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Abstract.

This paper introduces the sequence of integers, 0, 2, 6, 8,
12, 18, ... with the properties that (1) it is "evasive",
i.e., it does not form a complete system of residues modulo
any prime, and (2) it is as densely packed as possible, sub-
ject to the constraint of evasiveness. The terms of the
sequence specify how closely packed the primes can be in the
"sufficiently large" case; that is (by conjecture), it is
possible to have arbitrarily large primes of the form p,
p+2, p+6, ... but no closer packing such as p, p+l is
allowed, except in finitely many cases at most. The order
of a prime p is defined as the number of successive terms of
the closepacking sequence that are reproduced by subtracting
p from itgelf and its successors; a similar definition of
order 1is applied to the terms of the sequence themselves.
It is shown that, except for the first closepacking number,
0, no term of the sequence nor any prime has infinite order.
However it 1is conjectured that there are primes and close-
packing numbers of all finite orders, and moreover, that the
frequencies of occurrence of corresponding orders in the two
sequences are asymptotically equal. These conjectures are
supported by computational evidence.



The famous unproven twin prime conjecture asserts that there
are infinitely many prime number pairs of the form p, p+2.
More generally there seems to be an infinity of prime
sequences of the form p+x,, p+x;, ..., p+x, for any finite
set of integers which do not form a complete system of resi-
dues modulo any prime. Thus there appear to be infinitely
many prime triples of the form p, p+4, p+6, or gquadruples p,
p+2, p+6, p+8. On the other hand, if the x; do form a com-
plete system for some prime g then q must divide some term
of any associated prime sequence so that (1) this term must
egual g, consequently, (2) only finitely many such sequences
can exist. (But such a sequence need not be unique, as was
pointed out to me by Wolfgang Schmidt. For example the
prime sequences 3, 5, 11, 17, .29 and 5, 7, 13, 19, 31 both
form complete systems modulo 5.)

A set S of integers which does not form a complete system of
residues modulo an integer q is said to evade g. S will be
called evasive 1f it evades all g> 1, and we then write
Ev(S). Thus the above conjectures assert that there are
infinitely many prime sequences for any finite evasive set
S. (If S is infinite, however, there need not be any asso-
ciated prime segquence, as is shown later.)

Clearly a set is evasive iff it evades every prime. More-
cver, a finite set S is evasive 1iff it evades every prime
£ the number of elements in &, {8l. Thus there is an effec-
tive test for evasiveness of finite sets. A finite evasive
set can always be enlarged, as is shown by considering val-
ues X = y+kt where v is any element of the given set S, k is
any integer, and t 1is the product of all primes < [S|+1.
Then for k sufficiently large, x QZS but x will have the
same residues as y modulo any prime € |8 U {x}| , hence Ev(S

U {x}).

Given any evasive set S, an integer x ¢ S is assimilable if
S U {x} is also evasive. S is said to be closepacked if
there 1is no assimilable x in the smallest interval contain-
ing S. Thus a finite evasive set S is closepacked iff there
is no assimilable x € [min(S), max(S)] . Examples of close-
packed evasive sets which were considered implicitly in the
prime conjectures above are {0, 2}, {0, 4, 6}, and {0, 2, 6,
8} . For such sets the associated sequences for all suffi-
ciently 1large primes are also closepacked in the sense that
no additional prime can be inserted between the smallest and
largest terms. As in the general case of an evasive set a
finite closepacked set can always be enlarged by adding the
smallest assimilable element larger than the maximum of the
set (or the largest assimilable element smaller than the
minimum) .

Here we shall consider the sequence of integers Cor Cp v seer
obtained by starting with ¢, = 0 and, for n > 0, defining o
as the smallest positive, assimilable value for the set {c
c

. 1 . . o’
L+ e-er Cp b . Then (since {0} is evasive) the ¢; form an



infinite evasive closepacked set, with the additional prop-
erty that any finite initial segment {cg, Cyr oeey cn} is
also evasive and closepacked. The sequence of values c;
will be called the closepacking sequence (CPS); each term is
referred to as a closepacking number (cpn). The first few
cpn's are 0, 2, 6, 8, 12, 18, 20, 26, 30, 32; a more exten-
sive ‘tabulation is shown in fig. 1. 1In particular, given
that ¢, = 0, every cpn must be even to evade 2. Thus 1 is
the (unique) "forbidden residue" of the CPS modulo Z. Other
primes too must all have forbidden residues to preserve eva-
siveness. For example we find that 3, 5, 7, and 11 have the
unigue forbidden residues 1, 4, 3, and 5, respectively. It
appears that every prime must have a unigue forbidden resi-
due though this has not been proved.

However this conjecture can be readily verified for succes-
sive primes by computation. In doing so we also compute the
"exhaustion number" or number of terms of the sequence, tak-
en in order, that are needed to exhaust all but one of the
residues so that the one remaining is uniquely forbidden.
For example, the exhaustion numbers for 2, 3, 5, 7, and 11
are, respectively, 1, 2, 4, 6, and 11. A more extensive
tabulation is shown in figure 2.

In particular it appears that the exhaustion number for the
nth prime p, is about what would be expected assuming that
the residues for the CPS are randomly distributed for the
given prime. That is, the expected number of cpn's needed
to exhaust all the p,-1 available residues 1is about
Pp In (pn ) . This 1is roughly confirmed in the tabulation,
though the exhaustion numbers appear to be somewhat smaller,
particularly near the beginning of the sequence. This could
be accounted for by the high density of cpn's near the
beginning of the sequence and the fact that all c¢pn's are
even, so that for an odd prime p, , all cpn's < 3p, will have
distinct residues, leading to a more rapid exhaustion than
would follow from random selection.

On the other hand, the forbidden residues might be expected
to be randomly distributed, particularly since the cpn's are
expected to have the same asymptotic density distribution as
the prime numbers (cf. later discussion). In fact the tabu-
lation shows a preponderance of odd over even residues near
the beginning, but this seems to be slowly leveling out.
The scarcity of even forbidden residues can be accounted
for, again, by the high density of cpn's near the beginning
of the sequence and the fact that all cpn's are even. Thus,
for small primes at least, many more even than odd residues
are initially assigned by the CPS, so that the last remain-
ing residue is more likely to be odd. On the other hand,
for a large prime p,, the number of the initial cpn's having
even residues, that is, those < p,, is expected to be only
about p,/In(p,), which is small enough that its effect on
the forbidden residue should asymptotically wvanish.



An interesting concept which derives from the CPS is that of
the order of a prime number p,, defined as the largest m
such that p,,, = p, + ¢, whenever 0 £ k < m. We then write
o(p,) = m. In some sense the order furnishes a measure of
how closely packed the primes are starting at p,, at least
in the "sufficiently large" case, since here no closer pack-
ing 1is possible. Anomalous closepacking occurs near the
beginning of the prime sequence, however, as is illustrated
by the examples of 2 and 3, or 3, 5, and 7.

Thus, given prime p, with o(p,) = m, the fact that p,,, # p,
+ ¢, (which must follow if the order is m) can occur either
because p,,, 1s too large (the usual case) or too small (the

anomalous case). The only anomalous primes in this sense
appear to be 2, 3, 5, and 11 though, like many other conjec-
tures, this remains unproven. In particular 11 has the
spectacularly high order of 15, as can be verified from the
figures; possibly this 1is the highest for any known
prime. This fact allows an easy computation of the cpn's up
to c, = 56, using the relation Cp ® Pays - 11, (A "weak"

order can also be defined as the largest m such that p, + ¢
is prime (but not necessarily = Phex ) Whenever 0 & k < m.
For this case the order of 11 is an even larger 24; nonanom-
alous primes will have the same order as before, however.)

Based on the prime conjectures at the beginning, we expect
that there are infinitely many primes of all finite orders.
(A prime can be found with order exactly m by associating a
prime sequence for an evasive set containing all the cpn's
up to ¢4y , but for which ¢, is omitted and moreover, is not
assimilable. Such a set is constructible by an extension of
the method noted earlier for enlarging a finite evasive

set.) It can be shown, however, that there is no prime of
infinite order.

This follows from the well-known arithmetic progression the-
orem which, in the form useful here, asserts that the primes
greater than or equal to a given prime p, must . form a com-
plete system of residues modulo p,. (The residue 0 will
occur only once, namely, for p;, itself, while all other res-
idues will occur infinitely often, with asymptotically equal
frequencies.) If p, had infinite order on the other hand,
then we would have p,,. = P, *+¢x for all k 2 0, so that the
residues would be identical to those for the cpn's. Since
the latter form an evasive set however, not all residues
could be present, contradicting the arithmetic progression
theorem. In particular the cpn's furnish an example of an
infinite evasive set with no associated prime sequence.

On inspection we note that high-~order primes are rare.
Those of order 2 4 up to 10000 (with the order in parenthe-
ses) are 5 (5), 11 (15), 101 (5), 191 (4), 821 (4), 1481
(6), 1871 (4), 2081 (4), 3251 (4), 3461 (4), 5651 (4), 9431
(4). (These primes are easy to spot in a table because -~
except for 5 -- they each begin a sequence of primes whose



last digits are 1, 3, 7, 9.) Some larger primes which would
have order > 8 are noted in [1].

As in the case of the primes we can define the order of the

cpn ¢, by of(c,) = m where m is as large as possible such
that ¢, + ¢, = ¢, whenever 0 € k < m, (Fortunately under
this definition o(2) = 1 whether 2 is regarded as a prime or

a cpn; otherwise no prime can be a cpn, thus order is
well-defined.) Thus for a prime p, of high order, the order
of the immediately following primes p,., . Poeg ¢ »++ must be
the same as for the cpn's Crr Cypr wen o

It will be noted that cpn 0 must have infinite order in con-
trast to the primes which, as we have shown, always have
finite order. It is easily shown, however, that no other
cpn  has infinite order. 1If there existed another cpn ¢, of
infinite order then it would follow that c,, = mc, for all m
> 0, i.e., all positive multiples of ¢, would occur among
the c¢pn's. But since ¢, itself must be positive (since ¢,
# 0) this would contradict the evasiveness of the cpn's.

An interesting property of the c¢pn's is that there can be no
anomalous closepacking as occurs with small primes, this
being a direct consequence of evasiveness. This seems to
preclude the occurrence of high-order cpn's near the begin-
ning of the sequence (except for 0), but the occurrence of
the higher orders more nearly approaches that of the primes
if a larger segment of the CPS is considered. The cpn's of
order 2 4 up to 10000 (again with the order in parentheses)
are 0 (oo), 420 (4), 1980 (4), 2070 (4), 3780 (5), 5850 (4),
6810 (4}, 9120 (B). {As in the case of the primes these are
easy to spot in a table, the digit seguence in this case
being 0, 2, 6, 8.) Thus it seems reasonable to conjecture
that, as with the primes, there are infinitely many cpn's of
all finite orders. Continuing in a similar vein we can spe-
culate that (1) the density of cpn's as subset of the
integers approaches that of the primes (i.e., the ratio of
densities approaches 1), and similarly (2) the density of
cpn's of a given, finite order approaches that of the primes
of the same order. These latter conjectures are suggested
by the similarity of the rule for generating the cpn's (es-
sentially a sieve) to that for the primes.

To test these conjectures (and to obtain other results for
the cpn's) a computer program was written to compute the
cpn's up to 10000 and higher. Counts of primes and cpn's of
different orders are shown in fig. 3. Generally there is a
close correlation between the corresponding groups for the
two sequences, though the cpn's persistently show a smaller
number of examples in each classification (at least when the
order is not too large). Perhaps this is accounted for by
the observaticn that, inasmuch as anomalous closepacking is
allowed in the primes but not in the cpn's, it is also rea-
sonable to find more examples of legitimate high-order
closepacking among the primes. But the tabulations dc sup-



port the conjecture that primes and cpn's of a given order
have asymptotically equal frequencies.

At any rate, the cpn's appear to offer an interesting field
of inguiry both for the experimentalist and theoretician.



0 1 2 3 4 5 6 7 8 9

0 0 2 6 8 12 18 20 26 30 32
1 36 42 48 50 56 62 68 72 78 86
2 90 96 98 102 110 116 120 128 132 138
3 140 146 152 156 158 162 168 176 182 186
4 188 198 200 210 212 216 230 240 242 246
5 252 260 266 270 272 278 282 288 306 308
6 312 320 336 338 342 348 350 362 372 380
7 386 392 396 410 420 422 426 428 438 450
8 452 462 468 470 476 488 492 498 506 510
9 512 516 530 536 548 552 558 572 578 582
10 530 596 600 606 608 618 620 630 642 648
11 650 656 660 672 680 686 702 708 722 726
12 732 740 746 756 758 762 776 782 798 800
13 812 818 828 842 848 858 860 870 876 882
14 888 8390 300 912 926 930 936 938 960 966
15 368 972 380 386 992 396 998 1008 1020 1022
16 1026 1052 1056 1058 1062 1068 1070 1076 1082 1086
17 1110 1118 1122 1128 1136 1140 1142 1148 1152 1166
18 1170 1176 1178 1188 1190 1196 1208 1212 1218 1220
13 1232 1238 1260 1266 1278 1280 1290 1296 1302 1308
20 1310 1332 1338 1346 1352 1362 1370 1376 1398 1400
21 1406 1412 1416 1428 1430 1436 1442 1458 1478 1488
22 1500 1502 1518 1532 1538 1542 1560 1566 1572 1580
23 1590 1602 1608 -1610 1616 1628 1632 1640 1646 1650
24 1670 1680 1682 1686 1706 1712 1716 1722 1728 1742
25 1748 1752 1766 1770 1778 1790 1796 1800 1806 1812
26 1818 1832 1836 1848 1850 1862 1866 1868 1878 1880
27 1892 1896 1898 1902 1916 1922 1926 1946 1958 1980
28 1982 1986 1988 2000 2010 2028 2036 2046 2052 2060
29 2066 2070 2072 2076 2078 2088 2090 2100 2102 2108
30 2112 2130 2136 2148 2160 2162 2168 2178 2150 2192
31 2202 2210 2220 2226 2228 2240 2246 2252 2256 2262
32 2280 2286 2312 2318 2322 2342 2352 2358 2360 2366
33 2382 2388 2396 2400 2408 2412 2430 2442 2450 2456
34 2462 2466 2468 2478 2486 2496 2508 2528 2532 2552
35 2556 2570 2576 2580 2582 2592 2598 2616 2618 2622
36 2636 2648 2658 2672 2682 2690 2696 2706 2708 2720
37 2732 2738 2742 2750 2756 2762 2772 2786 2790 2792
38 2798 2820 2826 2828 2850 2856 2862 2868 2870 2888
39 2892 2910 2912 2918 2928 2930 2940 2958 2966 2970
40 2972 2976 2990 2996 3002 3026 3032 3036 3042 3060
41 3066 3072 3086 30592 3098 3110 3122 3126 3138 3150
42 3168 3176 3180 3192 3198 3200 3210 3222 3236 3240
43 3242 3260 3276 3282 3308 3312 3318 3330 3336 3348
44 3350 3362 3366 3378 3380 3386 3396 23402 3408 3422
45 3428 3432 3452 3462 3480 3488 3500 3506 3512 3516
46 3522 3528 3540 3542 3570 3578 3588 3596 3606 3620
47 3626 3630 3632 3648 3660 3666 3672 3686 3698 3702
48 3710 3716 3722 3726 3728 3738 3740 3768 3780 3782
49 3786 3788 3792 3812 3816 3840 3842 3858 3870 3876
50 3878 3896 3906 3912 3920 3926 3936 3938 3948 3950
51 3960 3962 3978 3996 4008 4010 4022 4026 4032 4038
52 4040 4046 4052 4058 4062 4080 4088 4092 4110 4116
53 4118 4136 4146 4158 4160 4166 4176 4178 4188 4190
54 4202 4212 4232 4242 4248 4250 4256 4260 4268 4277
55 4286 4292 4296 4298 4302 4310 4316 4320 4326 4332
56 4338 4352 4368 4370 4380 4412 4418 4422 4428 4442
57 4446 4452 4458 4466 4470 4472 4500 4502 4506 4530
58 4556 4562 4568 4586 4596 4598 4608 4620 4628 4632
59 4638 4640 4652 4670 4692 4698 4706 4712 4718 4722

Fig. la. Closepacking numbers ¢y for n 0 to 599.



G 1 2 3 4 5 6 7 8 9

60 4730 4736 4766 4776 4782 4788 4796 4800 4802 4830
61 4836 4842 4848 4860 4862 4866 4872 4890 4898 4908
62 4916 4940 4946 4950 4970 4976 4982 4986 4992 4998
63 5012 5018 5030 5040 5046 5060 5070 5088 5096 5108
64 5118 5126 5132 5150 5156 5160 5166 5168 5178 5198
65 5202 5210 5222 5228 5238 5256 5258 5262 5268 5276
66 5282 5286 5300 5306 5312 5322 5336 5342 5352 5376
67 | 5382 5388 5402 5408 5412 5418 5426 5432 5438 5468
68 5478 5480 5486 5492 5496 5520 5528 5550 5556 5558
69 5562 5570 5580 5586 5588 5592 5598 5606 5612 5618
70 5628 5636 5640 5642 5658 5672 5676 5678 5696 5700
71 5706 5718 5720 5726 5730 5732 5742 5748 5756 5762
72 5772 5790 5798 5810 5816 5822 5828 5832 5840 5850
73 5852 5856 5858 5882 5886 5888 5892 5900 5910 5952
74 5966 5976 5982 6006 6026 6036 6038 6048 6050 6056
75 6062 6068 6078 6080 6090 6092 6096 6102 6116 6120
76 6140 6162 6168 6182 6186 6188 6192 6200 6206 6210
77 6216 6218 6230 6236 6248 6252 6258 6272 6276 6278
78 6300 6302 6312 6320 6326 6350 6356 6362 6372 6378
79 6390 6392 6420 6426 6446 6452 6456 6458 6468 6476
80 6480 6486 6498 6500 6512 6516 6522 6530 6536 6542
81 6546 6558 6560 6570 6588 6606 6626 6630 6636 6642
82 6662 6668 6672 6690 6692 6698 6708 6710 6720 6728
83 6732 6738 6740 6752 6768 6776 6788 6798 6806 6810
84 6812 6816 6818 6846 6848 6876 6890 6896 6900 6908

85 6918 6920 6936 6338 6948 6950 6962 6966 6972 6978
86 6986 6992 6998 7002 7016 7022 7040 7046 7076 7082
87 7088 7098 7110 7140 7146 7152 7160 7170 7182 7196
88 7200 7208 7212 7218 7226 7230 7236 7260 7272 7278
89 7280 7296 7310 7316 7326 7328 7338 7340 7350 7358
g0 7370 7376 7380 7382 7392 7406 7410 7412 7418 7422
91 7442 7446 7448 7466 7482 7488 7506 7508 7512 7520
92 7526 7530 7550 7560 7566 7568 7586 7592 7596 7602
93 7608 7620 7622 7638 7646 7656 7662 7686 7688 7698
94 7706 7722 7728 7730 7740 7746 7748 7770 7772 7800
95 7802 7806 7812 7820 7830 7832 7838 7842 7862 7880

36 7886 7836 7898 7902 7908 7910 7922 7938 7950 7952
37 7956 7986 7998 8010 8012 8028 8030 8036 8040 8042
98 8066 8072 8076 8096 8108 8118 8120 8132 8142 8162
99 8166 8180 8192 8202 8208 8216 8220 8238 8240 8250
100 8276 8280 8300 8306 8316 8322 8328 8346 8366 8370
101 8372 8378 8390 8402 8460 8462 8468 8472 8496 8510
102 8520 8526 8528 8532 8538 8546 8556 8562 8570 8588
103 8610 8622 8628 8630 8642 8652 8658 8666 8678 8638
104 8700 8708 8736 8738 8742 8748 8766 8778 8786 8790

105 8792 8798 8822 8832 8840 8846 8852 8856 8862 8888
106 8892 8916 8918 8930 8936 8940 8946 8952 8960 8976
107 8978 8982 8990 9006 9018 9020 9030 9038 9042 9048
108 29060 9066 9086 9090 9092 9116 9120 9122 9126 9128
109 9132 9150 9158 9162 9176 9198 9206 9210 9216 9230
110 9240 9242 9248 9252 9258 9260 9288 9290 9308 9312
111 9318 9330 9332 9350 9356 9360 9368 9378 9380 9296
112 9398 9422 9428 9456 9458 9462 9482 9486 9500 9522
113 9536 9546 9548 9552 9560 9570 9590 9596 9606 9518
114 9626 9632 9636 9638 9650 9662 9666 9668 9672 9678
115 9692 9702 9708 9710 9716 9720 9722 9728 9746 9750
116 9776 9788 9792 9818 9822 9830 9840 9858 9876 9888

117 9900 9902 9906 9926 9930 9932 9948 9956 9962 9968
118 9980 9950 9996 10008 10010 10032 10038 10052 10068 10080
119 10082 10100 10106 10110 10112 10116 10142 10148 10166 10172

Fig 1lb. Closepacking numbers ¢, for n = 600 to 1199.
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P, £, e, n P, £, ey,

2 1 1 26 101 13 225
3 1 2 27 103 51 312
5 4 4 28 107 53 337
7 3 6 29 109 57 234
5 11 30 113 29 293

1 14 31 127 63 462

7 19 32 131 65 471

9 37 33 137 43 434

23 11 38 34 139 69 535
29 25 53 35 149 119 349
31 15 50 36 151 75 458
37 33 57 37 157 122 470
41 13 80 38 163 81 489
43 21 81 39 167 83 477
47 23 99 40 173 112 413
53 31 125 41 179 89 527
59 29 131 42 181 4 474
61 52 213 43 191 95 619
67 33 156 44 193 94 539
71 35 330 45 197 174 554
73 35 161 46 199 99 666
79 39 220 47 211 105 743
83 41 173 48 223 111 690
89 58 207 49 227 113 1295
97 11 244 50 229 123 740

Primes (p,), forbidden residues (f,) and
exhaustion numbers (e,}, for n = 1 to 50.



1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

fig. 3.

order
=1

168
303
430
550
669
783
900
1007
1117
1229

order
=1

157
284
404
514
630
743
863
973
1073
1183

Number of primes and cpn's up to n,
order as indicated.

=2 =3 24

35 15 5

61 24 7

82 29 8

103 34 10
126 41 10
143 45 11
162 47 11
175 483 11
190 53 11
205 55 12

(a) primes

=2 23 =4

31 13 2

51 18 3

69 21 4

84 23 5

99 26 5

111 31 6
132 34 7
150 38 7
163 41 7
181 47 8
{(b) cpn's.
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