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Abstract

We investigate guasi-Newton roethods for uncensirained optimization and
gystemns of nenlinear equations where each approximation to the Hessian or
Jacoblan malrix obeys several secant equations. For systems of nonlinear equa-
tions, this work is just a simplification and generalization of previous work by
Barnes [1965] and Gay and Schnabel [197B]. For unconstrained optimization,
the desire that the Hessian approximation obey miore than one secant equation
may be inconsistent with the requirement thal it be symmetric. We presgent
very simple necessary and sufficient conditions for there to exist symmetric, or
symmetric and positive definite, updates that cbey multiple secant equations. If
these conditions are salisfied, one can derive generalizations of all the standard
symmetric updates, including the PSE, DFP, and BFGS, that satisfy multiple
gecant equations. We show how to successtully specify multiple secant equalions
for unconstrained optimization, and that algorithms using these secant equa-
tions and the generalized PSB, DFP, or BFGS updates are locally and g~

superlinearly convergent under standard assumptions.
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1. Introduction

SBecant approximations to finite dimensional matrices are used in many
compuiational algorithms., These approximations are matrices A, €R™ that
satisly a secant eguolion

As =y
for some y€R™ and s€R™. The most common applications, reviewed briefly
below, are in solving square or rectangular systems of nonlinear equations, and
in solving unconstrained and constrained optimization problems. In this paper
we consider more general approximations A,€R™ that satisfy several secant
equations

AE =Y
for some Se€R™® that has full column rank and YER™*P, and the use of such
approximations in solving systems of nonlinear equations and unconstrained
oplimization problems.

The most basic use of secant approximations is in quasi-Newton algorithms
for the sguare systems of nonlinear equations problem,

given £ : F*-»R" | find £,€R" such that F(z,) =0.
These algorithms generate a sequence of iterates {3, z €R", k = 0,1, - -, that
are increasingly good approximations to z,. The k+1% iteration is based on an

affine model of F{z) around z .,

Myi(2) = F(Zp 1) + Aeyr(Z — B i) (1.1)
where A €R™" is a secant approzimation to F'(z,,,) that obeys the secant
equation

Avy Sp =Yg (1.2a)
where
Sp = Xpar ~ B, Y = Fl@) — Flz) (1.2b)

Equations (1.1-2) cause Mp«i{z) to interpolate F(z) at = =z, as well as at



z = 2., Many matrices A4 ., €R™*" satisfy (1.2); the standard way to choose

Ay 11 18 Lo updafe the previous approximation 4; by Broyden's update

(Ve ~ ASi) ngr (1.3)
S}cTSso B

(Broyden [1965]). This update was shown by Dennis and Moré [1977] to be the

Aoy = A +

solution Lo

minimize |4 — 4
AgRnHn

» 3subjectto As, =y,

where |||z denotes the Frobenius norm,

i) i3
4l = 20 2 Alig P
i=1 j=1
That is, 4y, is the least chuonge secant updafe to 4,. Broyden, Dennis, and Moré
[1973] showed that the sequence of iterates generated by the quasi-Newton
method
Tpey = T — A F(Z)
with {4, generated by (1.3) converges g-superlinearly to a root zy of Fi{z) pro-
vided zg and Ay are sufficiently close to z, and F'(xz,), respectively, F '(zy) is
nonsingular, and 7'(z) is Lipschitz continuous in an open neighborhood contain-

ing x4 For further review of secant methods for nonlinear equations, see Dennis

and Moré [1977] or Dennis and Schnabel [1983].

In Section 2 we generalize all the results stated in the last paragraph to
methods where each approximation 4., in the affine model (1.1) satisfies p=n
secant eguations

Ayr1Sp = Iy (1.4)
for Si, Y, €R™P. The obvious choices of S, and ¥ are

Sp; = Tyey ~ Tprr—g 0 Y = F(Tyy) = Floea ), j=1,--p  (L5)

h unit vector. If 4, satisfies (1.4-5), then the affine

where ¢; denotes the j
model (1.1} interpolates F(z) at & 41-5, * * * 4. In Section 2 we give the gen-

eralization of Broyden's update that satisfies (1.4) and show that it is the least




change update satisfying these equations. We also give conditions on {5} and
{%} under which the quasi-Newton method using this generalized Broyden's
update is locally g-superlinearly convergent. The material in Section 2 is only a
modest generalization of Gay and Schnabel [1978]. It is included because the

proofs are simpler and clearer, and to motivate the material in Section 3.

The other problem considered in this paper is the unconstrained minimiza-

tion problem,

minimize f{x): F*=R . (1.6)

zERT '
The first order necessary condition for x4 to be a solution of (1.8) is Vf (z) = 0,
so (1.6) can be considered a special case of the nonlinear equations problem
where F(z) = Vf (z). While this viewpoint has limitations, it is useful in motivat-
ing secant methods for unconstrained minimization. In particular, secant
rnethods for (1.8) base the k+1% iteration on a model m () of f (z) around @, .1,

Mgy (2) = F (Zper) + Vi (mkﬂ}T(x ~Zp) + (2 “£k+1>T1§fﬁcf~1{z ~Zp41)

where Hy.; €™ is an approximation to Vef (zx4). If

He1Sp = Uy (1.7)
where

Sp = Zpar — Ty Y = VS (Tar) — VS (Z)
then Vmg ,i(z) interpolates Vf (z) at z;, and zp.;. The major difference between
secant methods for nonlinear equations and unconstrained minimization is that
in unconstrained minimization V*f (z) is symmetric so the approximations { !

should be too.

Powell [1970] introduced a symmetrized version of Broyden's update that

satisfies (1.7),

(Y —Hese)sE + se (v —Hise )T Y (Y —Hiese ) se) sisif

T,

Hk = M +
* " sgsg (sifsi)?

(1.8)

and this update is known as the Powell symmetric Broyden (PSB) update.



Dennis and Moré showed that (1.8) is the solution to

minimize |[|H — Hgllr subject to H symmetric, H s, =4 (1.9)
Hepnen ’
provided that Hp is symmetric; that is, (1.8) is the least change symmetric
secant update to H,. Broyden, Dennis and Moré [1973] showed that the
sequence of iterates generated by the quasi-Newlon method
Ty = T — Hy 'V () (1.10)

with {H, ] generated by (1.8) is locally g-superlinearly convergent to a minimizer

xzy of f (x) under appropriate assumptions.

Two other symmetric secant approximations to Vef (z), however, have been
more successiul in practice. They are the BFGS and DFP updates. The BFGS
update, named after its proposers Broyden [1970], Fletcher [1970], Goldfarb
[1870], and Shanno [1870], is

T Vil
HeoswslH
Hiyy = Hy + e Zeefeh (1.12)
Yi, S S He S

The DFP update, named after its originators Davidon [1959] and Fletcher and
Powell [1963], is
(e —Hee s )yd + v (e —HieSie) " + i (e —Hiese)se) yewd

Yese (ydse)?
Both updates obey (1.7}, and have the additional desirable property that if Hy is

Hypy = Hp +

(1.13)

symmetric and positive definite and

yls, >0, (1.14)
then Hyy is well-defined, symmetric and positive definite. In practice, Hy is
chosen symimetric and pogitive definite and (1.14) is enforced by the line search,
so each /7, is symmetric and positive definite. Dennis and Moré [1977] showed
that both the BFGS and DFP updates are least change symmetric secant updates
in an appropriate weighted Frobenius norm, provided that Hy is syrametric and

(1.14) holds. The DFP update is the solution to




minimize |WT(H - H, )W Y|p subject to H symmetric, Hs, = ¥, (1.15)
HEE“X”A ’

and the BFGS update is the solution to

ngg;rgﬁfe |W(H — He YWT ||z subject to H symmetric, H s; =y (1.16)
where in both cases WeR™™ is any nonsingular matrix for which W7 Ws, = vy, .
Broyden, Dennis, and Moré [1973] showed that the iterates generated by (1.10)
using either the BFGS or DFP update to generate {H.] converge locally and ¢-
superlinearly to a minimizer z, of f{z) under reasonable assumptions. Algo-
rithms using the BFGS update have proven to be the most robust and efficient
secant algorithms for unconstrained minimization in practice. For more infor-
mation on secant methoeds for unconstrained minimization, see Dennis and Moré

[1977], Fletcher [1980], Gill, Murray, and Wright [1981], or Dennis and Schnabel
[1983].

Section 3 of this paper considers methods for unconstrained minimization
where the Hessian approximation M, is asked to satisfy p=n secant equations

HkHSk = Y;(; (11?)

for S, YL €R™P, If 5, and ¥, are chosen in the obvious way,

Sp€) = Tper — Tpri—j o ke = VF(Tkwr) — VF (Zer15) . F=1 - .p . (1.18)
then the new guadratic model would interpolate the p most recent previous gra-
dients, i.e.

VMg iy (Fpv1-5) = VF (Zear—5) . 7=0, - p. (1.19)
However, {1.19} may be inconsistent with the requirement that H,,,; be sym-
metric. BSection 3.1 gives very simple necessary and sufficient conditions for
there to be symmelric, or symmetric and positive definite, H,,; satisfying
(1.17). If these conditions are satisfied, then all the results about the PSB,
BFG3, and DFP updates rmentioned in the two previous paragraphs can be gen-
eralized to symmetric updates that satisfy (1.17), and to minimization algo-

rithrs that use these updates, Section 3.2 gives the generalizations of the PSE,




DFP, and BFGS updates that satisfy multiple secant equations, and shows thal
they are least change symmetric updates in the same norms used in (1.9},
(1.15), and (1.16) respectively. Section 3.3 considers a special case of sym-
metric updates satisfying multiple secant equations that has received consider-
able attention, the "projected” updates introduced by Davidon [1975] and subse-
quently considered by Dennis and Schnabel [1981], Nazareth [1976], Schnabel
[1977, 1978], and others. Here one assumes that H, already satisfies p —1 of the
P secani equations imposed upon Hp.;. We show that several of the projected
updates derived by these authors are special cases of the generalized PSB, DFP,
and BFGS updates given in section 3.2. Section 3.4 gives conditions on {5, and
{%:} under which the iterates generated by (1.10), using the generalized PSB,
DFP, or BFGS updates, converge locally and g-superlinearly to a minimizer zy of
S {z). The proofs require only minor medification of the techniques of Broyden,
Dennis, and Moré [1973] and Dennis and Moré [1974]. Finally in Section 3.5 we
propose several ways for the preceding material on unconstrained minimization
to have practical application, by suggesting several reasonable modifications of
Y given by (1.18) that would allow syrnmetric (and positive definite) updates
satisfying Hiy15, = ¥ to exist. These modifications to ¥ do not alter the
current secant equation Hy,,5, = ¥, and alter the other secant equations in a
reasonable way, The resultant algorithms obey the conditions of Section 3.4 for

grsuperlinear convergence,
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2. Multiple secant eguations for nonlinear equations

The most basic use of secant approximations is in quasi-Newton methods for
solving systemns of nonlinear equations. The approximation problem underlying
the standard methods is to find an A,€R™" for which A,s = ¥y, where s €R" and
YER™. As we mentioned in Section 1, the most successful practical method is

based on choosing the A, that solves

minimize |4, — Allp subjectto A5 =y
A+Eﬁmxﬂ>

where A€R™". The generalization of this approximation problem to multiple

secant equations is

minimize |4, — Allr subjectto 4, S =Y (2.1)

A eRm¥n

where SE€R™P, YeR™®  The solution to {(2.1) is given in Theorem 2.1.

The remainder of this section discusses methods for solving square systems
of nonlinear equations where at each iteration, the update given in Theorem 2.1
iz used to caelculate a Jacobian approximation A, €8%*® that satigfies
Aei1Se = Y, for some S, Y, €R" Pk A special case, considered by Barnes [19656]
and Gay and Schnabel [197B], is when each update enforces the new secant
equation and preserves some old secant equations satisfied by 4,. Updates with
this property are sometimmes called "projected secant updates”. The least
change projected secant update, a simple corollary of Theorem 2.1, is given in
Corollary 2.2. Theorem 2.5 then gives general conditions on {S,] and {%;} for a
quasi-Newton method based on least change multiple secant updates to be g-
linearly, or g-superlinearly, convergent, It uses a generalization of the Broyden,
Dennis, and Moré [1973] bounded deterioration theorem that we state in
Theorem 2.3, and the Dennis-Moré [1974] characterization of g-superlinear con-
vergence that we state in Theorem 24. Corollary 2.6 shows that the g-

superlinear result of Theorem 2.5 applies to a class of methods that enforce the
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current and some past secant equations, including the method of Gay and
Schnabel. This class of methods also includes some algorithms not considered

by Gay and Schnabel that may be of practical interest.

Theoremn 2.1. Let p=n, ACR™", ScR™P, YeR™?, rank(S)=p. Then the

unique solution to (2.1} is
A=A+ (Y —AS)(STs)y1sT | (2.2)

Proof: It is straightforward to derive (2.2) by regarding (2.1) as m linear least
squares problems STb; = 2;, i=1, - - - ,m in the variables by, where by = row 4 of
A,—A and z; = rowi of (¥Y—AS). A different proof, given below, uses techniques
of Dennis and Moré [1977] that are more closely related to the techniques we will

use in Section 3.

Clearly A, given by (2.2) is well-defined and satisfies 4, § = Y. Now let
BeR™* be any matrix satisfying B § = Y. Substituting BS for ¥ in (2.2) gives
Ar—A = (B-A)S(STs)y'sT =(B-A)P
where P = S(575)7S7T is a Euclidean projection matrix and thus [|Pll; = 1.

Therefore
lAs — Allp = IB ~Allp 1Pl = 1B - Allr -
The solution is unigue because (2.1) is a minimization problem in a strictly con-

VeX norm over a convex set, o

The use of secant updates in solving systems of nonlinear equations was
reviewed in Section 1. The standard secant update for nonlinear eguations,
Broyden's update, causes the affine model

Mper(z) = Flotg 1) + Aoy (2 — Zpay) (2.3)
of F'(x) around ., to interpolate F(x) at z,, and z,,,. An obvious use for multi-

ple secant equations in solving systems of nonlinear equations is to cause (£.3)

LA



to interpolate F(z) at additional past iterates. For example, if %z%% is a

sequence of p, past iterates satisfying

kﬁ£1k>£2k>"‘ )épkkEG, (24)

and 4, 1S, = Y, wherse
Spe; = Lo = Ty, . Y€y = Fl@gs) — Flay,) | (R.5)
then M.(x) interpolates F(z) at Ty §52, 0 pr as well as at zp and Zp.g

Conditions for a method based on the above secant equations to be o
superlinearly convergent are given in Corollary 2.8. (Clearly, S, must have full

column rank to guarantee the existence of 4, ,,.)

A special case of the above is when all but one of the function values that we
ask My,1(z) to interpolate already are interpolated by M, (z). Barnes [1965] and
Gay and Schnabel [1978] consider a strategy that has this property. They ask
the model M. ,{z) to interpolate F'(z) at p, conseculive past iterates, as well as
at #x 41 In the notation of the previous paragraph, this means that iy = k+1-7,
=1, pp. Thus

S8 = Tpe1 ~ Tparg o Vel = Flitpa) — PlZeeiy) (2.6)

Due to the linearity of the model (2.3}, it is equivalent {o define

Sp€j = Tpap—j = Tpwi-j »  Yrey = F(Tpapy) = FlEpan5) . (®.7)
Barnes and Gay and Schnabel also assume that p, < p,_;+1, meaning that any

previous function values that Mp.;(x) should interpolate already are interpo-

lated by M, (x). If the secant conditions are defined by (2.7), this implies that

(Ve — A Se)e; =0, 7=2 - pp
g0 that

- o s a - -
Yo = A S = (Y — & Si) el = (Y — AeSi) i
where Ag.15; = Y 18 the current secant equalion, i.e.

S F T~ Ye = Fl@ee) — Flag)
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If the secant equations are defined by (2.6}, then it is easy to show that

(Yo — A Sp)e; = (yp —Aese) . §=1 o
so that

Vi =4 Se = (e — A4S (L1, - DT
In either case (¥ — A S) is a rank one matrix. Corollary 2.2 shows that the least

change multiple secant update is a rank one update in this case.

Corollary 2.2. Let the conditions of Theorem £.1 be satisfied, and let ¥ —~ AS =
(y — 4s) vT where v €R™ is nonzero. Then the unique solution to (2.1) is

Ar=A+ (y —4s)w”
wheres

w =58 (sTs) v .

Proof: immediate from Theorem 2.1,

If v =e; ag in the methods of Barnes and Gay and Schnabel, then it is
straightforward to show that w is a multiple of the Euclidean projection of the
first column of S onto the linear subspace orthogenal to the remaining columns

of §. The term "projected secant update” comes from this relationship.
A local method based on the multiple secant updates discussed above is to
select each z ., to be the root of M, (x),

Tpe1 = T~ A F(x) (.8)
then choose S, ¥, €R" 7%, and update 4, to

Apsr = A + (Y — A Se) (SESe) ™ SE (.9)
Theorermn 2.5 gives necessary conditions on {5,{ and {%.1 for the sequence of
iterates generated by (2.8-9) to be locally g-linearly, or g-superlinearly, conver-
gent to a root x4 of F(z) where F (z,) is nonsingular, The linear result is based

on Theorem 2.3, a slight genseralization of the bounded deterioration Theorem
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3.2 in Broyden, Dennis, and Moré [1973], which differs only in that g, = 0. The
proof of Thecrem 2.3 is omitted; see Theorem 9.2.2 of Schnabel [1977] for a
proof of a slightly more general theorem. The superlinear result is based on the

well known theorem of Dennis and Moré [ 1974] which we restate in Theorem 2.4,

In the remainder of this paper, ||| denotes the I, vector or matrix norm.
For any Se€R™® with full column rank, K(S) denotes the 5 condition number of
S, K(S) = S| 1(sTs) 1 8T||. For any z€R"™, we define N(z,n) to be the set

fzeR™ ||z —z||<ni.

Theorem 2.3. (Broyden, Dennis, and Moré [1973], Schnabel [1977])
Let ¥ R*->R"™ be continuously differentiable in an open convex set D, and
assume there exists zL€D, >0, and y=0 satisfying N(z,n)CD, Fzg)=0, F ()

is nonsingular, and |[F'(z) — F'(z)|| < llz—=z| for all =z, z €N(x*7n). Consider

the sequence {zgx;, - -} of points in R generated by (R.B), where the
sequence {4Ap, Ay, - - - | of matrices in F™*" satisfies

Werr = F @)llr = 14 — F'zllr (1+ o ) + 0p i (2.10)

e = max {lzg e = Zull, e = 2kl o lr-g, — 24l (2.11)

k=01, - for some fixed o;=0, op=0, with g, = min{k g} for some fixed g=0.

Then for each r<(0,1), there exist positive constants 2(r), é(r) such that if
lwog — zx|| < £(r) and |[A4g—F (zx)||r < 6(r), the sequence fxq, 2, - -} is well-
defined and converges to z, with

lzp 1 — Zull € 7 l2p — 24l

for all k. Furthermore, {4 ] and {4} are uniformly bounded.

Theorem 2.4. (Dennis and Moré [1974])
Let the assumptions of Theorem 2.3 hold. Let {4} be a sequence of nonsingular
matrices in F™™, and suppose for some z,€R" the sequence of points gen-

erated by (2.8) remains in D and converges to zy, with z, # zy for any k. Then

D ARES
i ]
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tay, ) converges g-superlinearly to z4 if and only if

i WA = @) e =zl .
foeoo e o1 — 2 ||

Theorem 2.5. Let the assumptions of Theorem 2.3 hold. Consider the sequences
{7, ] and {4} generated from z,€R" and A€R™™ by (2.8-9) where S,, Y, cR" %*
with each pp€[l,n]. Suppose there exist ¢;=0, e¢g=1, g=0, such that for & =
G’ 1‘ R

Ve = £ (=) Sillr = ¢ 156l maxtllm,— —zull} . 1=-1,0,.., g (2.13)

and

KIS} = cqg (2.14)
where each g, = max{k,q{. Then there exist e=0, §=0 such that if ||lzq — zy|| < &
and [|4g — F'(z )|l = 6, the sequence {x; ] is well-defined and converges g-linearly
to 2y and {4}, {41 are uniformly bounded. If in addition, for each k there
exists v, €R* for which

Sk Ve T Ty — Xy, (R.15)

then the rale of convergence is g-superlinear,

Proof: Let Jx = F (zy). From (2.9),

(Aps1—J%) = (A —Jx) =S, (SIS )ISE) + (Y= Si) (SFS) L ST . (2.186)
Define P, = S, (S{S,) 'S, and recall that ||P.|, ||f — Pl = 1. Then using also
(2.13), with g, defined by (2.11), in (2.16) gives

Mer — Tullr = A = Tullr I — Pell + 1% — Tx Sellr 1(58S:) ™1 SP

<4 = Jullr + 01 K(S) i
Therefore from (2.14), 4. satisfles (2.10) with o;=0 and az=c,ca, which proves

g-linear convergence,
To prove g-superlinear convergence, define B = (4, ~ Jy4). Since P, is a

Euclidean projection matrix,
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By Ppl|F

12 (7 = Pllr = (1B llf — 1B Pellf)=< || Bellr — EFIAPE (.17)
Then from (2.16), (2.17), (2.13), and (2.14),
- 2
N LI
which implies
B Pellf= 2 ||Bellr (1Bl = [ Beallr + crep pe) - (2.18)

From the proof of linear convergence, there exist p,f€(0,%) such that 3, u <p
gl

and ||F ||z < 8 for all k. Using these bounds and surmnming (2.18) from k=0 to j
gives

B 1B Pellp =2 B(1Edlr — [Beville + o102 3 1) <28 (6+0)

which proves that

lim [|Z Pellr =0 . (2.19)
Finally we show that, if (2.15) is true, then (2.19) implies the Dennis-Moré condi-
tion (2.12) for superlinear convergence. Define s, = (Z,,; — %,). Then from
(2.15),

EpPese = By Se(STSe) M SE Seve = B Spvr = Epsy

50 that by the definition of an induced matrix norm

1B, Pyl = e Pe sell _ 12 S;ic”
llsell lse ||
and from (2.19)
im e v 5, mi =0

Thus the method (2.8-9) satisfies condition (2.12) of Theorem 2.4 and is o

superlinearly convergent, =

Theorem 2.5 says, roughly, that if 4.+ S = ¥ are reasonable secant equa-
tions in that F'(zy) S, is close enough to Y, and if the columns of S, are

sufficiently linearly independent, then the method (2.8-9) will be locally o-
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linearly convergent; if in addition the most recent secant equation A5, = Uy
always is included, the method will be g-superlinearly convergent, Corollary 2.6
shows that the choices of 8, and ¥, given by (2.4-5), which cause M,,{z) to
interpolate F'(z) at g, not necessarily consecutive past iterates including the
most recent, gatisly these criteria az long as the past iterates are chosen so that

}«‘ L P P e

1 ; S ey e o i jes o 1y A
1o 18 sufficiently linsarly Luut:péﬁueﬁt, and there is some upper pouna on

o

o oy
A

how many iterations back the secant equations can go.

Corollary 2.6. Let the assumptions of Theorem 2.3 hold, and let g=1 be fixed.

Consider the sequences {z;} and {4} generated from zy €R™ and AER™" by

(2.8-9), where for eachk, 1 < p, < minfk+1, n, g}, Sp, V€™ P with

K(Se)<c
for some fixed ¢=1, and
Sk€j = Tper — Ty Yooy = FlZes) “F(mzjk.) CF=L e
where
k=ly >lg > 0 >l =max{0 k+1-g3 .

Then there exist &, 6 > 0 such that if |lzg—zy||= & and |[4g — F'(zy)]] = 6, the
sequence {z.} is well-defined and converges g-linearly to z,. Furthermore, {4}
and {4, Y are uniformly bounded. If {;,=k for all k&, the rate of convergence is

g-superlinear,

Proof: By a well known lemma (see for example Section 3.2.5 of Ortega and

Rheinboldt [19701]),

(Yo =F () S) ejll < ”mscn"“xzﬁ”'mﬁx e ezl e, —z o} < 7 (1Seesll e

9k
where the last inequality uses only the definitions of S, and of w from (2.11).

Thus

1% — F'(zx) Sellr = 1Sellr g = Vory 18ell g
so {2.13) is satisfied and g-linear convergence is established by Theorem 2.5. If
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L=k for all k&, then g-superlinear convergence follows trivially since (2.15) is

true with v, =¢  for all k. u

The strategies covered by Corollary 2.6 for choosing the past iterates whose
function values the model will interpolate include the strategy implemented by
Gay and Schnabel [1978], as well as the strategy used by Schnabel and Frank
[1983] in their "tensor method" for nonlinear equations. Schnabel and Frank
always select Sge; = (@4 — ). Then they consider, in order, the steps from
Zpsr LO Ty, -, Zpy1-g: they include zp4y — 24 a3 a column of S if and only
if it makes an angle of more than 45° with the linear subspace spanned by the
already selected columns of S,. Their experience iz that the best results are
obtained using only information from fairly recent past iterates; they restrict
P, and g, to be at most Vn . This strategy allows considerably more flexibility
in choosing past iterates than the strategy tested by Gay and Schnabel; it would

be interesting to test a secant algorithm for nonlinear equations that uses it.
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3. HMultiple secant equations for unconstrained optimization

Now we turn to the unconstrained rminimization problem (1.8), which we
reviewed briefly in Seclion 1. The standard quadratic model of the objective
function,

Mies1(%) = [ (@ 01) + VF (Ze)T (& =2 41) + B2 ~201)T Her(2 —241) . (3.1)
could interpolate several past gradient values if the symimetric approximation to
the Hesslan M., obeyed several secant equations

Hyoy S = T (3.2)
where Sy, ¥ €A™ are given by (1.1B). Several authors, starting with Schnabel
[1977], have noted that (3.2) may be inconsistent with the symmetry of H,,;. In
Section 3.1 we show that there exists a symmetric, or symmetric and positive
definite, Hy; satisfying (3.2) if and only if LS, is symmetric, or symmetric and
positive definite, respectively. While the natural choices (1.18) of S, and ¥
satisfy these conditions if f(z) is a positive definite quadratic, for general f(z)
V'S, usually is not even symmetric, In Section 3.5 we atternpt Lo remedy this
difficulty by proposing several reasonable ways to perturb ¥, to a ‘E;}c for which
f’:S;c ig symmetric and positive definite. The preceding sections, 3.2-3.4, discuss
the updates and methods that may be used if the conditions for symmetric {and
positive definite) multiple secant updates to exist are satisfied. Section 3.2
introduces generalizations of the PSB, DFP, and BFGS updates that satisfy (3.2)
and shows that they are the least change updates in the appropriate norms. In
Section 3.3 we show that several "projected secant updates” that have been pro-
posed for uncenstrained minimization are special cases of the updates discussed
in Bection 3.2, Section 3.4 shows that quasi-Newton methods based on our gen-
eralizations of the P3B, DFP, or BFGS updates are locally g-superlinearly conver-
gent under standard assumptions, The methods proposed in Section 3.5 satisfy

the conditions for g-superlinear convergence,
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3.1. Necessary and Sufficient Conditions for Symmetric Multiple Secant

Updates

Theorem 3.1. Lel psn, S, YER™P, rank(5) = p. Then there exist symmetric
H,eR™™ guch that H,S = ¥ if and only if ¥7.5 is symmetric. There exist sym-
metric and positive definite H,€R™ such that 7,5 = 7 if and only if Y75 is

syrunetric and positive definite.

Proof : Only if : Suppose there exists a symmetric H, for which #,8 = Y. Then
STH,S =¥'S is symrnetric, Similarly, if 7, is symmetric and positive definite,
then STH,.S = ¥TS is symmetric and positive definite.
If : Suppose Y7S is symmetric. Then

Hy = Y(STS) ST + 5(STS)y1yT — s(8T8)y HyTs)sTs) 18T (3.3)
is well-defined, symmetric, and obeys H,S = ¥. Now suppose Y75 is symmetric
and pogitive definite. Then

Hy=Y (YTS)'* v
is well-defined, symmetric, obeys HpS = ¥, and is at least positive semi-definite.
Also rank(Y) = p from Y75 nonsingular. Thus if p=n, Hj is positive definite, If
p<n, let ZER™™ be any matrix whose columns all are in, and together span,
the null space of S; that is, Z7S =0, m =n—p, and rank(Z) = n—p. Then
Hy=Y(Y's)yt vl + z 27 (3.4)

is well-defined, syrametric, obeys HzS = ¥, and is at least positive semi-definite.
Now let UeR™ (™ ?) be an orthonormal basis for the null space of &, Then 7 =
UNT where NeR™X"P) has full column rank, i.e. NN is nonsingular. Then
from (3.4},

Hs= M, Mo MT
where M, Ma €R™ ",
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§ (¥7s)
M} =Y I % . Mg = .
- i NTN
Clearly My is nonsingular, and since
vis| YU
MTis U} = :
J 0 {

M, is nonsingular. Therefore Hyis nonsingular and hence, positive definite, =

Note that the above proof could be simplified slightly by defining Z= U, how-

ever the more general definition of 7 will be useful to us in Section 3.2.

Now let us consider whether the conditions of Theorem 3.1 are likely to be
satisfied in the context of an unconstrained minimization algorithm, Suppose,

as in Section 2, that Ex;jkg is a sequence of past iterates satisfying (2.4) and S,

Y, €R™% are defined by

Seej = Zger ~ Ty o Yooy =V () —Vf (2y,) =10 o (3.5)
If f{z) is quadratic, then ¥, = V¥f (z) S,, so ¥/S, is symmetric for any éx%;,
and Y{S; is positive definite if ¥ f (z) is positive definite and S, has full column
rank. When f(z) is not quadratic, however, it is unlikely that ¥/S, is sym-

metric, as illustrated by the following example.

Example 3.1. Let zeR® f(z) = ¥(z[1])? + B(z[2])? + Y(=z[2])*, and suppose
some algorithm generates zy = (=8, —2), z; = (-1, ~1), zz = (-1, 0). If, in the
notation of the preceding paragraph, Ty = T, i=12, then

_m 1

&y =
18

5 Y}“

~and

- [2 4
Y{Slzl
10 21
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Since the natural secant equations for unconstrained minimization, Hy ;5
= Y, with S, and ¥, defined by (3.5}, rarely will satisfy the conditions of
Theorem 3.1 when p,>1, it might seem that the topic of multiple secant equa-
tions for uncenstrained minimization is fruitless. In Section 3.5, however, we will
show how a practical algorithm for unconstrained minimization might generate
multiple secant equations that satisfy the conditions of Theorem 3.1, without
changing the current secant equation. Sections 3.2-3.4 investigate updates and

methods that are possible when the conditions of Theorem 3.1 are satisfied.

3.2. Lesst change symmetric multiple secant updates

The reader may have noticed that the equation (3.3) used in the proof of
Theorem 3.1 reduces, in the case when p=1, to the PSB update of # = 0. The

corresponding update to a nonzero H would be

Hpsgy = H + (Y=HS)(STS)Y ST + S(sTsy Y y-H)T (3.6)

- S(STSY Y y-HS)Ts(sTsy 18T |
Equation (3.8) is a generalization of the PSB update {1.8) to multiple secant

equations, hence the name “PSBg". Hpggy is well-defined and Hpgg, S = ¥ as
long as S has full column rank; if A is symmetric, then it is easy to see that
Hpspy 18 symmetric if and only if Y'S is symmetric, The rank of Hpgpg —H is at
most 2p. We show in Theorern 3.2 that if ¥TS and H are symmetrie, then Hpgpy
iz the least change symmetric update to H, in the Frobenius norm, that satisfies
H,5=7.

Correspondingly, the DFP update (1.13) may be generalized to

Hpppy = H + (Y-HSYYTS)Y ¥ + Y(¥T8)y Y v-HS)T (3.7)

- V(YTS)y Y-S S(¥Ts) 1yt .
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Hpwpy 18 well-defined and Hpppy, S = ¥ whenever Y"S is nonsingular; it is sym-
metric if # and Y75 are symmetric. Again, Hpppy, —H has rank at most 28p. We
also show in Theorem 3.2 that if # and ¥7S are symmetric and positive definite,

then Hppp, is the solution to

minimize ||[W-T(H, - H)W |7 (3.8)

H e pnsn
subject to H, symmetric and positive definite, H, S =YV ,
where WER™ " ig any nonsingular matrix that satisfies W/ W § = Y.
The reader also may have noticed that the matrices Hy and Hy used in the
proof of Theorem 3,1 are related to the BFGS update, Infact, if H is symmetric
and positive definite and

Z = H% - HS (STHS) ' sTH# (3.9)
then the matrix Hj given by (3.4) is

Hppasg = H + Y(YTS)y 1 ¥T — HS (STHSY 1 STH | (3.10)
a generalization of the BFGS update (1.12), If STHS and Y73 are nonsingular,
Hpppsy 18 well-defined and Hppesg S = ¥, Hpppse is symmetric if H and YTS are
symmetric, Hppggy —H also hag rank at most 2p. Theorem 3.2 also shows that if

H and Y7S are symmetric and positive definite, then Hpresy is the solution to

minimize ||[W(H - H D)W
H, eRnxa

F (3.11)

subject to A, symmetric and pesitive definite, H, § = ¥

for any nonsingular WeR™ ® that satisfies W' W S = 7,

Theorem 3.8. Let p=n, HcR™ symmetric, S, ¥ €£"%, Y8 symmetric,

rank(S5) = p. Then the unique solution to

minimize |[|[H, — H||z subject to H, symmetric, H, S =Y (3.12)

H,eRn¥

is Hpgpy given by (3.6). If in addition H and Y7 are positive definite, and

WeR™™ is any nonsingular matrix that satisfies W' & = ¥, then the unique



solutions to (3.8) and (3.11) are Hpmp, given by (3.7) and Hpppg, given by (3.10),

respectively.

Proof : If S has full column rank and H, Y7S are symmetric, then clearly Hpspy
given by (3.8) is symmetric and satisfies Hpgp, S = ¥. Now let H,€R™™ be any
symmetric matrix satisfying .5 = Y, and define Epgg, = Hpsgy—H, F = H,~A.
Then substituting H,S for each occurrence of ¥ in (3.8) gives

Epspy = EP + PE ~ PEP = EP + PE(I—P) (3.13)
where P=S(S7S)'S7 is a Fuclidean projection matrix. Recall that ||P|| < 1,

/=Pl =< 1, and P{/—P) = 0. We also use the fact that for any M,, My cR™",

N, P + My(I=P)|F = [|M,P|B + [ Me(I-P)|F + R trace(M,P(I-P)MZ)

| M PI|F + [|[Me(I=P)IF . (3.14)
Thus from (3.13) and (3.14),

2

A

| Epsay |IF = ||EPIF + ||PE (1~ P)]

< |EP|F + [\PIF |2/ -P)IF

= |[[EP|F + IE(-P)IF = |Z]F

with the last equality coming from another application of (3.14). This shows that
{3.6) is a solution to {3.12). The solution is unique because (3.12) is a minimiza-

tion problemn in a glrictly convex norm over a convex set.

If H and Y75 are symmetric and positive definite, it iz straightforward to

verify that the generalized DFP update (3.7} is (3.4) with
Z = Hbh Y (YTs)t 5Tk |

Clearly Z7S = 0, and since A% is nonsingular and ¥, § €R™¥, 7 has rank D,
Thus from the proof of Theorem 3.1, Hppp, is symmetric, positive definite, and
satisfies Hpppy S = Y. The proof that Hpgpy is the solution to (3.8) then follows
from applying the standard transformation of variables technique to the above
proof for the generalized PSB; see for example Dennis and Schnabel [1979].

Finally, since the generalized BFGS update (3.10) is (3.4) with Z given by (3.9),

VLY
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the same argument shows that it is symmetric, positive definite, and satisfies
HppgsgS = Y. The proof that Hppgg, is the solution to (3.11) also is obtained in
the standard way. First the dual DFP result is obtained, that is, it is shown that

the solution to (3.11) is

Hi' = H' + (S=H'(YTS)'sT + s(YTsy W s—-H7')T  (3.15)

~ S(YTSY US—-HNTS(¥TS)1sT
Then it is straightforward to show that for H;* given by (3.15), H, = Hpppgy. =

Many algebraic properties of standard symmetric secant updates can be
extended Lo symmetric multiple secant updates. For example, the analog of the
Broyden one parameter class (Broyden [1970]) is

H, (M) = Hppgsy + VM VT, V=(HS(STHS) - Y(¥T8)™1) (STHS*
where M eRP*? is any symmetric matrix; H (M) is positive definite if ¥ is posi-
tive definite, and Hpppy = H.(/). Also, the Cholesky factorization of Hpm, or
Hpresy may be obtained in O{n®p) operations from the Cholesky factorization of
H; for example if # = LLT, then Hppgs, = JJ7 where

J =L+ (YG—-HS)(STHS)Y ' sTL
for GeRP¥ gatisfying

T (Y7's) G=5"THS .

J can be calculated in O(n®p) operations, and its L§ factorization can be

obtained in an additional O{n"p) operations.

3.3. Projected symmetric secant updates

Davidon [1975] propoesed a quasi-Newton algorithm that finds the minimizer
of a positive definite quadratic in at most n+1 iterations. To accomplish this,

each quadratic model interpolates the gradients at current and all past iterates;
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that is, for each k,
Vm;‘,(mj) = Vf (LEJ) ; jio,i, o ,E{i , (3j8}
Equation (3.16) implies that
He Sp-17 Yooy
where S, _;, Y, €R™* are defined by
Sk—1€) =Xpp a1 ~Tp—j = Sp—j, Vo165V (Tpa1—5)~VF (Z—j) = Yoy, 5=1, - K .

Similarly at the next iteration, Davidon's method requires

Hig+1 S = Y
where S, ¥, cRmxE+)

Sk€j = Sge1-j 0 Y€ = Yesr—j ., J=1, 0 k+1.
It is straightforward from the above definitions that

Yo = HeSe = (Y ~ Hise) e (3.17)
that is, H already satisfies k of the k+1 secant equations imposed upon Hy .
Syrmmeltric secant updates that satisfy Hp,, S, = ¥, when f (z) is quadratic and
(8.17) is true were investigated by Davidon [1975], and subsequently by many
authors including Dennis and Schnabel [1981], Nazareth [1978], and Schnabel
[1977, 1978]. They often are called "projected secant updates”.
Corollary 3.3 shows that the necessary and sufficient conditions for sym-
metric secant updates to satisfy (3.17) for general f (z) follow immediately from
Theorem 3.1. If these conditions are satisfied, the updates discussed in Section

3.2 reduce to rank two updates,

Corollary 3.3. Let p=n, HER™® gymmetric, S, ¥ €™, rank(S) =p, s = Se,,

Yy = Yy,

Y—HS =y — Hs)el . (3.18)
Then there exist symmetric A, for which H.,.5 = ¥ if and only if

ST (y — Hs) = ve, {3.19)
where o = s (y~Hs). In this case, the generalized PSB update (3.8) is a rank

w0

19
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two update of /7. If in addition H is positive definite, then there exist symmetric
and positive definite /, for which 7,5 = Y if and only if (8.19) is satisfied and
l+o7>0, (3.20)
where 7 = e{(STHS)%e;. In this case, both the generalized DFP update (3.7)
and the generalized BFGS update (3.10) are positive definite and rank two

updates of H.

Proof : Define { = y—Hs. From Theorern 3.1, there exist symmetric H, satisfy-
ing H.S = Y if and only if Y75 is symmetric. From (3.18),

Y's = sTHS +ef (571)7 .
Since H is symmetric, ¥7.S is symmetric if and only if S7# is some multiple of
e;. Since (STt)[1] = s¥t = o, this is possible if and only if (3.19) is true. If
(3.19) is satisfied then the generalized PSB update is symmetric, and substitut-
ing {3.18) and (3,19) into (3.6) shows that in this case it is the rank two update

T T
H,=H+(y—Hs)s +5§y~Hs)! —o5&s

where § = S(878)1e,.

Also from Theorern 3.1, there exist positive definite . for which H,8 = Y if
and only if ¥Y7S is symmetric and positive definite, If H is syrmumetric and posi-
tive definite and (3.19) holds, then from the above

Y15 = STHS + oeef (3.21)
is symmetric. Since STHS is positive definite, it is easy Lo show from (3.21) that
¥TS is positive definite if and only if (3.20) is true. In this case, substituting

(3.18) and (3.19) into (3.7) gives the generalized DFP update in this case to be

T T )
Hy=H+ty +ytT —oyy (3.22)
where ¢ = Y{¥Y75) e, Substituting (3.18) and (3.21) into (3.10) and using the
Sherman- Morrisen-Woodbury formula for the inverse of (3.21) gives the general-

ized BFGS update in this case to be
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s T —

- Y HEg* H
i P 4 .
Hy=H T{1+oT) T

where & = S(STHS) e, 7 = Y(STHS)Y e, = H5+7t. =

(3.23)

The necessary and sufficient conditions for projected symmetric secant
updates to interpolate several past gradients have been discussed by several
authors, starting with Schnabel [1977]. As we already have indicated, they
rarely are satisfied if f (z) is nonquadratic, even if {3.17) is true. In our opinion,
this is the fundamental reason why projected symmetric secant updates have
not been an improvement over the BFGS in practice. The projected DFP update
(3.22) was proposed by Schnabel [1977] and an algorithm that uses it was shown
to be g-superlinearly convergent. If f(z) is quadratic, (3.22) is the dual of the
update originally proposed by Davidon [1975]. The projected BFGS update (3.23)

is derived by Dennis and Schnabel [1981].

3.4. Buperlinear convergence of quasi-Newlon methods using symmetric mul-

tiple secant updates

A local method for unconsirained minimization based on the symmetric
multiple secant updates discussed in Section 3.2 is to select each iterate x4 to
be the critical point of the current quadratic rmodel,

Tper = 3 — H'V ()
then choose Sg, ¥ €R£" °% such that ¥LSy is symmetric, and update H, by the
generalized PSB update (3.8), or if ¥['S; also is positive definite, by the general-
ized DFP (3.7} or BFGS (3.10) update. (When we refer to updates 3.6, 3.7, or 3.10
in this section, we agsume that the symbols Hpspy, Hprpy, and Hppesy in these
formulas have been converted to Hy,,, and that all other symbols in these for-

rmulas have been given the subscript k.) In this section we show that if {5} and
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{7} obey the same conditions (2.13-14) as were required for the local conver-
gence of the multiple secant method for nonlinear equations, then any of the
aforementioned methods for unconstrained minimization is locally and g-
superlinearly convergent to a minimizer z4 of f(z), under standard assump-
tions. Theorem 3.4 proves the local g-superlinear convergence of the method
that uses the generalized PSB update, The proof is based on Broyden, Dennis,
and Moré [1973] and Dennis and Moré [1974], and is very similar to the proof of
Theorem 2.5. Theorem 3.5 states the analogous result for methods using the
generalized DIFP, or BFGS, updates. The proofs would follow from the proof for
the PSE method. Since thege proof techniques are so well established, we omit

the proof of Theorem 3.5 and just make a few comments about it.

Theorem 3.4. Let F: R"»R" be continuously differentiable in an open convex
set D, and assume there exists zx<€D, n>0, and »=0 satisfying N(zyx.n)CD,
F(zy)=0, F'(zy) is symmetric and nonsingular, and |[F(2) ~ F'(z)|| = 7|z —z||
for all z, 2 €N(z*mn). Consider the sequences {z,} and {H,} generated from
2p€R™ and a symmetric Hoe B by
Ty = 2y — Hy ' F(zy)

and the generalized PSB update (3.8), where (S}, (%} cR" P with each Die
€[1,n] and each Y!S, symmetric. Suppose there exist ¢ =0, cg>1, g=0, such
thatfork =0, 1, - -,

1% ~ 7' (zx) Sellr < ¢4 |19 ]l maxllze— —zull}, 4==1,0, ..., 9 (3.24)
and

K(||Sell) = cg (3.25)
where each g, < maxtk,g]. Then there exist =0, §=0 such that if ||zg — z4|| < &
and ||Hy — F'(z)]| < 6, the sequence {z;] is well-defined and converges g-linearly
to zy, and (M.}, {Hy Y are uniformly bounded. If in addition, for each k& there

exists v, € £ for which
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SIG Vi = Ty — &y

then the rate of convergence is g-superlinear,

Proof : Let Hy = F'(zy), By = (Hy — Hy), P, = S (S{SE)'SE. Then from (3.8) it

ig straightforward to obtain

Byvy = By = B P + (Yo —Hu Sp)(S{Se) 7S — P + S (SES,) (Y~ Hx Se)
+ Py B Py = Se(SES ) M Ye~Hy Si)T Py
= (=P ) B (I =Py) + (Ye—Hy Sp)(SESe) S
+ Se(S¢Se) (Y —Hu ) (1-P) . (3.26)
Thus using ||/ =F||= 1, (3.24), and the definition {2.11) of w4,

B allr < Eicllw 1 =Pe | + [ Ye—Hy Sellr 1(5{Se) S

(1 + 17 =Fell)

< || Bllr + R ey K(Sephe
Therefore from (3.28), Hg.; satisfies (2,10) with o, = 0 and oy = 2¢,c,, which

proves g-linear convergence from Theorem 2.3. To prove g-superlinear conver-
gence, derive from (3.26)

B il < 1B (F=Pe)llr + ey copn
The remainder of the g-superlinear proof then is identical to the g-superlinear

prool in Theorem .5, ®

Theorem 3.5. Let the assumptions of Theorem 3.4 hold, and assume in addition
that F''(zy) is positive definite. Then Theorem 3.4 remains true if the general-
ized PSB update (3.6) is replaced by the generalized DFP update (3.7), or by the
generalized BFGS update (3.10).

The convergence proof for the generalized DFP method is very similar to
the proof of Theorem B3.4. The modifications required are similar to the
modifications Broyden, Dennis, and Moré [1973] use to convert their proof for
the PSB method into a proof for the DFP method. Bounded deterioration is pro-

ven using the weighted Frobenius norm
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By = ||Hg# (H, — Hy) Hyt
It is straightforward to show from (3.7) that

I -

By = (I=P)E(-P )" + (%=5) (B"S) 7 BT + % (%75) W(%=S.)" (/1-P)T

where

Yo = HRY, , S = HAS, , P, = I-Y,(%75,)7'5,7,
and from (3.24),
W= FPell= 1+ 0(uw) . ||Pell=1+ O) .

Linear convergence follows easily from these relations and Theorem 2.3, and g-
superlinear convergence from the same techniques used in the proof of Theorem
3.4. The convergence proof for the generalized BFGS method is essentially the
dual of the DFP proof, as in Broyden, Dennis, and Moré. Note that ¥7S, positive
definite is implied by (3.24) and F''(x4) positive definite.

The crucial question is whether there exist reasonable choices of {5,] and
%] that satisfy the conditions of Theorems 3.4 and 3.5. The following section

provides a positive angwer to this guestion,

3.5. Forming multiple secant equations for unconstrained optimization

The obvicus use of multiple secant equations in an unconstrained minimiza-
tion algorithm would be to allow the quadratic model (3.1) of f(z) around z .,

to interpolate gradients al pp >1 past iterates g%g, =1, pg. where

kxllkﬁégk:)"'}lp}ck;ﬁo, (32?)

This would require the model Hessian H, ., to satisly p, secant equations

Hiw1 Se = %, (3.28)

where S5, Yksﬁnxz’ ® are defined by (3.5). Unfortunately, Theorem 3.1 shows that

{3.28) iz consistent with Hy,; symmetric (and positive definite} only if Y75, is
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symmetric (and positive definite), and Example 3,1 indicates that this is unlikely

for nonquadratic f{z). In this section we discuss several ways to perturb 7, to

. T
Y, = (X +AY,) so that ¥, 5, is symmetric (and positive definite). These methods

all yield (A¥;)e; = 0, that is, the standard secant equation is unchanged, and

they all generate sequences (5.! and }g’kﬁ that satisfy the conditions of

Theorems 3.4-5 for local g-superlinear convergence., The general aim of these

T
methods is to perturb ¥, as little as possible consistent with ¥, .S, symmetric,

and to change more recent secant equations less than less recent secant equa-

tions.

For the remainder of this section, we assume that {5} and {¥;} are defined
by (3.5, 3.27), with {lz} chosen by a procedure that guarantees K(S;)
sufficiently srmall; a suitable procedure iz described at the end of Section 2. We

also drop the subscripts & for the remainder of this section. Now we describe

our first strategy for calculating AY.

It iz trivial to calculate the lower triangular matrix LeRP*? for which
¥'s -8Ty=~L+ L7 | (3.29)
Note that the diagonal of /, is zero. From (3.29), (¥7S + L) is symmetric. Our
first strategy is to chooze AY such that
(A" s=1L. (3.30)
Equation (3.30) implies that for each column (AY)e; of AY, only ((AY)ej)T(Se;),
1=i<j, need be nonzero. Thus we may choose (A¥)e; = 0, leaving the standard
secant egquation intact. This choice is guaranteed if we choose the smallest AY
that satisfies {(3,30), in the Frobenius norm. From Theorem 2.1, it is
AY = §(STS) LT | (3.31)
The above choice of AY guarantees that (Y+A¥)?S is symmetric, but not
necessarily that it is positive definite. An easy modification that assures positive

- definiteness is to first choose a subset of the rows and colurnns of (Y7 S+74) that
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is positive definite, and restrict the past points used to this subset, This selec-
tion is easily accomplished using a modification of the Cholesky decomposition
of (¥Y7S+L); the normal decomposition is attempted, but if the addition of the

4

7" row and column would cauge the malrix not to be positive definite, then the

7% past point {(and the 7% row and column of (¥7S+1)) is eliminated. If the
normal line search condilion in a quasi-Newlon method for minimization,
(Y2 ,)T(Se,) > 0, is satisfied, then this strategy always retains the current secant

equation.

In Example 3.2 we apply this strategy to Example 3.1,

Example 3.2. Let S, ¥ €R®® be the matrices S, and Y, from Example 3.1, Then

o -8
yﬁ“smsf’yzl
(6 0O
[ o

so I, = U1 since (¥7 = {2 4 ] is positive definite, both '
=|-g 0| Since (Y'S+L) = |4 2 | is positive definite, both past points

can be retained, From (3.31)

o To 12
AY = S (STSy LT = {
o -8
so that
. 1o 18
Y=
2 4

It is easy to show that under the assumptions of Theorem: 3.4, there exists

¢ >0 for which || Y — F'(z)S]| < ¢||S||s. @ defined by (2.11). Let Hy = F'(xy). We

showed in the proof of Corollary 2.6 that

Y — HySllp=va v [|S]lu .
so that

Y78 ~ STH,S|lp=vn 7 |ISIPu.

Therefore

i

4

e ; J
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1Ll = (1/ VR =L + LT

F = (1/VR) |IYTS - STY|p
= (1/V2) [(¥TS=STHS) = (STY — STHS)||F = VEr |5 |Pu

and

laY

F=SSTS) Ll = VER vy K(S) ISI 4
Thus

Y= HyS | p=|IY = HySllp + Y |r<c ||S]| 1 (3.32)
where ¢ = Vn y(VEK(S) + 1). From Theorems 3.4-5, this implies that a general-

ized P3B, DFP, or BFGS algorithm that chooses {5, and { ¥, to satisfy the con-
ditions of Corollary 2.8, and modifies ¥;, by (3.31), will be locally g-superlinearly

convergent to a minimizer zy where Vof (z4) is nonsingular. Sufficiently close to

T
Zy, (3.32) guarantees that ¥ S will be positive definite.

When using multiple secant equations in conjunction with a generalized DFP
or BFGS update, it may be more reasonable to find the smallest AY, in a
weighted Frobenius norm, that satisfies (8.30). It is straightforward to show

that, for WeR™*" nonsingular, the solution to

WT AY|lz subjectto (AV)T § =1

minimize |
Q}/'Eﬂnxp
is
AY = wiws (STwTws) L rT .
If we assume that the past points have been restricted, if necessary, so that

(Y7 S+1) is positive definite, then a reasonable choice is W for which WY WS =

(Y + AY); it is easy to show that this choice results in
AY = Y (5T ' .7 |
Y=(¥V+ AY) also can be shown to satisfy the conditions of Theorems 3.4-5,
We briefly describe a second strategy for perturbing ¥ that may come
closer to the goal of changing recent information as little as possible. It is to

change each column of Y only as much as necessary to meel the symmetry

requirements imposed by more recent (already revised) secant equations.
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Algebraically, this means

Algorithm 3.1,
1. Set (AY)e, = 0.
2 Forj=g - pdo
2.1. Belect 6€R™ to minimize ||8]],
subject to (Ye; +6)7 Se; = (Se;)T (Y+AY)e,, i=1, -+ j-1.
2.2 Set (AY)e; = 6.
That is, column j of AY is chosen to be as small as possible subject to the j%
column of the jxj principal submatrix of ST(¥ + AY) equaling the 7% row of this
submatrix. The first two columns of AY generated by Algorithm 3.1 are the
same as are those generated by (3.31); the remaining columns would, in general,

be different.

ST(Y + AY) generated by Algorithm 3.1 also might not be pogitive definite.
It is easy to modify Algorithm 3.1, however, to generate ST(¥ + AY) positive
definite, by generaling iteratively the Cholesky factorization of the current §xj
principal submatrix, and, if the 7** step fails to keep the submatrix positive

definite, eliminating this point from the set of past points used at that iteration,

Algorithm 3.1 has a close relationship to our first strategy for choosing AY,
From step 2.1, AY = SLT, where I is lower triangular with zero disgonal, Thus
(Y+AVTS = (YTS + LSTS) is symmetric, so Algorithm 3.1 is equivalent to
finding the unique lower triangular (with zero diagonal) I for which

¥7's - 8Ty = [87s —~ STSET |

and then choosing AY to solve

minimize [[AY]|z subjectto AYTS = L5TS
AYER™*P

(Y + AY) generated by Algorithm 3.1 also obeys the conditions of Theorems 3.4~

5, since it can be shown that

RGNS
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Y] =V 7 (1 + K(S)HP 1S lw .

Since p and K(S) will be small in practice, the constant in the above equation is
not too large. Finally, a weighted version of Algorithm 3.1 can be obtained by

changing the norm in step 2.1 Lo a weighted norm.

The strategies given in this section may not be the best ways to generate

multiple secant equalions for minimization. They do show, however, that reason-

able choices of {5, and %f{’k { exist that satisfy both the existence conditions of
Theorem 3.1 and the local g-superlinear convergence conditions of Theorem
3.4-5. Maybe they will lead to successful computational algorithms. We do think
there is a significant difference between the strategies of this section and algo-
rithms that have used projected updates such as those discussed in Section 3.3.
While both approaches interpolate multiple past gradients when f{z) is qua-
dratic, the strategies of this section should come closer to interpolating past
gradients for non-quadratic functions, because they do not compound the inter-

polation errors of previous updates. The cost is a higher rank update,
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