AN EASY PROOF OF GREIBACH NORMAL FORM

by

Andrzej Ehrenfeucht* and Grzegorz Rozenberg**

CU-CS-255-83 September, 1983

All correspondence to second author.

~tv of Colorado, Department of Computer Science, Boulder, CO 80309

**ns. +f Applied Mathematics and Computer Science, University of Leiden,
Leidern, ... Yetherlands.

This research was supported by NSF grant number MCS 83-05245.

AN EASY PROCF OF GREIBACH NORMAL FORM

by

Andrzej Ehrenfeucht* and Grzegorz Rozenberg**

All correspondence to second author.

*University of Colorado, Department of Computer Science, Boulder, CO 80309

«*[nstitute of Applied Mathematics and Computer Science, University of Leiden,
Leiden, The Netherlands.

ABSTRACT

We present an algorithm which given an arbitrary A-free context-free gram-
mar produces an equivalent context-free grammar in 2 Greibach normal form.
The upper bound on the size of the resulting grammar in terms of the size of the
initially given grammar is given. Our algorithm consists of an elementary con-
s’m"uctiqn, while the upper bound on the size of the resulting grammar is not

bigger than the bounds known for other algorithms for converting context-free

grammars into equivalent context-free grammars in Greibach normal form.

INTRODUCTION

One of the important directions of research in the theory of context-free
grammars is searching for normal forms, see, e.g., [H], [S] and [MSW]. Among
many normal forms available for context-free grammars Greibach normal form
plays a very important role and so quite a number of algorithms are available
which given a context-free grammar yield an equivalent one in Greibach normal

form.

In this paper we present an algorithm for achieving the same aim. However
our algorithm is different from other existing algorithms both in the methodol-
ogy {its main part consists of rather simple manipulations of essentially right, or
left, linear grammears) and in the result (it yields directly, independently of the
form of the original grammar, a context-free grammar in Greibach Normal Form
where the length of the right-hand side of any production does not exceed
three). Qur algorithm reduces the whole construction to the level of régular
languages. Therefore, we believe that also in a basic course about formal
languages one should teach Greibach Normal Form in this fashion: Whe‘n the
fundamentals concerning regular languages are known, our algorithm is easily
understood. Essentially, the algorithm consists of a switch between right and

left linear grammars.

0. PRELIMINARIES

We assume the reader to be familiar with the basic theory of context-free

grammars {see, e.g, [H] and [S]).
We recall now several notational and terminological matters needed in the

paper.

For a finite set Z, #Z denotes its cardinality. For sets Z and V, Z\V denotes
their difference.

For a word z, |z | denotes its length and if z is nonempty, then first{z) denotes
the first letter of z while rest (z) denotes the word resulting from z after remov-
ing its first letter; alph(z) denotes the set of letters occurring in z. A denotes
the empty word. For a language K, first(K) = {first(z): z € Ki.

For a context-free production m = 4 - o, rhs{m) = .

For a set P of context-free productions, the size of P, denoted size(P), denoted

size(P), is defined by size(P) = Y, | Aa|. IfI'is an alphabet, then
A-aeP

goodp{P) = {r € P first{rhs(m) € '} and

badp(P) = {m € P first{rhs(m)) £ T4 .

A context-free gr@mmar (cf grammar) is specified in the form G = (LA, P, S)
where % is the totél alphabet of G, A its terminal alphabet, P its set of produc-
tions and S its axiom. We use Z¢, Ag, Pe and Sg to denote &, A, P and S respec-
tively; O denoteé the set of nonterminals of G - that is @p = Xe\Ap. Also,
mazr (G) = max{ | vhs(n) | :m€ P} and the size of G is defined by
size(G) = size{P;). We say that G is chain-free if it does not contain productions
of the form A » B with 4, B € 05 .

A cf grammar G is called right (left) linear if all productions of it are of the form

A - aB (A » Barespectively), where A € 0@g, B € 9gJ{A} and a € Ao .

Let G be a cf grammar.
*®
G is in Greibach Normal Form (GNF) if first(rhs(m)) € Ag and rest(rhs(m)) € O¢
for each m € FPg.

If Gisin {weak) GNF and k is a positive integer such that | rest(rhs(m)) | <k

for each m € Pg, then G is in k Greibach Normal Form abbreviated & GNF.

A contezi-free scheme (cf scheme) is a construct (Z, A, P) such that for each
S €I\A, (L, A, P, S) is a cf grammar. All terminology and notation concerning
cf grammars {except for matters involving the axiom) carries over to cf

schemes.

As usual in formal language theory, in order to simplify notation and termi-
nology, we will often identify a derivation in é cf grammar with its trace (which is
the sequence of intermediate sentential forms). Also, sometimes we will not dis-
tinguish too carefully between letters and their occurrences in words. These

notational simplifications should not lead to confusion.

We recall now two well-known {and easy to prove) results concerning

transformations of cf grammars.

Let G be acf grammar, let A € 0p, A # Sgand let A >y, ..., 4 2 75 be all
productions for A in G. Assume that A £ alph{y; - ¥n). Let ps be the
transformation of & done as follows:
remove A from ¥g, remove from FPg a;ll productions for A and in all other pro-
ductions of Pg replace all occurrences of 4 at their right-hand sides by all com-
binations of ¥y, ..., Y.

Let p4(G) be the resulting cf grammar.

Proposition 0.1. L{G) = L{p4(G)) . =

Let G be a cf grammar, let A € ®; and let A » 7, ..., A » 7, be all produc-

tions for A in G. Let m =Y » aAB € P;. Let {4 be the transformation of &

done as follows: remove 7 from P, and add to P, the set of productions
Yo anB ... Yo aynB . Let ¢n4(G) be the resulting cf grammar. (As we have
said above, in our notation we do not distinguish very carefully between letters
and their occurrences - however we point out here that the subscript 4 in {4

refers to the particular occurrence of 4 in 0Ag .)

Proposition 0.2. L{G) = L({x4(G)) . =

We conclude this section by defining the notion £hat is very basic for this
paper.

Let &G be acf scheme and let 4 € @¢.
Then I4(G) = L({(Z¢, bg, Pg, A)) and F(G) = {Ly(G) : A € B¢,

If Lis a finite family of languages, then we say that G covers Lif L £ F(G).

1. THE MAIN CONSTRUCTION

In this section we present a construction which given an arbitrary A-free cf

grammar G yields an equivalent cf grammar in 2 GNF.

Our construction consists of three steps.

Consiruction 1.1. Let G be a A-free cf grammar.

STEP 1

For each 4 € O¢ let ¥, be the subset of all sentential forms obtained (start-
ing with A) by rewriting only the first symbol of a sentential form,; then let
Ty =Wy ﬁégzz . {The above definition of Ty is somewhat informal; in fact 7y can
be defined by a left linear grammar). Then T(G) = {T4 | A € Bg).

STEP 2

Let H be an arbitrary right linear scheme such that
(1) H is A-free, chain-free and every nonterminal of H is successful (i.e., it can
derive a terrminal string),
(28) each production of A has the form X - YZ, where X € @y, ¥ € Ay and
Z € 65N,
(3) Ay =%, and
(4) H covers T(G).

For each A €8¢, let Ny be an arbitrary but fixed nonterminal of A such
that Ly,(H) = Ty.

STEP 3

Let J be the cf grammar such that I, = Zx\0@g, A; = Ag, S; = N5, and
Py = PJIUPJZ, where P} = goodAG(PH) and Pf is defined as follows:

for each production X - YZ in bad, (Py), where Z € @5 J{A] and each produc-

tion Ny » CT in Py such that 7 € Oy (J{A], PJ2 includes the production X » CTZ;

P_,2 contains only productions oblained in this way. ®

Femark,
(1) The notation 74 used in the description of STEP 1 is somewhat ambiguous
(because no index referring to G is involved). However we will use it only in
situations where G is understood from the context.
(2) Since, obviously, all languages in T(G) are regular {and A-free), a right linear
scheme required in STEP 2 exists (an algorithmic construction of such a scheme
is discussed in the next section).
(3) One should note that, in the 1i:otation of STEP 3 above, C € Ag .
(4) The following two lemmas dermonstrate that J is well defined; moreover they
will be used in the proof of Theorem 1.1. Since the proofs follow easily from the

definition of J given above, they are left to the reader.

Lemma 1.1. For each produztion m € Py, first(rhs(m)) € Ag. =

Lemma 1.2. For each m £ Py, rest(rhs(m)) € (E5N\Z0)" and moreover

| rest(rhs(m)) | =2. =

We will prove now that J has the intended properties.

Theorem 1.1. J is a cf grammar in 2 GNF and L(G) = L(J).

FProof.

That J is in 2 GNF follows directly from Lemma 1.1 and Lemma 1.2.

In order to prove that L{G) = L{J) we introduce an auxiliary construct - the
ef grammar [defined by Yr=%y . Ar=Ap, 5= Ns, and

Pr=PylUfA » Ny: A € 0g.

Now the equality L(G) = L{J) follows from the following two lemmas.

Lemma 1.3. L{I) = L{J).
FProof of Lemma 1.3,

This follows from Proposition 0.1, Proposition 0.2 and the observation that J

is obtained from 7/ by first applying to I a finite number of times, transforma-
tions of type p4 and then applying transformations of type Cna. ™

Lemma 1.4, L(G) = L{I).

Proof of Lemma 1.4.

(iy L{G) c L{]).

Let 7={(S¢g=2¢ 24, ..., Zm), M = 1, be a leftmost derivation of a word in
L{G). We divide 7 into segmenis as follows.

The first segmeni of 7 is 7 = (zg, 24, ..., ZH)' i,=1, where i, is the
minimal integer such that firsf(zil) € Ag. Let X, be the leftmost (occurrence of

a) nonterminal in 2;,.

Now assume that for j = 1 the j-th segment of 7, 79 = (ziy_yr1s oo z;,), is
defined (for j =1 we set ij,+1=0), where i; # m. Let X; be the leftmost
(occurrence of a) nonterminal in 2. Then the {j +1)—th segment of 7 is defined
RSN zin), where i;4; is the minimal integer bigger than i; such
that the leftrmost {occurrence of a) letter contributed by X; to Zy,, belongs to
Ag.

In this way we have partitioned 7 into 7 segments for some 7 = 1. For

0=<j<7r-1, let w; be the subword contributed by X} to Z%H (we set Xy = Se).

Clearly wJ [TXJ' ... (1)

Now z,, can be derived in / as follows.

Rewriting Ns, using productions of H we derive wg this can be done
because H covers T(G) and (1) holds. Hence we have simulated 7(1) deriving 2,
in/. Ifr = 1, then we are done, otherwise we proceed as follows.

Assume that we have derived 2Zy in /, where 1< j <r. Then by rewriting X;
usiﬁg production X; - NXJ, and then using productions of A to derive w; from NXJ-

we obtain z;, ;
5 +1

this can be done because H covers T{G) and (1) holds.

Hence 2,, can be derived in I and consequently L{G) € L(]).

(ii) L{I) c L(G).

We divide the nonterminals in / into two categories: C) = Zy\Zp = @y and
C; = Bg; thus Z;\A; = C,UC;. Clearly, nonterminals from C; are rewritten using
productions from Py and nonterminals from C; are rewritten using productions

of the form A - Ny.

A fwo-phase derivation in / is a derivation satisfying the following condition:
- if a sentential form contains a letter from C; , then an occurrence of a letter

from C, is rewritten, otherwise an occurrence of a letter from C; is rewritten.

Obviously each word in L{/) can be derived by a two-phase derivation.
Moreover it is obvious that:
- each sentential form of a two-phase derivation contains at most one
occurrence of a letter from C,, and
- if a sentential form of a two-phase derivation contains no occurrence of a letter
from C,, then either this sentential form is in L(/) or the next sentential form

contains a letter from C,.

Consider now a successful two-phase derivation 7in / and let uy, ..., %, be

the sequence of all consecutive sentential forms in 7 such that, for 1 <j <7, u;

does not contain a letter from Cj; u, is in L(J). Note that u, € LNSG(H) = Ts,

10

and so 1, can be derived from Sg in &G. So if r =1 then u, € L{G). Note that

Ujpp T wWiwy, where uj = wiAwg, A€0; and wE Ly, (H) =Ts hence

+

U = Uy Consequently u, € L(G).
Hence L{I) C L{G).

Thus L{/) = L(G) and Lemma 1.3 holds. ®

From Lemma 1.3 and Lemnma 1.4 it follows that L(G) = L(J). Hence the

thecrem holds. 2

We end this section with an example illustrating Construction 1.1.

FExample 1.1. Consider the cf grammar G such that X¢ = {A;, Az, 43, 0, 11,
Ap = $0, 11, Sg = A and P, consists of the following productions:
Ay = AgAs,
Ag > AjAg | A~ 1,
Ag > A Ay | Ag - 0.

This is a grammar from [H] {p. 113).
f=3

It is easily seen that

Ty, = 1{4542) " 45,
Tu, = 1{4s4p)” and
Ty, =0+ 1(A3L42)*A3Ag .

Let H be the following right linear scheme.
g ={Y1. Y2, Ys.21,%2, 25, 24, Uy, Uz, U, UdUZc .
Ay = Lz and Py consists of the following productions:
Y, - 1Y,

Yz » AsYs | As,

11

Yg = 4275,
Zy=1Zz 11,
Zg > AgZs | AsZs.
Zy = ApZy,
Zy - Az,
Uy »1U, | 0,
Uie » AgUs | 45Uy,
Us» 42Uz,
Uy » 4g.
It is easily seen that H satisfles the requirements from STEP 2 of Construe-
tion 1.1.
If we set now the correspondence
Ny, =Yy, Ngy=Zyand Ny = Uy,
then indeed we have
Lyl(H> =Ty, in(H) = Ty, end Lvl(fﬂ = Ty
Furthermore
gandAG(PH} =Y, » 1Y, , 2, 12,2, 1, Uy » 1Ug, Uy - 0
and

bad, (Py) = Py\ goodas (Pr) .

Finally, let J be the cf grammar such that
S, =4Yy . Ye, Ya. 21,22, 23, Zs, Uy, Uz, Ug, Uy, 0,1,
Ay=10, 1,5, =Y,and Py = Pn,lup2 , where
P}={¥,» 1Y, 2, 12,, 2, > 1, Uy > 1Up, U, > 0} and
PJZ consists of the following productions
Yo » 1UsY3 | 0Yg | 1U2 | O,
Y- 12:Y, | 1Y,

Zg i 1U2Z3] OZa l 1U2Z4! 024,

12

Zy~> 1727, | 1Z,,
Zy~»1Zz | 1,
Upg»> 1UUz | OU3 | 1URU, | OU,,
Ug=> 1Z,U, | 10Uy,
Uy 1U; | 0.
It is easily seen that J results from H be applying STEP 3 of Construction
1.1

Note that J is in 2 GNF and moreover #0; = 11, #P; = 27 and size(J) = 62.

The cf grammar I used in the proof of Theorem 1.1 looks as follows.

ZI:ZHr&I:AG’SI:AISG:YIand

PIZPHU§A1”’I/1,A2"Z1,A3'*Ulg- "

13

2. ON THE SIZE OF J

In this section we present an algorithm to implement Construction 1.1 and
then estimate the size of the resulting cf grammar J (in 2GNF) in terms of the

size of the initially given A-free cf grammar G.

Throughout this section we will use the notation introduced in the descrip-

i

tion of Construction 1.1.

Lemma 2.1. There exists an algorithm which giv;en an arbitrary A-free cf
grammar & and an arbitrary nonterminal A4 of & yields a A-free, chain-free right
linear grammar G4 such that L{G¥) = T, and size(G4)) < 24 Bsize(G).

Froof.

Lel 7 be an arbitrary A-free cf grammar and let 4 € Zp\Ag.

Let #'%) be the left linear grammar such that Ty = 2@‘\)53' B eBgd,
where it is assumed that ZgﬁﬁB' B €0l =0, Ay = Lo, Sy = A and Py is
defined as follows.

(1) For each m=X~7Y,.. Y% €good, (Fe). where k=1 and ¥; €Zg for
1<j =k, Py contains the production X = Y1z« - %,

() For each m=X 7, Y € bad, (Pg), where k=1 and Y; €Zg for
1=j =k, Py contains the production X - Y;Yg e Y

(3) Py contains only productions resulting from (1) and (2) above.

Clearly
LMY = Ty, size(H™) = size(G) and #0,0u = #{Z\Ag) v (2)

Let F“) be the left linear grammar resulling from M™ by removing (in the
standard way) chain productions from it. Clearly L(F®) = L(#“)) and

size(FW) = 40, ysize(M@). Thus from (2) it follows that

14

L{FU) = Ty and size(FA) € #00S12(G) urorioieieeeeeee e (3)

Finally let G“) be the right linear grammar such that L{GW) = L{F())
resulting by applying the standard algorithm for constructing an equivalent
right linear grammar for a given left linear grammar (so G“) simulates F)
bottom-up). Clearly size(GW) < 3size(F¥). Hence, by (3) L(GY¥) = T% and

i

size(GHW) = 340 size(G) and so the lemma holds. ®

Lemma 2.2. There exists an algorithm which given an arbitrary A—fz;ee cf
grammar G yields a A-free, chain-free right linear 3cheme H such that
mazxr{Hy<2, Ay = Z;, H covers T{G) and
size{H) < 9{#0.) size(G).

Fraaf.

Let ¢ be an arbitrary A-free of grammar and let, for each Ac @s, G4 be as
in the statement of Lemma 2.1. We assume that if 4,8 € 8¢ are different, then

the sets of nonterminals of G“ and G are disjoint.

Let A be the right linear scheme such that Ig = U Lo B =Z¢ and
4 € 6(;

Pg= U Pew-
458,

Clearly H is Afree and chain-free, Az = E; and H covers T(G).

Also size(H) < #0cmax § size(G4) : 4 € 0,).
Hence by Lemma 2.1, size(H) < 2(#0¢)? size(G) .

Now let H be the right linear scheme resulting from H by applying the stan-
dard algorithm for getting an equivalent right linear scheme with the length of
the right-hand side of any production not exceeding two.

Clearly size(H) < 3size(H).

we get size(H) < 9(# 0¢)3size(G) .

15

Thus the lemma holds. =

Theorem 2.1. There exists an algorithm which implements Construction 1.1
and is such that size(J) < 93(# 0,)4(size(G))* < 9*(size(G))".
Proof.
" This follows directly from Lemma 2.2 and from the description of STEP 3 of

Construction 1.1 {obviously size(J) < (size(H))?) . =

16
ACKNOWLEDGEMENTS

This research was supported by NSF grant number MCS 83-05245.

17

REFERENCES

[H]

[MSW]

[S]

Harrison, M., /ntroduction to formal langucge theory, Addison-Wesley,

Reading, Massachusetts, 1278

Maurer, H., Salomaa, A. and Wood, D., "A supernormal-form theorem for
context-free grammars,” Journal of the Association for Computing

Machinery, v. 30, n. 1, 85-102, 1883.

Salomaa, A., Formaual languages, Academic Press, London-New York, 1973.

