TREGRM-83 Report and User's Manual
by

Geoffrey M. Clemm
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

CU~CS~249-83 January 1983

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE
CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimited

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO
DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U. 8. Army Research support
under contract no. DAAG29-78-G-0046
and National Science Foundation support
under grant no. MCS877-02194

INTRODUCTION

THE LANGUAGE

6 o s o 8 @ & o

s+ 8 » o

CONTENTS

4 o s & o 8 2 06 o5 & ¢ 6 & 8 » 5 & 5 & 5 5 0 &§ 8 © 8 S5 © 5 6 5 @ O

$ & & 0 8 & U e & @ ° 5 & & & © © & & % B O & 5 8 O B 6 6 6 & © & B €

Lexical Analyzer INterfa8cCe +.veveseoeessonsssoascs

Reserved Word Specificationi.iseeiescocaoosss

Node Names

RULES v eeceeosnans

TREGRM Regular EXPresSiONS ...ceeoocrsosenonsossesas

Tree-Building ACtiOnNsS . ..eeeeveooseecsooesansns e

THE COMPILER

s 6 o e o 8 © o

USING THE COMPILER ..

THE STANDARD

Appendix A :

Appendix B :

Appendix C :

TREGRM ...

FORTRAN~T77

DRIVER ..

@ o 2 @ ¢ 8 0 5 2 © @ & © 5 8 & 6 © &5 6 & 8 O & @ & O 5 P O T & O

Compiler machine dependencies

Standard

Examples

® s 6 0 & @

Driver Machine Dependencies ...

Of TREGRM ProgramsS .eceoeeeoesos

© o © 8 ¢ © & & & 5 5 6 & 3 & 6 & © & 06 © B & & 6 O O ¢ 6 ¢ O O

9 ® 8 ¢ @ 6 6 o 2 ¢ ¢ 0 & & & &8 & &5 & & 6 © 5 B G & 5 5 ° 85 & O &

10

11

13

14

18

20

21

22

24

Abstract

TREGRM is a language for specifying the creation of
parse trees for any current programming language, including
FORTRAN. This report describes the TREGRM language, a
compiler for the language, and an interpreter for the

resulting object code. The interpreted object code, in
conjunction with a lexical analyzer, forms a syntactic
analyzer that takes as input a stream of characters and
produces as output a parse tree. The compiler and

interpreter are designed for portability. Both are written
in ANSI FORTRAN (1966) supplemented by a small number of
short machine dependent subroutines. Included is a TREGRM
program describing the syntax of FORTRAN-77.

1. INTRODUCTION

The first phase of the analysis of a computer program
is lexical analysis, where the source text is broken up into
the words or "tokens" of the programming language. The
second phase is ‘"syntactic analysis" or "parsing", where
structure of the program is determined.

The result of parsing is often a sequence of calls to a
semantic routine with a ‘"reduction number" or T"action
number" as the argument. To provide a more structured
interface between the syntactic analysis and semantic
analysis of a program, a parse tree can be created, where
the parse tree is a "flattened" (simplified) version of the
derivation tree for that program. To support the production
of parse tree generators, the TREGRM System was developed.
The TREGRM system consists of a language, a compiler for the

language, a parser generator, and an interpreter for the
object code produced by the TREGRM compiler and the parser
generator. The TREGRM compiler was designed to allow easy
retargeting to different lexical analyzer and parser
generators. Currently, the compiler expects the lexical

analyzer to be one produced by the FSCAN [1] system, and the
parser generator to Dbe one produced by the LR parser
generating system [2]. Versions of the compiler that target
the CLEMSW [3] and YACC[4] parser generating systems are
also available.

2. THE LANGUAGE

The TREGRM language (henceforth referred to simply as
"TREGRM") was designed to allow the specification of a
complex parse tree generator in as concise and
understandable a manner as possible.

A TREGRM program consists of three sections, with an
optional fourth section. The required sections specify the
interface to the lexical analyzer, the node names for the
parse tree, and the rules for building the parse tree. The
optional section specifies reserved words that are to be
screened out of tokens from the lexical analyzer, and is
placed following the lexical analyzer interface section.

The lexical analyzer interface section consists of the
keyword, ' SCANNER', followed by a sequence of token
translation rules. Each token translation rule contains a
TREGRM terminal name and an FSCAN token name, separated by

an equals sign (=). The FSCAN token name is the name of a
token as specified in the 'TOKENS' section of an FSCAN
program, without any enclosing quote marks. The TREGRM

terminal name is a sequence of characters enclosed in either
single or double quotes. Single (double) quotes specify the
terminal to be a "deleted-terminal" ("kept-terminal"). A
kept-terminal translation rule also contains a node name,
which follows the FSCAN token name, separated by a double
arrow (=>).

Example
SCANNER
"HOLLERITH CONSTANT" = HCONST => "HCNODE"
"VARIABLE NAME" = NAME => "NMNODE"
'(' = LPAREN
'}' = RPAREN
§gmantics

The token translation rules specify the mapping from
the tokens, as produced by the lexical analyzer specified by
the FSCAN program, to the terminals, as used in the TREGRM
program. There must be one token translation rule for each
terminal used in the parse tree rules of the TREGRM program.
Some of the tokens in the token stream are "variable"
tokens, such as tokens of type "identifier" or "integer" (as
opposed to tokens of type "equals sign" or "if-keyword").
These tokens contain a sequence of characters that are the
"value" of that token. These values must be preserved in the
parse tree 1f the parse tree is to contain the information
needed for most semantic processing. To store these values,
‘leaf nodes are created for each variable token, where the
leaf node contains a pointer to the appropriate character
sequence value. Such variable tokens are indicated as
kept-terminals in a kept-terminal token translation rule.
The node name of the leaf for tokens of that +type 1is
specified in the kept-terminal token translation rule.

2.2. Reserved Word Specification

When developing a new language, it is often the case
that the lexical analysis can be specified satisfactorily
very early in in the development process, except for the
exact set of reserved words, operators, and delimiters to be
recognized. To support this, TREGRM provides an optional
section where these reserved words can be specified.

Syntax

The reserved word specification section consists of the
keyword, 'SCREENER', followed by a sequence of deleted-
terminals enclosed in parentheses, and a sequence of token
names also enclosed in parentheses. The two sequences are
separated by an equals sign.

Example

SCREENER
('BEGIN' 'END' 'PROGRAM' ':=' '+') = (NAME OPRATR)

Semantics

At runtime, the value of each token whose token name is
one of those specified in the SCREENER section is examined
before it is translated according to the token translation
rules. If the sequence of characters is identical to the
sequence of characters in the name of a deleted-terminal in
the SCREENER section, the +token will be translated to be
that deleted-terminal, rather than the terminal specified in
the token translation rule for that token name.

g.é. Node Names

The node name section consists of the keyword, 'NODES',
followed by a seguence of node names, where each node name
consists of a sequence of characters enclosed 1in double
quotes. To allow the use of node names directly in FORTRAN
programs using the parse tree produced, the sequence of
characters should be a legal FORTRAN identifier.

Examgig

NODES
"NAMEND" "INTGND" "LABLND"
"PLUSND" "EQULND"

Semantig§

All node names that will be used in the parse tree must
be declared in the node name section. This includes the
names of leaf nodes specified in the token translation
rules. The name of a node will be indicated in the parse
tree by a positive integer, where the i'th node name in the
node name list will be assigned the number, i. One of the
tables produced by the TREGRM compiler is a FORTRAN Dblock
data containing a common block whose elements are the node
names as declared in the node name section. These variables
are initialized to the appropriate values in the block data
subprogram.

2.4. Rules

Syntax

The rules section consist of the keyword, 'RULES',
followed by a sequence of TREGRM rules, where each rule is
terminated by a semicolon. As in a BNF rule, the left side
of a TREGRM rule is a nonterminal while the right side is a
sequence of alternatives. Each alternative may have an
associated tree-building action, and an alternative, rather
than being only a sequence of terminals and nonterminals,
may contain any of a variety of operators, in the style of
regular expressions, as well as parentheses for grouping.
Each alternative is preceded by a single-right-arrow (=>).
The optional tree-building action is placed at the end of
the corresponding alternative and is preceded by a double-
right-arrow (=>).

Example

RULES
PROGRAM
~-> tregrm reg exprn 1 => action 1
-> tregrm reg exprn 2 -
-> tregrm reg exprn 3 => action 2 ;
STATEMENT ~— - -
-> tregrm reg_exprn 4 => action 3 ;

The nonterminal of the first rule in the rules section
is the goal symbol of the grammar. Each TREGRM rule is
expanded into a sequence of one or more standard BNF rules.
These BNF rules are generated in a format appropriate to the
expected input of a parser generator. In addition, a table
of tree Dbuilding actions is generated, with one action for
each possible reduction in the generated BNF grammar.
During execution of the generated parser, each reduction
causes an ordered sequence of zero or more nodes to Dbe
associated with the nonterminal corresponding to the
alternative being reduced. The result of the parsing is the
the sequence of nodes associated with the nonterminal that
is the goal symbol of the grammar.

If there 1is no tree-building action for a given
alternative, the sequence of nodes associated with the
nonterminal for that alternative is simply the ordered
concatenation of the nodes associated with the sequence of
nonterminals that make up the right side of the alternative.

If there 1is a tree-building action for a given
alternative, a new node is generated whose name is the node
name specified in the tree-building action, and whose sons

are the ordered concatenation described above. The node
associated with the nonterminal of the alternative 1is the
newly generated node.

2.4.1. TREGRM Regular Expressions

2.4.1.1. Atomic units

The atomic units of an TREGRM regular expression are
terminals and nonterminals.

2.4.1.1.1. Egrminals

Syntax

A terminal is either a "kept-terminal" or a "deleted-
terminal." A kept-terminal 1is a sequence of characters
enclosed in double quotes (") while a deleted-terminal is a
sequence of characters enclosed in single quotes ('). If a
sharp (#) appears in the string, the sharp 1is ignored and
the immediately following character is treated as the next
character of the string, even if that character is a Juote
or a sharp.

Examples
"NAME" '(' ‘':=' "INTEGER"

Semaptics

A deleted-terminal simply indicates a terminal symbol
that 1s to occur in the generated BNF grammar. A kept-
terminal is replaced by a generated nonterminal. This
nonterminal always causes a tree-building action to occur
which generates a leaf whose node name is as specified in
the token translation rule for that kept-terminal.

2.4.1.1.2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

A TEMP TEMPl B3B

Semantics

A nonterminal becomes one of the nonterminals in the
generated BNF grammar.

2-4.1.2. Operations

Let A, B, and C be TREGRM regular expressions.

Concatenation : A B C . ..

Parenthesization : (A)

Repetition s A+

List Repetition : A // B
Example

"NAME" '=' ("INTEGER" // ',')
Semantics

A concatenation is mapped directly into the BNF rule.

A parenthesized expression of the form, "(reg exp)", is
replaced by a generated nonterminal, "dummy", where dummy is
defined as :

dummyA -> reg exp ;

A repetition, "A+", 1is replaced by a generated
nonterminal, "dummyA", where dummyA is defined as :

dummyA
-> A
-> dummyA A ;

A list repetition, "A // B", is replaced by a generated
nonterminal, "dummyA", where dummyA is defined as :

dummyA
-— A
-> dummyA B A ;

- 10 -

2.4.2. Tree-Building Actions

A tree-building action is a node name, optionally
surrounded by parentheses or followed by a question mark.

Examples
"NAMEND" "PLUSND"? ("SUBRND")
Semantiqg

The node name specifies the name of the node that is to
be generated when the corresponding alternative in the BNF
grammar is reduced.

If the node name is followed by a guestion mark, the
node 1is not to be generated if it would receive exactly one
son. This action is useful if it 1is desireable that the
common nesting of ‘"expression", "term", "factor", and
"primary" be flattened out of the tree whenever possible.

If the node name is to be enclosed in parentheses, the
node 1s generated, and then the subtree rooted at that node
is written out to a data file, and the subtree 1s replaced
in primary memory by a single node with a flag indicating
that the sons of the node have been written out to the data
file. This action 1is useful if a seguence of parse trees
for the logical units of the program are desired, or if the
entire parse tree would not fit in available primary memory.
The logical unit numbers of the files to which the parse
trees are to be sent can be set by a call of the form :

CALL TRETAB (SYMTAB, PRSTAB)
where SYMTAB and PRSTAB are integer variables. Two logical
unit numbers are specified since it is feasible to send the
parse trees and the corresponding symbol tables to different
files, although this would not usually be done.

- 11 -

3. THE COMPILER

The TREGRM compiler consists of 3500 lines of standard
ANSI FORTRAN code. In addition, there is a group of short
(1 to 5 lines) routines that are machine dependent. (see
Appendix A).

The compiler takes two input files - a TREGRM program
and the tables produced by the FSCAN compiler , and produces
five output files - a listing file annotated with the number
of the first +token on each line, a file containing the
tables for driving the lexical analyzer interface and the
tree builder, a file containing the generated BNF grammar, a
file containing tables specifying the node name to internal
integer mapping, and an errors file describing any errors in
the input. The files are associated with the FORTRAN
logical unit numbers five, seven, six, eight, nine, ten, and
zero respectively.

The compiler contains six processing modules that
perform the following tasks:

3.1. Lexical Analysis, Syntactic Analysis, and Tree
Construction

The input 1is read and all syntactic errors are
reported. If the input is syntactically correct, a parse
tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. Lexical Interface Verification

The following errors are detected and reported:

(1) A token translation rule for the token type has already
been specified.

(2) The token type specified in a token translation rule
does not occur in the FSCAN program.

If any of the above errors occur, processing is halted

following the completion of the lexical interface
verification phase.

3.3. Generation of the BNF Grammar

The following errors are detected and reported:

(3)
(4)

(5)

(6)
(7)
(8)

3.4.

3.5.

~3-‘§.

- 12 -

A node name is used but not declared.

A terminal is used as a deleted-terminal, but was
defined as a kept-terminal.

A terminal is used as a kept-—-terminal, but was defined
as a deleted-terminal.

The rule is too complex, rewrite with fewer operators.
The terminal was declared, but not used.

The nonterminal was used in the right hand side of a

rule, but not declared in the left hand side of any
rule.

If any of the above errors occur, processing is halted
following the completion of the BNF generation phase.

Generation of Lexical Interface Tables

Generation of Tree-Building Tables

Generation of Node Name Mapping Tables

- 13 =

4. USING THE COMPILER

With the standard version of the TREGRM compiler, the
lexical analysis 1is specified by an FSCAN program and the
parser generator is the LR compiler. The FSCAN compiler and
LR compiler read in from logical unit 5, write a listing
file to logical wunit 6, write the generated tables to
logical unit 7, and write error messages to logical unit 0.

With this version, a parse-tree generator can be
produced as follows :
(assume that the FSCAN program is named 'lang.fsi' and that
the TREGRM program is named 'lang.tgi')

ASSIGN lang.fsi Channel 5
ASSIGN lang.fsl Channel 6
ASSIGN lang.fst.f Channel 7
ASSIGN lang.fse Channel O
RUN fscan compiler

ASSIGN lang.tgi Channel 5
ASSIGN lang.fst.f Channel 7
ASSIGN lang.tgl Channel 6
ASSIGN lang.tgt.f Channel 8
ASSIGN lang.pgi Channel 9
ASSIGN lang.tgt2.f Channel 10
ASSIGN lang.tge Channel O
RUN tregrm compiler

ASSIGN lang.pgi Channel 5
ASSIGN lang.pgl Channel 6
ASSIGN lang.pgt.f Channel 7
ASSIGN lang.pge Channel O
RUN 1lr compiler

The four FORTRAN source files, lang.fst.f, lang.tgt.f,
lang.pgt.f, and lang.tgt2.f, combined with a standard
driver, will generate a parse tree from an input stream of
source text.

- 14 -~

5. THE STANDARD DRIVER

The standard driver is invoked by a single call of the
form

CALL PARSER (ITREE)
where ITREE is a result parameter pointing to the root of
the generated parse tree. The parse tree consists of a set
of nodes. Every node has a name (one of the names specified
in the "node names" section of the tregrm program specifying
that parse tree). Every parse tree node is related to an
ordered set of zero or more parse tree nodes, which are
called the "sons" of the node. Every node 1is the son of
some other node, except for the root which is the son of no
node. A node that has no sons is called a "leaf". Each
leaf may contain a "symbol", which is a string of characters
obtained from the source text for which the parse tree was
built.

An example of a parse tree would be a set of three

nodes, Nodel, Node2, and Node3. The source text from which
the parse tree was built is :
XVAL = 134

The tregrm program used to specify the parse tree is :

SCANNER
"Variable" = SCNNAM => "NAME"
"Integer" = SCNINT => "INTEGR"
'=' = SCNEQL
NODES
"ASSIGN" "NAME" "INTEGR"
RULES
AssignStatement -> "Variable" '=' "Integer" => "ASSIGN" ;

The names of Nodel, Node2, and Node3 are ASSIGN, NAME, and
INTEGR, respectively. The root of the parse tree is Nodel.
Nodel has two sons - the first son is Nodel and the second
son 1is HNode2. Node2 and Node3 have no sons, and therefore
are leaves. The symbol contained by Node2 is "XVAL" and the
symbol contained by Node3 is "134".

Two parameterless integer functions are available to
determine how many errors occurred during parsing :
INTEGER FUNCTION GTRERR ()
INTEGER FUNCTION GTFERR ()
where GTRERR returns the number of recoverable errors (parse
tree was built), and GTFERR returns the number of fatal
errors (parse tree could not be built).

The following functions are available for accessing the
generated parse tree and the symbols associated with leaves
of the parse tree :

INTEGER FUNCTION PTNMSN (WNODE)

Mnemonic :
Parse-tree-node number of sons.
Input Parameters :
NODE(integer) - a parse tree node.
Result :
The number of sons of the node, NODE.
If NODE is not a valid node, -1 is returned.

INTEGER FUNCTION PTISON (I, NODE)

Mnemonic :
Parse tree node ith son.
Input Parameters :

I(integer) - the index of the node desired
(I.GE.1) and (I.LE.PTNMSN (NODE))
NODE(integer) - a parse tree node.
Result :

The parse tree node that is the I'th son of node, NODE.
If I is not it the correct range or NODE is not a valid node,
-1 is returned.

INTEGER FUNCTION PTNDTP (NODE)

Mnemonic :
Parse tree node type.
Input Parameters :
NODE(integer) - a parse tree node.
Result :
The type (name) of the parse tree node.
If NODE 1is not a valid node, -1 is returned.

LOGICAL FUNCTION PTISSM (NODE)

Mnemonic :
Parse tree node has a symbol.
Input Parameters : ,
NODE(integer) - a parse tree node.
Result :
TRUE iff the node, NODE, has an associated symbol.
(Can only be true for leaves.)
If NODE is not a valid node, .FALSE. is returned.

INTEGER FUNCTION PTSYMB (NODE)

Mnemonic :
Parse tree node symbol.
Input Parameters :

- 16 -

NODE(integer) - a parse tree node.
Result :
The symbol of the node, NODE.

If NODE is not a valid node or PTISSM (NODE) returns

-1 is returned.

INTEGER FUNCTION SYMLEN (SYMBOL)

Mnemonic
Get the length of a symbol.
Input Parameters :
SYMBOL(integer) - a symbol.
Result :

Length of the symbol, SYMBOL (number of characters).

If SYMBOL is not a valid symbol, -1 is returned.

INTEGER FUNCTION SYMCHR (SYMBOL, I)

Mnemonic :

Get the Ith character of a symbol.
Input Parameters:

SYMBOL(integer) - a symbol.

I(integer) - the index of the character desired.

(I.GE.1) and (I.LE.SYMLEN (SYMBOL))

Result :

The Ith character of the symbol, SYMBOL,

stored in Al format.

If I is not in the correct range or SYMBOL is not a valid

-1 is returned.

+FALSE. ,

symbol,

References

[1]

L2]

L3l

[4]

Geoffrey M. Clemm, FSCAN83 Report and User's Manual,
Univ. of Colorado Tech. Report, #CU-CS-248-83, June,
1983.

Charles Wetherell and Alfred Shannon, "LR Automatic
Parser Generator and LR(1l) Parser" IEEE Transactions on
Software Engineering, Vol SE-7#3, May 1981, p.274.

Geoffrey M. Clemm, FSCAN83 Report and User's Manual,
Univ. of Colorado Tech. Report, #CU-CS-248-83.

Stephen C. Johnson, "YACC - Yet Another Compiler-
Compiler", Bell Lab. Computing Science Tech. Rept. #32,
July 1975.

- 18 -

Appendix A:

Machine Dependencies in the TREGRM compiler

1. Machine Dependent Constants
1.1. NBTRWD
NBTPWD in /NBTPWC/ is the number of bits in a machine
word.
2. Machine Dependent Primitives
2.1. INTEGER FUNCTION INTGER (CHAR)
Input:
CHAR contains a character stored in 1H (or Al) format.
Result:
The ASCII code for the character, CHAR (an integer
between 0 and 127).
2.2. INTEGER FUNCTION CHRCTR (INT)
This is the inverse of the INTGER function.
g.é. INTEGER FUNCTION DIG (CHAR)
Input:
same as INTGER
Result:
If the character is a digit the result is the integer
value of the digit (0-9); otherwise the result is -1.
2.4. INTEGER FUNCTION IAND (Il,I2)
INTEGER FUNCTION IOR (I1,I12)
INTEGER FUNCTION INOT (Il1)
These functions return the result of the Dbitwise
logical operation of AND, OR and NOT, respectively.
2.5. INTEGER FUNCTION HOLCHR (HCONST,ICHAR)
Input:
HCONST is a Hollerith constant of the form
nHc lc 2...c n where n is an unsigned positive integer
and ¢ i is a character, i=l..n. ICHAR is an integer
between 1 and n.
Result:
HOLCHR(HCONST,i) will return c¢ i, stored in Al or 1H

format.

o

- 19 -

INTEGER FUNCTION LRS (IVAL, ICOUNT)
INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shift
fill), right and left respectively,
positions of the wvalue, IVAL.

(end-off, zero-
of ICOUNT binary

- 20 =

Appendix B:
Machine Dependencies in the TREGRM Standard Driver.

The following machine dependent primitives are
required:

1. INTEGER FUNCTION INTGER (CHAR)

2. INTEGER FUNCTION CHRCTR (INT)

3. INTEGER FUNCTION DIG (CHAR)

3. INTEGER FUNCTION HOLCHR (HCONST, ICHAR)
4. INTEGER FUNCTION LRS (IVAL, ICOUNT)

5. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

- 21 -

Appendix C :
Examples of TREGRM Programs

Following are two complete TREGRM programs. They
describe syntactic analyzers for the TREGRM language and
FORTRAN=~77 respectively.

22 -

THIS IS THE TREGRM PROGRAM USED TO CREATE
GENERATOR FOR THE TREGRM COMPILER.

THE PARSE TREE

SCANNER
"NAME" = IDNTFR => "NAME"
"DSTRNG" = DSTRNG => "DSTRNG"
"KSTRNG" = KSTRNG => "KSTRNG"
SCREENER
('"SCANNER' 'SCREENER' 'NODES' 'RULES'
tt |=>| |_>| l+l |//| 1?1 :71 l(l |)t)
= (IDNTFR OPRATR DELMTR)
NODES
"PROGRM" "SCANNR" "NONLDF" "LEAFDF" "SCRNR"
"KEYWDS" "STOKNS" "NODES" "RULES" "RULE"
"ALTLST" "ALTRNT" "SEQ" "List" "PLUS"
"OPTNAL" "OUTNOD" "NAME" "DSTRNG" "KSTRNG"
RULES
TREGRM
~-> SCANR SCRNR NODS RULS => "PROGRM"
=> SCANR NODS RULS => "PROGRM" ;
SCANR
-> 'SCANNER' LEXDEFN+ => "SCANNR" ;
LEXDEEFN
-> "DSTRNG" '=' “NAME" => "NONLDF"
_> “I{STRNG" I=I "NAIVIE" l=>! "Ksrle\.’]G"
=> "LEAFDF" ;
SCRNR
~> 'SCREENER' SCRNKWDS '=' SCRNTKNS
. => IISCRNRII ;
SCRNKWDS
-> '(' "DSTRNG"+ ') => "KEYWDS" ;
SCRNTKNS
-3 0 (] "NAME"‘i’ U) § => "STOKNS" s
NODS
~> 'NODES' "KSTRNG"+ => "NODES" ;
RULS
-> 'RULES' RULE+ => "RULES" ;
RULE
-> "NAME" ALTLST ';' => "RULE" ;
ALTLST
~> ALTRNT+ => "ALTLST" ;
ALTRNT
-> '=>' EXPR => "ALTRNT"
-> '-=>' EXPR TREESPEC => "ALTRNT"
EXPR
-> TERM+ => "SEQ"?
TERM
-> ELMNT '//' ELMNT => "LIsT"
=3 ERMNT .+ => "pPLUs"

ELMNT
-] (] EXPR ')]
-> "NAME"

-> "KSTRNG"
-> "DSTRNG" ;

TREESPEC
-> '=>' NODNAM
-> '=>' NODNAM '?' => "OPTNAL"
~> '=>' '(' NODNAM ')’ => "OUTNOD" ;
NODNAM

-> "KSTRNG" ;

SCANNER
"INTCNST" = DCONST => "ICONST"
"NAME" = NAME => "NAME"
"LGCLCNST" = LCONST => "LCONST"
"REALCNST" = RCONST => "“RCONST"
"DBLPCNST" = DPCNST => "DPCNST"
"EDITDSC" = FIELD => "FMTFLD"
"STRCNST" = SCONST => "SCONST"
"HOLCNST" = HCONST => "HCONST"
' LPAREN' = LPAREN
' RPAREN' = RPAREN
'EQV" = EQV
'NEQV' = NEQV
"OR' = OR
' AND' = AND
'NOT' = NOT
‘LT = LT
'LE' = LE
lEQI — EQ
'NE' = NE
'GT' = GT
'GE' = GE
'DBLSLASH' = CONCAT
' DBLSTAR' = DBASTR
'STAR' = ASTRSK
' SLASH' = SLASH
'PLUS’ = PLUS
'MINUS' = MINUS
' COMMA' = COMMA
' EQUALS' = EQUALS
' COLON' = COLON
'EOS' = EOS
'END' = KEND
' PROGRAM' = KPROGR
'"FUNCTION' = KFUNCT
'INTEGER' = KINTEG
' REAL' = KREAL
' DOUBLE' = KDOUBL
'"PRECISION' = KPRECI
'COMPLEX ' = KCOMPL
' LOGICAL' = KLOGIC
'CHARACTER' = KCHARA
' SUBROUTINE' = KSUBRO
'ENTRY ' = KENTRY
'BLOCK' = KBLOCK
'DATA' = KDATA
'DIMENSION' = KDIMEN
' COMMON' = KCOMMO
'IMPLICIT' = KIMPLI
'PARAMETER' = KPARAM
'EXTERNAL' = KEXTER
"INTRINSIC' = KINTRI
' SAVE' = KSAVE

'ASSIGN' = KASSIG
‘GO’ = KGO
‘TO' = KTO
"IF' = KIF
'"THEN' = KTHEN
'"ELSE' = KELSE
‘DO’ = KDO
'CONTINUE' = KCONTI
‘sTop'’ = KSTOP
'PAUSE' = KPAUSE
'"WRITE' = KWRITE
"READ' = KREAD
'PRINT' = KPRINT
'OPEN' = KOPEN
'CLOSE' = KCLOSE
'INQUIRE' = KINQUI
'BACKSPACE' = KBACKS
'"ENDFILE' = KENDFI
'"REWIND' = KREWIN
' FORMAT' = KFORMA
'CALL' = KCALL
'RETURN' = KRETUR
'"EQUIVALENC' = KEQUIV
NODES
"F77PRG" "PRGUNT" "LABLD" "END" "PROG" "FUNC" "INTGR"
"REAL" "DBLPRC" "COMPLX" "LOGICL" "CHRCTR" "LIST" "SUBR"
"ASTRSK" "ENTRY" "BLKDTA" "DIMNSN" "ARDCL" "ARDIMS" "ARDIM"
"DARDIM" "EQVLNC" "EQVSET" "COMMON" "BLNKCM" "LBLDCM" "CBITMS"
"TYPE" "DCLITS" "CHRLEN" "IMPLCT" "IMPDCL" "CHRRNG" "PARMTR"
"PRMDCL" "EXTRNL" "INTRN" "SAVE" "CBLKNM" "DATA" "DTADCL"
"DTAITS" "DTAVLS" "MULTDV" "NEG" "DIDLST" "DOSPEC" "ASGN"
"ASSIGN" "ASORSF" "AOSDEF" "GOTO" "CMGOTO" "ASGOTO" "LBLLST"
"ARTHIF" "AILBLS" "LOGIF" "IFTHEN" "ELSEIF" "ELSE" "ENDIF"
"DO" "CNTNU" "sTOP" "PAUSE" "WRITE" "READ" "PRINT"
"CILIST" "EQUALS" "CONCAT" "IOIMDL" "OPEN" "CLOSE" "INQUIR"
"BCKSPC" "ENDFIL" "REWIND" "FORMAT" "REPEAT" "SLASH" "COLON"
IICALLII "LBLAI{G 1" H RETURL{“ IIEQ‘vH “NEQV" HORII "AND“
"NOT“ llLTll IILE" IIEQ" "NE" "GT" IIGEII
"PLUS" "MINUS" "POS" "MLTPLY" "DIVIDE" "EXPONT" "SPAREN"
"CCONST" "SUBSTR" "AOFREF" "ARGLST" "ARELM" "SSSPEC" "DEFALT"
"ICONST" "NAME" "LCONST" "RCONST" "DPCNST" "FMTFLD" "HCONST"
"SCONST" "LABEL"
RULES
F77PRG —-> PRGUNIT+ => "F77PRG" ;
PRGUNIT -> BODYSTMT+ ENDSTMT => "PRGUNT"
-> ENDSTMT => "PRGUNT" ;
BODYSTMT -> LABEL STMT 'EOS' => "LABLD"
-> STMT 'EOS'
-> LABEL FORMAT 'EOS' => "LABLD" ;
ENDSTMT —-> LABEL END 'EOS' => "LABLD"

->

END 'EOS' ;

END
STMT

PROG
FUNC
FUNCPREFIX

TYP

FPLIST

-
->
-2
->
->
->
-
->
->
-
->
-
-
->
->
->
-
->
->
-
->
->
->
->
->
->
->
->
->
->
-
->
->
->
->
->
->
->
->
->
->
-
->
->
->
->
->
->
-
->
->
->
->

'END'

PROG

FUNC

SUBR

BLKDTA

ENTRY

PARM

IMPL

DATA

DIM

EQUIV

COMMON

TYPE

EXTRNL

INTRNSC

SAVE

DO

LOGIF

IFTHEN

ELSIF

ELSE

ENDIF

ASGN

ASGNORSEK

GOTO

ARTHIF

CNTNU

STOP

PAUSE

READ

WRITE

PRINT

RWND

BKSPC

ENDFIL

OPEN

CLOSE

INQUIRE

CALL

RETURN ;
‘PROGRAM' "NAME"
FUNCPREFIX "NAME"
TYP 'FUNCTION'
'FUNCTION'
"INTEGER'
'REAL"
'DOUBLE'
'COMPLEX'
'LOGICAL'
'CHARACTER'

'CHARACTER' 'STAR' LENSPEC
'LPAREN' "NAME"//'COMMA' 'RPAREN'
'LPAREN' 'RPAREN' ;

FPLIST

'PRECISION'

=>

"END" -

"PROG" ;
" FUNC" ;

"DEFALT"
"INTGR"
IIREAL 11
"DBLPRC"
"COMPLX"
"LOGICL"
"CHRCTR"
"CHRCTR"
IILISTII

~e

~¢

SUBR

SPLIST

SPARM

ENTRY

BLKDTA

DIM
ARDCL

ARDIMLST

ARDIMS

ARDIM
DARDIM
DIMBD
EQUIV

EQVSET
EQVENT

COMMON
CBLKLST
CBLK
BCILST
CBILST
CBITMS
CBITM
TYPE
CHRTYP
DCLITS
DCLITM

DCLVAR

IMPL
IMPDCL

CHRRNG

CHAR

->
->
->
->
->
->
->
->
->

->
->
->

- 27 -

'SUBROUTINE' "NAME" =>
'SUBROUTINE' "NAME" SPLIST =>
'LPAREN' 'RPAREN'

'LPAREN' SPARM//'COMMA' 'RPAREN' =>
"NAME”

'STAR' =5
'ENTRY' "NAME" =>
'ENTRY' "NAME" SPLIST =>
'BLOCK' 'DATA' =>
'BLOCK' 'DATA' "NAME" =>
'"DIMENSION' ARDCL//'COMMA' =>
"NAME" ARDIMLST =>
'LPAREN' ARDIMS 'RPAREN' =>
ARDIM ‘'COMMA' ARDIMS

ARDIM

DARDIM ;

DIMBD 'COLON' DIMBD =>
DIMBD N
DIMBD 'COLON' 'STAR' =
'STAR' =>
AEXPR ;

'"EQUIVALENC' EQVSET//'COMMA'

'LPAREN' EQVENT//'COMMA' 'RPAREN' =>
"NAME 11

ARELM

SUBSTR ;

'"COMMON' CBLKLST =>
'"COMMON' BCILST CBLKLST =>
'COMMON' BCILST =>
CBLK+ ;

'DBLSLASH' CBILST =>
'SLASH' "NAME" 'SLASH' CBILST =>
CBILST =>
CBITMS >
CBITM 'COMMA' CBITMS

CBITM 'COMMA'

CBITM ;

"NAI\/IE"

ARDCL ;

TYP DCLITS =5
CHRTYP 'COMMA' DCLITS =>
'"CHARACTER' 'STAR' LENSPEC =>
DCLITM/ /' COMMA' =>
DCLVAR

DCLVAR 'STAR' LENSPEC =>
"NME"

ARDCL ;

'"IMPLICIT' IMPDCL//'COMMA' =>

TYP 'LPAREN' CHRRNG//'COMMA'

CHAR 'MINUS'

CHAR ;

"NAME"

'RPAREN'
=>

CHAR =>

"SUBR"
11 SUBR" ;

"LIST" ;

"ASTRSK"
"ENTRY"

"ENTRY"

"BLKDTA"
"BLKDTA"
"DIMNSN"
"ARDCL";
"ARDIMS"

"ARDIM"
"ARDIM"
"DARDIM"
"DARDIM"

"EQVLNC"
"EQVSET"

"COMMON"
"COMMON"
"COMMON"

"BLNKCM"
"LBLDCM"
"BLNKCM"
"CBITMS"

"TYPE "

"TYPE" ;
“CHRCTR"
"DCLITS"

"CHRLEN"

"IMPLCT"

"IMPDCL"
"CHRRNG"

~e

~a

~e

—e w38

~8 ~e

~e we

~e wa wg

~e ~o

~2

~e

LENSPEC ->
->
->
PARM ->
PRMDCL
EXTRNL
INTRNSC
SAVE

->
4
-
-2
-2
-
->
->
-
-
-
-2
-
-
-2
-
-
-2
->
-
-2
-
-2
—
-
-
ald
a4

SAVITM
DATA
DTALST

DTADCL
DTAITS
DTAVLS
DTAITHM

VAR

DTAVAL

DVCOUNT

DVVAL

DIDLST

DIDITS
DIDITHM

->
->
->
DOSPEC ->
->

-
-
->
->
-
->
-

ASGN

ASGNORSF
ARORSFD
GOTO

- 28 -~

'LPAREN' 'STAR' 'RPAREN' => "ASTRSK"
"INTCNST"
'LPAREN' AEXPR 'RPAREN' ;
'PARAMETER' 'LPAREN' PRMDCL//'COMMA' ‘'RPAREN'
=> "PARMTR" ;
"NAME" 'EQUALS' EXPR => "PRMDCL" ;
'EXTERNAL' "NAME"//'COMMA' => "EXTRNL" ;
'"INTRINSIC' "NAME"//'COMMA' => "INTRN"
'SAVE' => "SAVE"
'SAVE' SAVITM//'COMMA' => "SAVE"
IINAME "
'SLASH' "NAME" 'SLASH' => "CBLKNM" ;
'DATA' DTALST => "DATA"
DTADCL
DTALST DTADCL
DTALST 'COMMA' DTADCL ;
DTAITS 'SLASH' DTAVLS 'SLASH' => "DTADCL" ;
DTAITM/ /' COMMA' => "DTAITS" ;
DTAVAL/ /' COMMA' => "DTAVLS" ;
VAR
DIDLST ;
"NAIVIE "
ARELM
SUBSTR ;
DVCOUNT 'STAR' DVVAL => "MULTDV"
DVVAL ;
"INTCNST"
"NAME" "
CONST
'"PLUS' ARTHCNST
'MINUS' ARTHCNST => "NEG"
"NAME“ ;
'LPAREN' DIDITS 'COMMA' DOSPEC 'RPAREN'
=> "DIDLST" ;
DIDITM//'COMMA' ;
ARELM
DIDLST ;
"NAME" 'EQUALS' AEXPR 'COMMA' AEXPR
=> "DOSPEC"
"NAME" 'EQUALS' AEXPR 'COMMA' AEXPR 'COMMA' AEXPR
=> "DOSPEC" ;
"NAME" 'EQUALS' EXPR => "ASGN"
SUBSTR 'EQUALS' FACTOR => "ASGN"
'ASSIGN' LABEL 'TO' "NAME" => "ASSIGN" ;
ARORSFD 'EQUALS' EXPR => "ASORSF" ;
"NAME" 'LPAREN' ARGLIST 'RPAREN' => "AOSDEF" ;
'GO' 'TO' LABEL => "GOoTo"
'GO' 'TO' 'LPAREN' LBLLST 'RPAREN' AEXPR
=> "CMGOTO"
'GO' 'TO' 'LPAREN' LBLLST 'RPAREN' 'COMMA' AEXPR
=> "CMGOTO"

68t 18!

"NAME® ' LPAREN' LBLLST 'RBARRRSGOTO"

=> "ASGOTO"
-> 'GO' 'TO' "NAME" 'COMMA' 'LPAREN' LBLLST 'RPAREN
=> "ASGOTO" :
LBLLST -> LABEL//'COMMA' => "LBLLST" ;
ARTHIF -> 'IF' 'LPAREN' EXPR 'RPAREN' ARIFLABELS
=> "ARTHIF" ;
ARIFLABELS -> LABEL 'COMMA' LABEL 'COMMA' LABEL => "AILBLS" :
LOGIF -> 'IF' 'LPAREN' EXPR 'RPAREN' STMT => "LOGIF" ;
IFTHEN ~> 'IF' 'LPAREN' EXPR 'RPAREN' 'THEN' => "IFTHEN" ;
ELSIF -> 'ELSE' 'IF' 'LPAREN' EXPR 'RPAREN' 'THEN'
=> "ELSEIF"
ELSE -> 'ELSE' => "ELSE" ;
ENDIF -> 'END' 'IF' => "ENDIF" ;
DO -> 'DO' LABEL 'COMMA' DOSPEC => "DO"
-> 'DO' LABEL DOSPEC => "DO" ;
CNTNU -> 'CONTINUE' => "CNTNU"
STOP -> 'sTOP' => "STOP"
-> 'STOP' SPVAL => "§TOoP" ;
PAUSE ~-> 'PAUSE' => "PAUSE"
-> 'PAUSE' SPVAL => "PAUSE" ;
SPVAL -> "INTCNST"
-> "STRCNST" ;
WRITE -> '"WRITE' CILIST => "WRITE"
-> 'WRITE' CILIST OUTPUTLIST => "WRITE" ;
READ -> 'READ' XFMTID = "READ"
-> 'READ' 'LPAREN' CIITEM 'RPAREN' => "READ"
-> 'READ' XCILIST = "READ"
~-> 'READ' XFMTID 'COMMA' INPUTLIST = "READ"
-> 'READ' 'LPAREN' CIITEM ‘RPAREN' 'COMMA' INPUTLIST
=> "READ"
-> 'READ' CILIST INPUTLIST => "READ" ;
PRINT -> 'PRINT' CIITEM => "PRINT"
-> 'PRINT' CIITEM 'COMMA' OUTPUTLIST => "PRINT" ;
CILIST -> '"LPAREN' CIITEM 'RPAREN' => "CILIST"
-> XCILIST ;
CIESPEC -> "NAME" 'EQUALS' CIITEM => "EQUALS" ;
CIITEM -> EXPR
-> ASTRSK
ASTRSK -> 'STAR' => "“ASTRSK" :
XEFMTID -> ASTRSK
-> "INTCNST"
-> "STRCNST"
_> "NAME n
-> AOFREF
-> SUBSTR
-> SXFMTID 'DBLSLASH' EXPR => "CONCAT"
CIITEM USED TO PREVENT REDUCE CONFLICT
-> 'LPAREN' CIITEM 'RPAREN' °'DBLSLASH' EXPR
=> "CONCAT" ;
SXFMTID -> "STRCNST"
_> IINAME #
-> AQFREF

-2

29

SUBSTR

XCILIST

->
-2

CIESPECS

OUTPUTLIST
OUTPUTITEM =->
-

INPUTLIST
INPUTITEM

v

OPEN
CLOSE
INQUIRE

-
->
->

->
-

\'%

INQSPECS
INQSPEC
BKSPC
ENDFIL
RWND
FSPEC

->
->
->
->
->
FORMAT ->
->
->
->
->
->
->
->
->
->
->
->
->
->

FRMT
FMTITEM

CALL

ARG ->
->
->
->
->
->
->

RETURN

EXPR

30 -

'LPAREN' CIESPECS 'RPAREN' => "CILIST"
'LPAREN' CIITEM 'COMMA' CIESPECS 'RPAREN'
=> "CILIST"
'LPAREN' CIITEM 'COMMA' CIITEM 'RPAREN'
=> "CILIST"
'LPAREN' CIITEM 'COMMA' CIITEM 'COMMA' CIESPECS 'RPAREN'

CIESPEC//'COMMA'

-
i

OUTPUTITEM//'COMMA" ;
SEE COMMENT FOR COMPLEX CONSTANT

=3

"CILIST" ;

EXPR
'LPAREN' OUTPUTLIST 'COMMA' DOSPEC 'RPAREN'
=> "IQIMDL" ;
-> INPUTITEM//'COMMA"' ;
-> VAR
'LPAREN' INPUTLIST 'COMMA' DOSPEC 'RPAREN'
=> "IOIMDL" ;
'OPEN' CILIST => "OPEN" ;
'CLOSE' CILIST => "CLOSE" ;
'"INQUIRE' 'LPAREN' INQSPECS 'RPAREN'
=> "INQUIR"
"INQUIRE' 'LPAREN' CIITEM 'RPAREN' => "INQUIR"
'INQUIRE' ‘LPAREN' CIITEM 'COMMA' INQSPECS 'RPAREN'
=> "INQUIR" ;
INQSPEC/ /' COMMA"' ;
"NAME" 'EQUALS' EXPR => "BEQUALS" ;
'"BACKSPACE' FSPEC => "BCKSPC" ;
'ENDFILE' FSPEC => "ENDFIL" ;
'REWIND' FSPEC => "REWIND" ;
CIITEM
> 'LPAREN' CIESPECS 'RPAREN' => "CILIST" ;
'FORMAT' FRMT
'"FORMAT' 'LPAREN' ‘'RPAREN' => "FORMAT" ;
'LPAREN' FMTITEM+ 'RPAREN' => "FORMAT" ;
"EDITDSC"
"STRCNST"
"HOLCNST"
FRMT
"INTCNST" FRMT => "REPEAT"
"COMMA'
'SLASH' => "SLASH"
'COLON' => "COLON" ;
tCALLI HNAMEH => "CALL"
'CALL' "NAME" 'LPAREN' 'RPAREN' => "CALL"
'CALL' "NAME" 'LPAREN' ARG//'COMMA' 'RPAREN'
=> "CALL" ;
EXPR
'STAR' LABEL > "LBLARG" ;
'RETURN' => "RETURN"
'RETURN' AEXPR => "RETURN" ;
EXPR 'EQV' LOGEXPR => "EQV"
EXPR 'NEQV' LOGEXPR > "NEQV"

LOGEXPR ;

->
->
->
->
->
->
->
->
->
->
->
->
->
-
->
-3
->
->
->
->
->
->
->
->
->
->
-3
-3
->
->
->
->
->
->
->
->

LOGEXPR
LOGTERM
LOGFACTOR

LOGPRIM

AEXPR

ATERM
FACTOR
PRIMARY

CONST

ARTHCNST

PRINT 5,(3,2)

-0

-2
-
-
-
-2
-
-2
-2
-
-
->

SUBSTR

AOFREF
ARGLIST
ARELM
SSSPEC
LSSSPEC

RSSSPEC

LABEL

- 31 -

LOGEXPR 'OR' LOGTERM
LOGTERM ;

LOGTERM 'AND' LOGFACTOR
LOGFACTOR ;

'NOT' LOGPRIM
LOGPRIM ;

AEXPR 'LT' AEXPR
AEXPR 'LE' AEXPR
AEXPR 'EQ' AEXPR
AEXPR 'NE' AEXPR
AEXPR 'GT' AEXPR
AEXPR 'GE' AEXPR
AEXPR ;

AEXPR 'PLUS' ATERM

AEXPR 'MINUS' ATERM
'PLUS' ATERM

'MINUS' ATERM

ATERM ;

ATERM 'STAR' FACTOR
ATERM 'SLASH' FACTOR
FACTOR ;

PRIMARY 'DBLSTAR' FACTOR
PRIMARY 'DBLSLASH' FACTOR
PRIMARY

CONST

“NA].VJE 1]

AQFREF

SUBSTR

'LPAREN' EXPR 'RPAREN'
ARTHCNST
"STRCNST"
"HOLCNST"
"LGCLCNST"
"INTCNST"
"REALCNST"
"DBLPCNST"
PRINT

~¢

5,(3,2,I=1,10)

'LPAREN' OUTPUTLIST 'COMMA'

ARELM SSSPEC

"NAME" SSSPEC
"NAME" 'LPAREN®
EXPR//'COMMA'
"NAME" 'LPAREN'

LSSSPEC 'COLON'
'LPAREN' AEXPR
‘LPAREN'

AEXPR 'RPAREN'
'RPAREN'
"INTCNST"

RSSSPEC

ARGLIST 'RPAREN'

ARGLIST 'RPAREN'

ARTHCNST
=>
=5
=>
=>
=>
= >
=>

i OR"
"AND "
IINOT "

IILTII
"LE"
IIEQH
IINEH
IIGTII
IIGEII

"PLUS"
"MINUS"
IIPOS "
"NEG 1

"MLTPLY"
"DIVIDE"

"EXpONT"
"CONCAT"

"SPAREN"

'RPAREN'
"CCONST"
"SUBSTR"
"SUBSTR"
"AOFREF"
"ARGLST"
"ARELM"
"SSsSpPEC"

"DEFALT"

"DEFALT"
"LABEL"

~e

-
i

~

~e

~e

~e

~

~o

