) € X(ali(G))* such that
i=1

*) °
z? v and, for each 1<1i <n, ub=? z;; in this way u-"—g? v corresponds to a
'

"concurrent computation step" in G.

In this way one gets models of concurrency corresponding closely to the models
from [CH] and [M].

(9) A natural way to generalize our model is to coordinate directly productions
used in various components by considering selectors over words built up from
(the names of) productions rather than over the words build up from the given

alphabet. Such systems should be investigated.

We are currently working on a number of the above {and other) topics and

hope to report on the results in the future.
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