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AUSTRACT

The functional behavior of a deterministic program segment is a function f:0-D,
where J is some set of states for the computation. This notion of functional behaviors
can be extended to nondeterministic and concurrent programs using techniques from
linear algebra. In particular, the functional behavior of a nondeterministic program
segment is a linear transformation f:4-+A4, where A iz a free semiring module. Other
notions from linear algebra carry over into this setting. For example, weakest precondi-
tions and predicate transformers correspond to well-studied concepts in linear algebra.
Using multilinear algebra, programs with tuples of inpuls and outputs can be handled.
For nondeterministic coneurrent programs, the functional behavior is a linear transfor-
mation f:A4-A4, where A is a free semiring algebra. In this case, f may also be an alge-

#
bra morphism, which indicates that the program involves no intsrprocess communica-
tion. Finally, we study a model of syntax for programs whose semantics is given using

linear algebra. It is shown that in this model free interpretations (essentially Herbrand

universes) do not generally exist.

*A summary of part of this paper appears under the title "Functional Behavior of Nondeterministic Pro-
grams” in the Proceedings of the 1883 Foundations of Computation Theory Conference, held in Borgholm,
Sweden.



1. INTRODUCTION

In denotational semantics, the behavior of a program segment is a function J:D-=D,
where D is a set of states for some abstract machine. If nonterminating computations |
are possible, then 2 may contain a special element 1. € D to represent this fact. A tuple
of inputs or outputs to a program segment can be represented by a set of tuples
D™ = {dy, - d,)|d; € D} Inparticular, the functional behavior of a program segment
with n inputs and p oulpuls is a function f:0*-DP. We will generally refer to such "pro-

gram segments” ag just “programs”.

The purpose of this paper is to extend our understanding of the functional behavior
of programs to nondeterministic and cohcurrent situations, For nondeterminism, we
consider three views. In the first view, the only property of interest is the set of possible
outputs a nondeterministic program may produce from a given input. This is the widely
studied standard notion of nondeterminism [6,15,34,35,36,39]. An alternative is to
record with each possible output state the number of different computation paths which
lead to it [1]. A third view of nondeterminism is related to probabilistic models of com-

putation [20,38]. In this view, we record with each state some predicate which must

- hold in order for that state to be a possible output. The predicates may invelve timing

i

considerations which can affect a computation, or they may be statements about non-

deterministic choices made by a program.

These three notions of nondeterminism are developed in section 2. The unifying
idea behind the three models is a semiring module, In all three cases, we show how the
functional behavior of a nondeterministic program segment is a linear transformation

[ A-A, where A is a free semiring module generaled by Lhe set D of stales.
g

Semiring modules are a generalization of vector spaces. In section 3, we show how
some other ideas from linear algebra generalize to our setting. In particular, elements

of the dual module of A correspond to "conditions” in the sense of Dijkstra [6,7]. Weak-



est preconditions are developed using kernels of linear transformations. Predicate

transformers are linear functional transformers.

Programs with tuples of inputs and outputs are considered in section 4, using a
suggestion of Hennessy and Plotkin [15]. The important observation is that the behavior
of a nondeterministic program is multilinear with respect to its many inputs. As a
result, the functional behavior of a nondeterministic program with an n-tuple of inputs
and a p-tuple of outputs is a linear transformation f gesf ;Qifj?i where the domain and

codomain are iterated tensor products of a free semiring module A.

These ideas are extended to nondeterministic concurrent programs by placing
additional structure on the underlying set of deterministic states. In particular, we con-
sider a deterministic state to consist of any finile number of data elements or messages
existing concurrently. With this model, the data space for computations forms a semi-
ring algebra -- which is a generalization of ring algebras studied in linear algebra. How-
ever, the functional behavior of a program scgment is not always an algebra morphism’
Specifically, the behavior of a program segment is an algebra morphism if and only if no
communication occurs between its several inputs.

Finally, we look at an abstraction of this sorl of fs.mci,m‘mﬂ behavior, based on alge-
braic theories. The abstraction consists of a set of uninterpreted nondeterministic pro-
gram segments. An interpretation associates a linear transformation with each pro-
gram segment in a way thal preserves certain operations. Our focus is on the universal
properties of the model -- we show that in general, universal (or free) interpretations do
not exist,

Our study is limited in a nunber of ways. First, we consider main! v finite nondeter-
minism and finite concurrency, Any given program deals with only a finite number of
nondeterministic possibilities, and for each of these, there is only a finite number of

concurrent inputs or outputs, For nondeterrminism, our results carry over to the



infinite case, and occasionally we point out how to do this, The second restriction is that
at the moment we do not consider recursively defined or iterative programs. We plan to
handle such programs in the future using two techniques. One possibility is to use
ordered semiring modules and least fixed-point techniques [15,34,39]. Another
approach is based on the observation that the linear transformations we are studying
are matrixes with respect to a basis of the semiring module. Finally, in our study of
concurrency, there is no explicit consideration of time. Models of concurrent computa-
tion which account for time ordering (or partial ordering [37]) of events could be
included in our model by using an implicit ordering of messages. We expect to report on

this topic subsequently.

2. NONDETERMINISM, SEMIRINGS AND SEMIRING MODULES

We start from a set of deterministic states for a computation, denoted by D, The term
"state" is entirely neutral -- for example, if continuation semantics is intended, then the
states may be continuations. For concurrent processes, the states may also have addi-
tional structure, which we discuss later. But for the moment, view states as having no

internal structure. ‘

<.1. Nondeterministic Distributions of States

Nondeterminism occurs when the output of a cormputation is not uniquely deter-
mined by its input. In this case, a record may be kept of the possible output states
which could arise from a given input state. Such a record is called a nondeterministic

distribubion of stales, or simply o distribution.

There are a variety of notions for a nondeterministic distribution of states. Manes
discusses many in his development of "distributional set theories’ [29]. We discuss

three such ideas, concentrating on finite nondeterminism - i.e., each computation has



only a finite number of output choices for a given input.

The first possibility is to list all the different deterministic states which may arise in
a nondeterministic computation starting from a given input state. In this case, a distri-
bution consists of. a finite subset of 0. If infinite nondeterminism is allowed in the
model, then infinite subsets of I are also suitable distributions. In either case, the col-
lection of all distributions has set union as the sernantic correspondent to the or opera-
tor available in some programming languages. For reasons made clear later, it is con-
venient Lo use the addilion sign to represent the union of distributions: for distributions
z and y, the distribution z +y is read "z or y" and is the set union of z and y. The col-
lection of all distributions has the structure of a commutative monoid with respect to +.

The emply set is the identity for this monoid.

There remains the question of the meaning of the emply set of states. We take the
view that the empty set is not a possible outcome of a nondeterministic computation.
That 1s, every compulation must produce some slate as its output., If a computaticn
never terminates, the "output state” may be represented by a special element | € .
Despite the fact that the empty distribution 1s an impossible output, we keep it in the
collection of distributions in order to answer questions such as: what inputs to a particu-

§
lar program give a correct output? In general, the answer to this.question will be a non-
deterministic distribution of states. Sometimes there may be no input which makes a
program correct, in which case the answer to the above question will be "the empty dis-
tribution”. Questions like these are the subject of section 3,

If the issue is simply which states may be reached by a nondeterministic computa-
tion, the subsel nolion of distributions suffices. Another choice is to count the number
of different computation paths which give rise to each state in a final distribution (1] In
this case, we need a mulliset of deterministic states to record the number of computa-

tion paths leading to each possible state. For example, the multiset {d, d;ds]



represents two paths leading to state d, and one path leading to state d,. A finite distri-
bution is any finite multiset with elements from 5. For infinite nondeterminisrm, infinite

multisets are allowed,

Additive notation is a convenient way of denoting multisets. Let }j ngd be a formal
deb

sum running over all the states in D, Fach term ngd consists of the count ng>0 associ-

ated with the state d € D. Thus, E ngd denotes the multiset containing ng copies of d
del

for each d € D. The empty multiset, denoted by 0, represents an impossible cutcome,
as did the empty set in the subset version of nondeterministic distributions. We may

also view a sum ), nyd as an element in a vector space wilh unit vectors d and
del

coefficients ng. This is not strictly correct, as the coeflicients are natural numbers,
rather than arbitrary real numbers. The correct formalism ~ a semiring module - is

given laler in this section.

For finite nondeterminism, each coefficient ng in a sum 3 nyd is an element of
@ d
dED

N =1{012..} Furthermore, only a finite number of the ny are nonzero. If infinite non-
determinism is of interest, additive notation may still be used by @xtendmg the allow-
able coeﬂ"wmn ts to N¥ = Nufe{. Infinite nondeterminism isifurth.er developed elsewhere
[1]. '

A third view of nondeterminism is an extension of the idea of recording the path
count of a state. Indeed, it also generalizes some aspects of Kozen's work on probabilis-
tie nondeterminisrn [20]. Let / be any distributive latlice with a supremum (1) and an
infimum (0). The elements of L may be thought of as conditions or predicates having an
effect on what outputs are possible from a nondeterministic computation. For example,
the predicates could make statements about timing considerations c)r“'extemal stimuli
which could affect a computation. The "least upper bound" operation of the lattice

corresponds to the or of two predicates, while ' ‘greatest lower bound” is and The



supremum is the always true predicate, and the infimum is the false predicate. Bvery
Boolean algebra is a distributed lattice.

In this view of nondeterminism, we record the condition ¢y € I, which must hold for

each state d € D to be a possible output. A distribution is a formal sum z cgd with the
deb

coefficients drawn from L. For finite nondeterminism, only a finite number of the
coefficients are nonzero in any sum. Results relating this view of nondeterminism to

problems in concurrent computation are given elsewhere [2].

Of course, this last view includes the subsel version of distributions. Let the lattice

of conditions be the two-element Boolean algebra B, so that formal sums 2 bad
del

represent subsets of D,

The systems of coefficients mentioned above are all instances of commutative posi-
tive semirings. While specific details vary in the examples, there is a great deal of com-

monality best exposed in the general setting described below.

2.2. Semnirings
Let & be a set with two distinguished elements 0 and 1 (0#1) and two binary opera-

tions on &, denoted + and -. The operation + is called udditéon and - is multiplication,

The tuple <k, +,,0,1> is a semiring if the following conditions hold:

{1) <k,+,0>is a commutative monoid.

() <k, 1>isa momeid.

(3) Multiplication distributes over addition. That is, for all 7 s £ ¢ k
T(s+t)=(rs)H(rt) and (s+t)r = (5)H( 7).

(4) »0=0=0r, forallr k.

We frequently write k for <k ,+,-,0,1>. The identity for addition (0) is called the zero and

the identity for multiplication (1) is the unif. A semiring is commulative if its multipli-



cation is commutative. If every element has an additive inverse, then k is a ring. A
semiring is posifive if for all .8 € &k
r+s = 0 implies v =85 = 0.

No positive semiring is a ring,.

Examples: The natural numbers, N, and the natural numbers extended to infinity,
N, are commutative positive semirings, with the usual operations. The set of all
integers and the set of all reals are commutative semirings, but not positive. The two-
element Boolean algebra B = <{0,1{,\V ,/\,0,1> is a commutative positive semiring, as is
any distributive lattice with an infimum and supremum (0#1).

A function f:k -k’ from one semiring k to another k' is a semiring morphism if it is
a monoid morphisim for both addition and multiplication. For example, the map from N

to Btaking 0 to 0 and all other numbers to 1 ig a semiring morphism.

2.3, Semiring Modules .
Let k be a semiring. A k-module consists of a commutative monoid <4,+,0> and a
function from kXA to A (the image of <r,z> being written rz). The operations are sub-

ject to the axioms:

(r+s)z = (rz)+(sx) )
r(z+y) = (rz)+(ry)
(r-s)x =risx)
Oz =0

lz = .

We ordinarily write A for the module <A4,+,0> over Lhe semiring &. The operation from
kxA to A is called scalar multiplication. Note that the symbols + and 0 are each used
in two different ways: the addition and zero for the semiring k& and also the monoid

operation and identity for A. If k is a ring, then the definition of a semiring k-module
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coincides with the definition of a ring k-module [25, V]. A subset X of a k-module 4 is

said to span A provided that every element of A can be expressed as a finite sum

T T, = f ri%;, where (r;) is a sequence of elements from k and (z,) is a
i=1

sequence from X. If every element of A can be expressed as such a sum in exactly one
way (apart from commutativity of +), then X is a basis for A.

Other authors term a "semi-module” what we have defined as a module. Since we
will only consider modules over semirings, the shorter term is preferable.

Examples: (i) Let <4,+,0> be a commutative idempotent monoid. Then A is a

B-module with scalar multiplication defined bylzx =z and Or =0forallz € 4.

(ii) Every commutative semiring <k, +,.0,1> is a commutative monoid <k ,+,0>.
This monoid is a k-module. The scalar multiplication is just the mulliplication of the

semiring.

(1if) If & is a semiring and D is & set, then the collection of formal sums of the form ‘

E 7¢d is a k-module. Addition and scalar multiplication are defined pointwise, so that:
del)

}_: rqd + }j sgd = }3 (rg+54)d
del adel) den

‘;{ 3 ?"dd,} = ) (smy)d ’

dei)

The collection of formal sums remains a k-module if we include onl v Lthose sums where a

finite number of coeflicients are nonzero. In both cases, the formal sum with all zero
coeflicients, denoled 0, is the identity for +.

(iv) A function f:4~H, from one k-module 4 to another .1z a linear tronsforma-

tion il it is a monoid morphism from the monoid A to the monoid 7, compatible with

scalar multiplication. These facts may be recorded in the single equation:

Flretsy) =r(f (=) +s(f (¥)). forall v.s € k and 2y € A



The set of linear traﬁsfarmahions from A to P form a k-module with pointwise opera-

tions. Thus, if f and g are linear transformations from A to 5, then:

(f+9)z) = f(z) + g (z)
(rf Ya) = =(f (2)),

forellz € A4 and » € k.

2.4. Free Modules

Let & be a semiring and ) be any set. As described above, the collection of formal

sums of the form E Tqd, with coefficients from k is ak-module. It remains a k-module
dED

if we include only those sums with a finite number of nonzero coefficients. In the follow-
ing we describe the universal property of this module of finite formal sums, denoted
&),

Consider the function g: -k @) which maps each & € ) (o the ormal sum &4 whose
coefficient at d is 1 and all other coeflicients are zero. The sums of the form &, form a
basis for £) which is free in the following sense: Suppose 4 is a k-module and f:D-4
Is a function. Then there is a unique linear transformation J & (2) 4 making the follow-

ing triangle commute:

In particular, j"[ 2 ?"dfi] = 2 ra(F(d)). The fact that each formal sum in &) hag a
deD deD
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finite number of nonzero coeflicients guarantees that the sum Y 74(f(d)) in 4 is
deD

defined.

Because of this property, we call k¥) a free k-module over D, with inserlion
£: D>k, The practical significance of a free module is that every linear transformation
g:kP)s4 is completely determmined by its image on the basis elemenls g4. Moreover,
any function from these basis elements to A extends uniquely to a linear transformation

from k@ 1o A,

Each linear transformation from a free module to a free module may be described
by a matrix over the semiring of scalars. For exarnple, let the semiring ¥ be a Boolean

algebra with elements o, € k. Let D={d,.dy} and define 7 &Pk by

Fildy) = 14d,
Falde) = ad; +ady.
The d; and dy on the left of these equalities are abbreviations for g4, and tq, Which we
will frequently use. The right side of each equation is a formal sum in k). The linear
transformation f; may be described by the matrix:
dy dy
4
dy|1 O .
dg o O
With this representation, the addition and composition of linear transformaltions are
performed using the usual rules for matrix addition and multiplication. Throughout the

remainder of the paper we will occasionally refer back Lo this particular example of a

linear transformation.

2.8, Program Behaviors

At the start of this section, we gave three views of nondeterminism, starting from a

set D of deterministic states. For finite nondeterminism, the collection of
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n.oﬁdetermimstic distributions was always a frec k-module £ for some commutative
positive semiring k (see table 1), The basis elements g4 ¢ k) correspond to deter-
ministic states. The formal sum 0, with all zero coeflicients, is an impossible outcome,
representing no state. The addition operation in the k-module corresponds to the or
operator available in some programming languages.

Suppose k is any commutative positive semiring and 4 = k%) is a free k-module
over ), considered as the collection of nondeterministic distributions. The functional
behavior of a nondeterministic program segment is a linear transformation T A=A

Linearity implies that for allv € k& and z,y ¢ A:

Jrz) =r(f(x))
Flzty)=7(z)+ 1 (y).
The first axiom means that if = is the requirerent for z to be input, then » is again the
requirement for f(x) to be output. The second axiom means that when the input is

z ory, then the output is f (z) or f (y).

View of Semiring Finite
Nondeterminism of Scalars Nondeterministic
Distribulions

subsets Boolean semiring, B Bl
multisets Natural numbers, N N2
model

conditions Dislributive lattice, 1)
model L, with 0 and 1

Table 1. Models of Nondeterminisim.
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Not all of the linear transformations on A represent program behaviors. Since zero

is not a possible output, we require
f{z)=0 implies z =0,

We call a linear transformation that meets this requirement a positive fransformation.
The previous example of f, is a positive transformation. In this example, the elements
@ and @ in the semiring k£ correspond to conditions which affect the computation of f,,
Perhaps a means "console button a is pushed" and & is the negation of @. In this case,

the behavior of f, is informally described as follows:
¥ if the input to f is state 4, then the oulput is also d.
* if the input to f, is state dy and console button a is pushed, then the output is d,.

* if the input to f, is state d; and console button o is not pushed, then the output is
dy.
If we have computations that never terminate, then 4 may contain a special ele-
ment | to represent such a computation. In general, we do not require f{1) = |, since
& program may give oulput from exogenous events not explicitly given in its input. A

positive transformation which does have f (1) = | is called strict,
#

For infinite nondeterminism, a similar model ariscs, The main diference is that the
semiring of scalars and their modules need to have countably infinite sums defined.
Moreover, the infinite surn operation needs to be associative and commutative, and mul-
tiplication must distribute over infinite sums. The exlended natural numbers N*, form
such a semiring. Any countably complete distributive lattice with countable distribu-
tivity is also such a semiring. In these infinite models, linear transformations must

preserve infinite sums - i.e., f{ b3 xi} =3, f (=), for any countable index set /.
el i€l

)



3. DUAL MODULES, KERNELS AND WEAKEST PRECONDITIONS

Recall that every commmutative semiring & is ilsell a k-module with scalar multiplication
just the semiring multiplication (section 2.3). For any other k-module, 4, the collection
of all linear transformations from A to k& is a k-module, denoted A* and called the dual
module of A, Scalar multiplication and addition are defined pointwise, as in the last
exarnple of section 2.3, If 4 = £%9) is the set of nondeterministic distributions for some
sel [ of deterministic states, then 4¥ can be interpreted as "conditions” in the sense of

Dijkstra [6,7]. The correspondence between conditions and A* is given in this section.

We begin with the simple case when k is the Boolean semiring B = {0,1} and 4 = B
is the free Boolean module over a set D) of deterministic stales. We will view A as the set
of finite subsets of [, with set union as addition. A condition, in the sense of Dijkstra, is
just a subset R¢D of deterministic states thal are acceplable, according to some rule.
Equivalently, a condition is a function f:D-B, where f(d) = 0 iff d is an acceptable
state. Using 0 for an acceplable state may seern a bil backwards at first. The reason for
this choice becomes clear when we extend f to all of 4.

Since A is free over I, there is a unique linear transformation f:4A-B which makes

the following triangle commute (section 2.4):

E
D S, A
!

%
!
|
1
v
B

deS

f(d)=0for all d € S. Thus, we consider a nondeterministic distribution SCD to be
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acceptable iff each d € § is acceptable, and the set of acceptable distributions are
those elements of A4 which are mapped to 0 by 7. In linear algebra, this subset of 4 is
called the kernel of £, denoted ker(F) = {S ¢ A | (S) = 0},

So, each condition is a function f:0-B, which extends to a unique linear transfor-
mation f:A-B. Moreover, since A is free over D, each linear transformation g:A-B is
uniquely determined by its image on the basis elements g4 (d € I’). So, a condition is a
linear transformation from A to B. The module A¥, consisting of all linear transforma-
tions from A to B, is the collection of all possible conditions. For a condition g A-B, the

set of acceptable nondeterministic distributions is the kernel of g.

When k = N and 4 = N (the multiset model), the dual module A* also corresponds
to conditions, although in this case a condition g:4 >N records more than just the accep-
tability or unacceptability of each state. For z € A, we interpret g(x) to be a count of
the number of different ways in which the states of = are unacceptable. For example,
we could keep track of the nurnber of different nondeterministic cornputation paths that
lead to an unacceptable output with input z. The requirement that g:A->N be a linear
transformation formalizes the idea that the number of ways in which z or iy 1S unaccept-
able is the sum of the number of ways that z and ¥ are unacceptable on their own.

:

Once again, the kernel of a condition g:4-N corresponds to the get of states which are

acceptable,

A third case is when k is a distributive lattice of predicates and A4 = k@) In this
case, a condition g:A-k records requirements for a state to be unacceptable. A distri-
bution z € A is acceptable iff the predicate g(z) € k is false. The linearity of a condi-
tion g:A-~k means that x+y is acceptable iff z is acceplable and v is acceptable. The
kernel of a condition corresponds to the set of states which are always acceptable,

In summary: when a k-module A4 = kP is considered as the set of nondeterministic

distributions, then the dual module A%, consisting of all linear Lransformations from A4 to
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k, is the set of "conditions” in the sense of Dijkstra [6,7]. For a condition g:A-k, the
kernel of g (those elements mapped to 0) corresponds to the set of thoses states which
meel the condition. As an example, the always true condition (every state is accept-
able) corresponds tlo the linear transformation 0:4-k which maps everyzr € A to0¢ k.
The kernel of 0: A~k is all of 4 —ie. every nondeterministic distribution is acceptable.
On the other hand, the linear transformation 1 A4 -k with 1(gg) =1 for all d € D

corresponds to the always false condition -- i.e. it is impossible to have an acceptable

state. In this case, ker{1) = {0} consists of only the impossible state.

Now, a nondeterministic program segment is a linear transformation t:A-A. If
g:A~-k is a condition, then the compogition got:A-k is also a condition. In Dijkstra's
terminology, got is the "weakest precondition” for g with program £. That is, if a distri-
bution x € A satisfies the condition gt (i.e., z € ker(got)), then carrying out the pro-
gram t on z is certain to establish the truth of condition g {i.e., {(z) ¢ ker(g)). More-
over, gol is the "weakest” such condition, in that as many stales as possible are accept-

able (it has the largest possible kernel).

Dijkstra denotes this weakest precondition by wp (t.g9). The form wp (£,-), with the
post-condition left as a parameter, is called a predicate transformer. In our setting, a
é

predicate transformer has the form —af, called a linear functional transformer in linear

algebra,

As an example, let k, 0 = {dy.dy) and f, be as defined in section 2.4, Let p kP sk
be the condition with pl(&&:}) =0 and pl(e%) =1, indicating that d, is the only acceptable

state. The condition », can be represented as the column veclor o . The weakest
1 1

recondition p,of | corresponds to the rmultiplication of the matrix for times this vec-
18/ 1 ! 1

tor:
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1ollo] o

o= 8]

Thus, in the weakest precondition, state d; is always acceptable, and dy is acceptable iff
console button.a is pushed (i.e., @ is false). This may be informally read as: to estab—
lish state d, via program f;, either start in state d,; (in which case the position of con-
sole button a doesn't matter), or start in state dp with console button @ pressed. If

you're not sure whether the machine starts in state d; or dy, then be sure to press con-

scle button o to establish state d,.

4. MULTIPLE INPUT, MULTIPLE OUTPUT PROGRAM BEHAVIORS

Programs with multiple inputs or outputs require the use of tensor products as the
appropriate algebraic structure in the face of nondeterminism. This use of tensor pro-
ducts is not new, bul our presentation and motivation differ from previous uses

[15,35,38]. Throughout this section, k is any comrmutative positive semiring.

4.1. Nondeterministic Pairs and Tensor Products

Suppose A is a k-module, considered as a set of nondeterministic distributions, as
§
in section 2. The module 4 may be free, but we do not require this at the moment. Con-

sider the set of all ordered pairs of distributions:
AxXA =z, y) |z € Aandy € A}

This sel is a k-module with (z,,y,)+(zzyz) = (214227, +y2) and r{z y) = (rz ry). For
nondeterministic programs with two inpuls or outputs, we want an element such as
(z1,91)+{x2.y2) to be the nondeterministic choice between the pairs (z,y,) and (Z,ys).
Now, (z,,y,)+{Zz¥z) is an element of AXA, but it is not the element we want, because in

AXA:



17

@y )+ (Zays) = (L y)+ (20y)).

In short, there is no way to tell which distributions are paired together. If we choose
some other k-module P to represent nondeterministic pairs of distributions, we Wantv
each pair (z,y)€Ax4 to be contained in P. This can be achieved by a function @ AxA-»P
which takes each pair (z,y)€AXA to an element z®y in P (note the infix notation). Fol-
lowing a suggestion of Hennessy and Plotkin [15], this function should be bilinear; that

is,forallz,yz c Adandr € k:

r@y+2)=(zQy)+(x®z2),
(z+y)®2z =(z®z)+(y ®2),

(rz®@y)=r(zQy) = (z @ry).

Intuitively, the first axiom can be interpreted as follows: If a pair of distributions has =
as its first cornponent and either ¥ or 2z as its second component, then that is the same
as the pair (z,y) or the pair (z,2). The second axiom has a similar meaning, The third

axiom means that a requirement that is necessary for one component of a pair to occur

is also needed for the pair as a whole to occur,

So, what we want is a k-module representing nondeterministic pairs of states,
together with a bilinear function mapping Ax4 into this kemodule. The tensor product
provides a free or universal way to achieve this, Specifically, th_;j tensor product of 4
with itself is a k-module A®4 together with a bilinear function ® AXA-ARA. The func-
tion ® is universal in the following sense: suppose P is some k-module and g:AXA-F is a
bilinear function. Then there is a unique k& -module morphism AA®A +F such that the

following triangle commutes:
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&
AXA —ey A0

!
f
"
!
l
N4
N P
Because of this universal property among bilinear functions, we use the k-module A®4

as the set of nondeterministic distributions of pairs of states. The element z®y

represents the pair of distributions (z,y).

4.2. Tensor Products of Free Modules

In general, the construction of the tensor product A®A involves reducing the free
k-module k4*4) by an appropriate quotient [13,14,28]. However, in one important casg
--when A is free - the construction of AQ4 is straightforward and sheds additional light
on why A®A is an appropriate space for nondelerministic distribulions of pairs of states.
For this case, we start with a set D of deterministic stales. The set of nondeterministic
distributions is the free k-module k), as in section 2. Following this line of thought, a

deterministic pair of states is an element of
UxD ={(de)|decDande € D,

The set of nondeterministic distributions of pairs of states is the free k-module k@*P)
over UxD. The following theorem justifies our use of tensor products by showing

kPl P) = g PXD) It s o generalization of a well-known theoremn for ring modules [25].

Theorem 4.1. For any set D, the free k-module k%D is g fensor product kPge D) The

universal bilinear map ®:kPxk Dk 0%0) is defined by
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( E ""sxd]@){gz See] = 2 (Td'se)(d;’g)-

deb €D {d.e)e DxD

Proof: First note that the above equation defines the bilinear map ® completely since

every element of k®) is of the form )} ryd. From the definition, it is easy to show that
deD

@ is bilinear. We must show its universal property. Toward this end, let P be a k-module
and g kPIxkP)s P g bilinear function. Now, g determines a function f:DxD-P defined
by f(d.e) = g(eq4,8,), where £4.2, € k) are the basis elements corresponding to d and
e, That is, f is the restriction of g to the basis elements. Since k@*?) is free over DX,

braic manipulations show that f is the unique linear transformation making the triangle

®
e Dxpe @Y . I I %Dy

/
\ y
/ =

g /)

/
s
}3

commute, as required. [} .

As a concrete example, suppose x = 7 d+7gdy and ¥y = 5,d,+5,d, are distributions.

From theorerm 4.1, we have:

it

(z®y) = (r1d+73d2) Q(s,d +52d3)

(r1d,®s,d)) + (r1d,®sy0p) +(1da®s 1d,) + (rpd;Qs,dy)

i

i

TS (i ®dy) +1 0 s(d,®dp) + s ((da®d ) + 7y s(da®dy).

In the last line, (d;®d;) is an abbreviation for (gg, @8%‘), The element (z ®y) expresses
all of the possible pairings of a deterministic state the distribution z with one iny. If we

have additional information that only the d; states are paired together, and the dj
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states are similarly paired, then we can express this knowledge as:
(r1d1®s1dy) + (rede®sede) = 7y°5,(d,®d;) + 7y 5,(de®dy)

within the tensor product. Expression of such informalion is nol possible in the Carte-

sian product.

4.3. Iterated Tensor Products

Iterated tensor products can be used for nondeterministic n-tuples of states in the
same way that A®A has been used for pairs. We begin with two arbitrary k-modules 4

and &, and the set of all pairs:
AxB ={{xy) |z cAandy € 7]

A function fiAxB-F to a k-module F is called bilinear provided that for all

zx' €A yy € Bandr €k

flzrz'y) = flzy)+f(z'y)

Jlay+y) =flay)+ 7=y

Jlrzy) =r(f(z.y)) = f(z.ry).
The tensor product of 4 and B is a k-module A®F together with a universal bilinear
function @ AXB -»AQE; that is, if g:AXF-F is a bilinear fu‘nctmn,‘then there is a unique

linear transformation A ARF »F such that A{z®y) = gz y)forallz € Aandy € B,

As before, a tensor product can be constructed by taking a quotient of the free
module k4*%), but we only need the universal property of A®H. From this universal pro-
perty, we can show that any two tensor products of 4 and 77 are isomorphic. That is, if
FuAXE P and foAXE - are both universal bilinear functions, then P;2P; The iso-

morphism maps f({x.¥) to folz,y). For this reason, we generally speak of the tensor

product AR,
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Example: Let 4 be a k-module and also consider k as a k-module, as shown in sec-
tion 2.3. The function J kXA-4 which takes each pair (k,z) to kz € 4 18 bilinear. Now,
Suppose g:kXA4- P is another bilinear function, Define alinear tramformationh:A =P by

h{(z) =g(1.2). Then for any pair (k.z) € kxA, we have glkz) = g(1kz) = hkz) =

R(f (k.z)). Thus, the triangle

kx4 3 A

\ /
/
'n

7 !
¥
P

commutes. Moreover, h is the unique linear transformation with this property. To see
this, suppose A AP is a linear transformation that makes the triangle comimute, Then
for any z € A we have hlz)= h(f(1,z)) = g{lz) = h'(5 (1 Z)) = h'(z), which implies
A =h' Thus, 4 is the tensor product of & and A, with k®x = kx|

If f:A-A" and g:B-B" are two linear transformations, then we can define a linear
transformation SRy ARP > A®E" called the tensor product :ﬁ S with g. To define S ®y,
we first define a function (J %g ) AXB>A'®5" which takes each pair (zy) € AXF to
J(2)®g (y) € A®B". This function is bilinear, so by universality, there ig a unique linear
transformation fQg:ARF +A'QE with (f®g)(z ®y) = (fxg)zy) = S (z)®g (y), for all
z &4 and y € B. The linear transformation S ®g is the function corresponding to the
idea of executing f and g in parallel,

For example, suppose S{d)=e,and s (dz)=es. Then:

(f ®fF ), ®@d,) = F(@)®F (dy) = e;1®ey



Example: Let D ={d,,dg§ and f,:k?)-k(P) be as in the previous example of section
2.4, Let D'={dsd,} and define g, kP P) a9 the unique linear transformation with
g1(dg) = 1dg and g ,(dy) = adg+ad, The matrix for g, is:
dg dy
ds |1 0
Ei4 a a
Now, D)@k P = kP2 which has four basis elements. We will denote these basis ele-
ments in kP Q& (P) = gDy
%dl®d3,dl®d‘},dg®d3,d2®(i4,g,
where d; ®d; is an abbreviation for the basis element E(dy.d;) (or equivalently adi@)z:dj),
We can write f,®g, using these basis elements. For example:

([1®9 )(da®dy) = f(dg)®g,(dy)

((Zd 1 + (§d2> ® ((ld.g‘%” Q’,O’.,i}

]
i

=aa(d,®dg) +taa(d,®d,)+a a(d,®dy) +d a(d,Qd,)

o(d,®d,) + T (da®ds).

il

The final equality is because & (in this example) is a Boolean algebra with @ the negation

Cl; dz f}tg (ig
® ® ® ®
dy dy dy dy

d,Rdy 1 0 0 0
di®d, o a 0 o
& dy o 0 uf 0
de®dy 0 @ @ 0 B

Compare this matrix with the individual matrices for S and g, Lo see how Lhe tensor
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product causes f, and g, to act "in parallel”. In this tensor product, f, and g, de not
explicitly communicate with ene another by sending messages or otherwise modifying
each other's state.' Both accept the condition from the outside world and act in concert
depending upon the condition. This is not communication between f, and g, but rather
from the outside world to both [ and g,. An alternative view of essentially the same
idea is given by Kurshan and Gopinath [21,22].

Now we can define iterated tensor products, which will be used for nondeterministic
distributions of n-tuples, much as AQA was used for pairs. If C is a k-module, then the
tensor product of C with A®RE can be formed, denoted CR(ARB). This k-module Is
called an iferated tensor product and is isormorphic to the tensor product (CRAYRB. The
isornorphism maps each r®(y®z) to (zQ®y)®z. Because of this isomorphism, we gen-
erally write (z®y®e) € (CRARE), without specifying the order of the ® operations.

For any k-module 4, we can form a sequence of iterated tensor products as follows:

forn=1: &4 = (®n }%}@A = A®- ®A (n factors).

. ‘

Note that &4 =k®A =4, from the example given earlier. More generally,

Pt . ¢ .

&’ h= (Q&l)@(@f@}. This last equality gives a way of combining iwo linear transforma-
5 ; !

tions f :@f@» @zjéi and g (04 - @%&. Specifically, the tensor product of these two linear

i

ot Pt
transforrmations is a linear transformation f®g (& A)-( &f A).

4.4, Mondeterministic n-lu

e
o
g2
4]

sl
iy

The importance of f@% to us is this: for each n=0, we want Lo have nondeterminis-
tic distributions of m-tuples. In general, the k-module A™ = AX XA (n factors) is
unsuitable for the same reason that AXA is not appropriate for pairs. What we need is a
k-module P and a mapping ® A" P, which is linear in each of its m cormponents. For

example, if n =3, then we require:
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(w+z)®y Rz =(WRY B2 )+(r ¥y Vz),

z®(w+y)®z = (rQRW Rz )+(x QY Rz),

z®y®(w+z) =(x QY Quw)+(x Ry ®z),
rz@y®z)=(rr®y®z)=(zQry Rz ) = (z Qy Qrz).

Such a function is called mulfilinear,

The iterated tensor product @7;3 provides a universal multilinear function with
domain A". That is, there is a universal multilinear funclion &A™ ®?}§ with the image
of (zy,  z,) € A" being written (2,8 &z,). This multilinear function is free in
exactly the same way that @ AXA-»A®A is free for bilinear functions. Thus, if g:A"->F is
a multilinear function, then there is a unique linear transformation h:@i@»? with
h{z® Q) =gz &)

Because of this universal property, we use the k-module @Zl as the set of nondeter-
mimsi",m distributions of n-tuples of states. The tensor %}md uct @@T% is particularly sim-

ple when 4 = k@) is free over some set D
Yy . ‘]
Theorem 4.2. For any set D, the free k-module k™) is o tensor product & kD), The
n
wniversal mullilinear map & [&:(D )] kO™ i defined by 5

(&:di@bf e ®§:O§n] T Bedy, o dy>

where the ¢, are the appropricte basis elemenls in the free k-modules.
Proof: Generalize theorem 4.1, []

4.5, Program Behaviors

poe - . n .
Given a k-mmodule 4 as a set of nondeterministic distributions, the k-module & A is
the set of nondeterministic distributions of n-tuples of states. The functional behavior

of & program with an n-tuple of inputs and a p-tuple of outpuls is a linear transforma-
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tion f :@?4—*@64, The requirement of linearity is motivated by the same reasoning used

in section 2.5 for single-input, single-output programs. Not all linear transformation are

programs. Since zero is not a possible output, a linear transformation that represents a

program behavior must be positive.

Notice that because of multilinearity, zero has an annihilator property in distribu-
tions of tuples. That is 2;® - - - ®0® - - - ®z, = 0. This means that if any one component
of a tuple is impossible, then the entire tuple is impossible. The converse is not true -
that is z,® - ®z, may be zero even if none of the z; are zero. In this case,
(zy,©+ * .z,) can be thought of as an inconsistent tuple. For example, suppose r and s
are elements of the semiring £ with s = 0. This might oceur if k is a distributive lat-
tice of predicates, with 7 and s mutually incompatible. For any z 3 ¢ 4 we have

(rz®sy) = (r-s)(x@y) = 0(z ®y) = 0.

This means that the distribution 7z can never be paired with the distribution sy. In our

running example, ad, can never be paired with @dz Either the console button a is

pushed or it isn't, irrespective of the machine state,

One advantage of this view of program behaviors is that it indicales several

Y LB £

different methods of specifying a program f:®A-&4 with n it‘];ﬁm,ts; and p outputs,

These methods are listed here:

(1) Deterministic inputs method: If A =k™ is a free k-module over I, then
®n4 = k@Y is free over the set D™ Therefore, every function f:D"%@ZZ deter-
mines a unique linear transformation f@% ~>Q5,}4 Moreover, from the fact that &
is positive, it can be shown that f is a positive transformation iff f (dy, - - - dp) # 0
for all n-tuples (d;, - -+ .d,) € D™ This method is equivalent to specifying a non-

deterministic program by giving its result for any deterministic input.
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(2) Parallel method: Suppose f R4 ->& and g:@ézzla(@ffﬁ are linear transformations.
Then their tensor product f ®g:<®”*2),,9(®*§4) is a linear transformation which
may be thought of as f and g acting in parallel with no communication. If [ andg -
are both positive transformations, this does not guarantee that JS®g is also a posi-
tive transformation. In particular, suppose f,g:A-4 with f (z) = ry and g(z) = sy
forsomezycAdandrs k. Ifrs =0ink, then SRy (z®zx) = ry®sy = 0. This
indicates that the conditions under which f may accepl z as input are mutually

incompatible with the conditions under which g may accept z —-le, rs =0

(3) Multilinear method: Suppose g:A’"»@pA is a mullilinear function. Then g extends
n A

to a unique linear transformation h: @4 >®% with R(z®&  ®zy) = glzy, - 2,).

Thus, we can specify a linear transformation h:@i@ - @7;1 by giving its corresponding

multilinear function g:4™ 3(‘2&1 The linear transformalion & is a positive transfor-

mation iff g(z, - ,z,) =0 implies (z,® - ®=x,) = 0. This follows from the fact

&

that & is positive and @?4 is spanned by elements of the form (z,® - - ®x,,).

5. CONCURRENT COMPUTATIONS

¥

The notion of concurrent computation that we examine here is a fixed network of nodes
interconnected by data paths, similar to MacQueen's model [26] or that of Faustini [10]
A node is a server, accepting messages ab its input ports and producing messages at its
output ports. A server is entirely functional and carries no internal state. Graphically,

a server with two input ports and one output port may be drawn like this:
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R

For alternate views of servers which have internal states, see [30,31,82,38,40]. We
develop an algebraic structure on the set of possible inputs to a node and we character-
ize a node as "communicating” or "noncommunicating” depending on its functional

behavior with respect to this algebraic structure.

9.1. Message Configurations

We begin with a set M of messages which may traverse the network. These mes-
sages are delerministic entities whose internal structure is unimportant. They may be
simple integers, or complex "active" messages, as Wall advocates [42]. Any finite,
number of messages may exist concurrently on a data path. In other words, a data path

contains a finite multiset of elements from the set if.

A finite multiset of messages is called a configuration. For example, a data path
rmight contain the configuration fmg,mg,mymyl. This means th‘at‘. Wi, My and two
copies of my exist concurrently on the path. The occurrences of these four messages
are not explicitly ordered in time, although they could implicitly be ordered through

some structure on M. (For example, Pratt has considered such ordering [37].)

Given a set M of messages, the collection of all possible configurations is a commu-
tative monoid under the operation of multisel union, We denole this monoid by M(M)
and use mulliplicative notation for union. For example,

tmamgl tmsmeq) = Mg, Mg, Mg, M.
In general, for configurations ¢ and ¢, the union configuration ¢ -d consists of the rmes-

sages of ¢ existing concurrently with those of d. For this reason, multiplication is called
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the concurrency operation., For consistency with multiplicative notation, we use 1 for

the empty multiset.

Example:

fmg, mg,mgmel

The diagram illustrates a node or server, S, with the configuration {mg, g, mg,my)
awaiting service at the first input port and no message awailing service at the second

input port.

In this analysis we equate 1 (the emply multisel) with | (nontermination, with no
output). Here is the reason: If we can only observe the cutput of a server without know:
ing the internal processing, we only see the multiset of states from those messages
which have been served. Hence, | is not observably different from the empty multiset.

6.2. Communicating and N oncomununicating Behaviors

£

A single input, single output deterministic server has as its behavior a function
FoM{M)-M(M)
In general, a server behavior is not a monoid morphism. That is, it may be that for some
c.d €MM), flcd)#[f(c)f(d). Also, f(1) need not be 1. The first inequality will
oceur if the presence of ¢ effects the computation on d or vice versa., Considered as
active messages, ¢ and ¢ may communicate. The imequality f (1) # 1 occurs if the
server is capable of producing output without receiving inpul. In genéral, a behavior
I M(M)-M(M) is called noncommunicaling if it is a monoid morphism; otherwise it is

called communicating. This terminology fits our interpretation of 1, since S =1
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implies that the server has some implicit communication with the world which is not

represented by in its single input.

5.3. Nondeterminism

The situation at a port may be nondeterministic. A nondeterministic distribution of
configurations formalizes this situation. Explicitly, we take the set M(M ) of
configurations as our set of deterministic states. Then, the set of nondeterministic dis-
tributions of configurations is a free k-module, &®™¥) for some commutative positive

semiring k (as shown in section 2).

A basis elemerit gy € kB) whose coefficient at d € M(M) is 1 and all other
coeflicients are zero, corresponds to a deterministic configuration. The concurrency
operation can be defined on these deterministic configurations by £,84 = £,.4. To

extend the operation to all of k®#) we take the axioms:
z-(y+z) = (zy)+(z-2), ‘

(rz)y =r(zy)
The first axiomn means that if there are two concurrent configurations, one of which is z
and the other is y or z, then that is the same as either z-y or x-2. The second equality
assures that a condition on cne component of a configutation is a condition for the
&

entire configuration. With these axioms, there is a unique way to extend the con-

currency operation to all of k®H#)  The extension is:

rqd - }3 s,e = Z E ('rd'sc)(d'z:), 5.1
d € B(H) ¢ €M) 4 CB(H) ¢ €M)

The identity for the operation is £}, which we usually denote by just 1.
This definition means that <k®™%) +.0,1> is a commutative positive semiring.
Furthermore, it is a commutative k-algebra, as defined here: Let k£ be a commutative

semniring. A k-algebro is a semiring <4,+,-,0,1> such that the monoid <A4,+,0> is also a

k-module with scalar multiplication satisfying
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(rz)y =rlzy) =z (ry)
forallr € & andz.y € 4.
A k-algebra is commutative if the semiring multiplication is commutative. A func-
tion between k-algebras is a k-algebra morphism provided it is sirnultaneously a semi-

ring morphism and a linear transformation of k-modules.

Examples: Let k be a commutative semiring. Then k is a k-algebra by defining the
scalar multiplication to be the semiring multiplication of k. We denote this k-algebra by
k. let C be a commutative monoid and k{(°) be the free k-module over the set C. The
set of basis elements of £(%) are a commutative monoid with £c8g = ;.. The multipli-
cation extends to all of k(¢ by equation 5.1, making &%) a commutative k-algebra. This
is exactly how k™) was made into a k-algebra above, Moreover, the commutative

k-algebra k ®H) i free over the set M, as shown in the following theorem:

Theorem 5.1. Let M-k ®H¥) be the function which maps each m. € M to the formal

sum ), whose ceegfficient is 1 at the mulliset {mi € M(M) and 0 elsewhere. Suppose Ais

o commultative k-olgebro aond f.M-A ds any function. Then there exists a unigque




31

Proof: First, we extend the domain of S to any multiset in M(#) by defining

SUmy, omy3) = S{my) .. f(m,) and £(1) = 1. Now, let 3. 7¢d be an element of
d (M) '

kM) We define J( > 7r4d) to be the sum >, r¢(f (d)) in A. This exists in 4 since
d B i) GBI #M)

only a finite number of the coeflicients Tq are nonzero in any formal sum. For any
m € M we have f(n, )= f(im]) = J(m), so the triangle commutes. Standard tech-
niques show that f is a k-algebra morphism, and the only one which makes the triangle
commute. []

The behavior of a single-input, single outpul nondeterministic server is a linear
transformation

f e W) b (RECAEY)

As in the deterministic case, S does not need Lo preserve the concurrency operator or
1, so in general f is not a k-algebra morphism. If f is a k-algebra morphism, then we
call it noncommunicaling, otherwise it is communiculing. The following theorem gives

a necessary and sufficient condition for a behavior to be noncommunicating:

Theorem 5.2. et A und B be k-uigebras and suppose X ¢ A spuns the k-module A A
linear  transformalion [ A-+B is qo k-algebra  morphism  iff  f(1 ) = 1 and

FEY)=[(2)fly) forallzy e X, .

Proof: Clearly the conditions on f are necessary. To show that they are sufficient, we

must show that f preserves arbitrary multiplication whenever it preserves multiplica-

P g _
tion of elements from X. Toward this end, let L‘ Ty and 2} s;Y; be arbitrary elements
i=1 FES

of 4, where (x;) and (¥;) are sequences from X. {(Recall that every element of 4 must

have this form since X spans the k -module A.) Then:

i=1

f{ i LR il Sj‘éij}
jﬁ



P g
= f [ >0 (Timé>'(5jyj)l (multiplication distributes over +)
i=1 j=1 ,
P4
= F1 2 2 (resi)(zeyy) (pull out scalars)
=] j:;} :
= % o s ) (20y) (f is linear transformation)
i=1 F=l
28 .
=) (re-s)(f (=) f (y5)) (f preserves multiplication on X)
i=1 =1

]

= ilﬁf(mi) -2 sif ()

=1
’ g,

f[i: Tda| - f{ 2 5;’?7’;']-
g j=t

Therefore, f preserves multiplication and is a k-algebra morphism. []

a,
it

if

For the k-module k®#) the deterministic configurations g4 (d € M(M)) form a
basis. Therefore, a linear transformation f :k M), g (KUO) 1o noncormmunicating iff it is

noncommunicating for deterministic inputs,

5.4. Multiple Ports

Servers with multiple entry and exit ports require some development to explicate

their functional behavior. o begin, consider a server wilth Ltwe enlry and two exit ports:
4

— —

_mmmwwwm>. WWWMWMWW%

A message m € M either enters f via the first port, denoled <1,m >, or via the second,
<2,m>. Thus, the sel of all possible deterministic inpuls Lo f is the disjoint union (or
coproduct):

MUM={<im>|m e M and (i=1ori=2)1

This idea of using coproducts to record the data line of an input is from Elgot [8,9] and
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the intuition is developed by Lorentz and Benson [23].

To allow more than one input message concurrently, we take the monoid M(# U #).
This is the collection of all finite multisets with elements from MU M, such as
{<lme> <Rmp> <R,mg> <2,ms>}. Similarly, the set of deterministic outputs for f is
the monoid M(M U M) So, in the deterministic case, the functional behavior of the
server is a function f M{(M U M)->M{(M U M). In the nondeterministic case, the behavior
is a linear transformation f & ®3 UM . GELM) 6, some commutative positive sermi-
ring k.

More generally, the possible messages that can arise on n data lines are elements
of the set

neM = {Ki,m>|m € M and l=i=n]
The set of possible configurations for n data lines is the monoid M(neM), consisting of all
finite multisets with elements from ne#. Finally, a nondeterministic distribution is an
elerent of the free k-module kB for some commutative positive semiring k. THis
k-module is a k-algebra by extending the multiplication of M{ne}M) to all of k(BmH) ¢
shown in the last section

The functional behavior of a nondeterministic muit%pmeess server with n entry
ports and p exit ports is a linear transformation: .

f: Jo (B(nedf}) 2 (B(p3))
If f is also a k-algebra morphism, then it is a noncommunicating behavior; otherwise it

is communicating.

5.8. Isornorphic Alpobras

In the last seclion, we showed how nondeterministic distributions of configurations
form a k-algebra k®m¥) where n is the number of data lines or ports, and M is the set

of possible messages. We will show that & ®n#)) j4 isomorphic Lo two other k-algebras.



Let M(M)" be the n-fold product monoid, consisting of all n-tuples:
MM = {<dy, - -+ dy> | dy € B(M) for 1<i<n],
Multiplication is by componenls <cy, - ,o,><dy, - ,dy> = <oydy, 0 Cpdy> and
the identity is <1, - ,1> The monoid M(#)" is commutative since M(M) is. The

k-module k®#)™ js made into a k-algebra by extending the multiplication of M(M)", as

shown in section 5.8.
Theorem 5.3. The k-uigebras kB gng e BE) e isomorphic,

Proof outline: The isomorphism follows immediately from the fact that the commuta-
tive monoid M(nel) is isomorphic Lo the monoid M(M)". The monoid isomorphism maps
each singleton multiset {<i,m >} to the n-tuple <1, - - 1,{m},1, - 1>, where the {m]}

appears in the i** component. []
Let & k®H) be the iterated tensor product of the module k™) with itself n
times, as in section 4.3, There iz a unique way to make the module ®nk(ﬁ(m> into a

k-algebra with: k

(LL“1®' o ®mn)'(yl®' o ®?:fn) = (.fl’.‘}'yléi’)‘ o ®xrz’y'n)'
The complete construction of this k-algebra is identical to the case of ring algebras [25,

&

XVI.4], but the only fact we need is the above equality.
Theorem 5.4. The k-algebras k®E™) gngd & fe ) g isomorphic, |

Proof: We have already shown that the function &:/®™#)™) & k®H) mapning each
basis element Ecdy, o dy> YO Eg @ ®ey s an isomorphism of k-modules (theorem
4.2). Now, we will show that it is also a k-algebra rmorphismn, hencelam isomorphism.
First note that 6 does preserve the identity for multiplication -- specifically

6(tcr, ... 1») = £,®  ®e, is the multiplicative identity in & &®&)  Also, § preserves



multiplication of basis elements since:

‘5(5((;1.- T p> Bady, - ,dn>) = 6(8<c1~d1, E ,cn»dn>)

it

8“1"11@' e Re,

= f:ﬁl'sdl@ C ®56n'£dn

i

(531@}' o ®Ecn) ‘ (Sztl@' o ®8aﬁn>

= 6(30:1, ce ,::,‘3-) ’ 5<5'<zi1,v - ;an.ﬁ*)'

Finally, by theorem 5.2, this implies that 6 is a k-algebra morphism. []

Cornbining these last two theorems gives a final isomorphism:

Theorem 5.5. The k-algebras kMnt)) g5y Q" 0D) 0 isomorphic. []
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These isomorphisms are used in the next seclion to give several ways of specifying the

functional behavior of multiprocess servers,
I

9.6. Specifying Multiprocess Behaviors

The functional behavior of a nondelerministic mulliprocess server with n input

ports and p output ports is a linear transformalion from the free

commutative

k-algebra kW) {6 the free cormmutative k-algebra M) 11 it g also a k-algebra

4

morphism, then it is a noncommunicating behavior., From the isomerphisms of the last

seclion, the behavior can alternately be viewed as a linear transformation

7 & W), &F pwny o, J ok A L EP) Here are four ways of specifying such a

behavior:

(1) Noncommunicaling Method: The domain kM) o tphe free commutative

k-algebra over ne# (theorem 51

Uhis means that cvery k-algebra morphism

J ik Bned)) b (Bpett)) o completely specified by giving a function from the set nefl to

kW@ Ay noncomm unicating behavior may be specified in this way.
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Communicating Method: The domain k™)) is the free k-module over the set
M(M)™. Therefore, every linear transformation f k@™, ME?) o cornpletely
specified by giving a function from M{M)" to k@) A pehavior specified in this
way is noncommunicating iff the underlying function from M{M)" to k®H&)P) j5 5
rmonoid morphism.

Tensor Method: Jet f :®nk(ﬁ(ﬂ))%®p E®HE) and g:@lk(mm}*@qk(mm) be linear
transformations. Then f®g:®n”k(5‘(m)»—>®pwk(ﬁw)) is also a linear transforma-
tion. This can be viewed as the servers f and g acling in parallel, with no commun-

ication between them. As a diagram, it can be drawn like this:

L
an
-

—_— >

The behavior f®g is noncommunicating iff both f and g are.

£
Multilinear Methed: F'rom the definition of tensor products, ®ach multilinear func-
tion g (kEEn ->®pk(wﬂ N extends to a unique linear transformation

R @ R & MO0 i h(z @ Ray) =glzy, - 2).

Examples: (i) a server called fork has one input and lwo outputs. Intuitively, it

coples any message at its single inpul port to both of its cutput ports. The fork server

is noncommunicating, so it suffices Lo define Tork(m) = m®m., for each m € M. (Here,

and later, we let m € M also denote the formal sum &, © i (BUD) 1y

(if) a server called choice also has one input and two ocutputs. An input presented

to its inpul port is to be copied to one or the other of its output ports, but not both. The
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choice as to which output port is nondeterministic. This is given by defining

choice(m ) = (1®mn)+(m®1), for each m € i

(iii) the concurrency operation is a server with two input ports and one output port.
It copies any message at either input port to its single output pert'. This action is non-
communicating, and is the extension of the function f:MU M-k®H)} defined by

fl<im>) =m,

(iv) there are a number of ways to define other servers with two input ports and one
output port. The motivation is that each pair of messages, one per input port, gives rise
to a single message - possibly nondeterministically. In general one has
join(m®1) = 1 = join(1®m) for any m € M and join(m ®my) can be arbitrarily defined
(mymgy € M) There are then numerous different ways of extending the domain of join

to all of kML EE) (2 3] Clearly each such join server is cornmunicating,

6. BIGEBRAS

Let M be any set and A = k™) be a free commutative k-algebra over ¥ for some com-
mutative positive semiring k. As shown in the last section, the functional behavior of a
multiprocess server with n inpuls and p outputs is a linear traszfcrrnatiom 7 Q/(}?fd_i - ®pfi‘
It f is also a k-algebra morphism, then it is called noncommunicating. This section
explores the algebraic properties of two particular noncommunicaling behaviors
fork:A-»A®A and choice:A-ARA. The fork corresponds to a message duplicating itself
and continuing along two distinct data lines. The choice behavior corresponds to a mes-

sage nondeterministically chivosing one of Lwo possible dula lines.

0

Throughout this section, we consider M as a subset of 4 by identifying eachm € ¥
with the formal sum in 4 whose coefficient at {m{ € M(#) is 1 and all other coefficients
are zero. The importance of this subset is that any k-algebra morphism f:A-»F to a

commutative k-algebra B is completely determined by its action on M, and conversely,
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any function from M to B extends to a unique k-algebra morphism (theorem 5.1),

6.1. A Semiring of Morphisms

Let B be any commutative k-algebra. The set of k-algebra morphisms from
A =kEH) 5 B forms a commutative semiring. For f,g:A-»5, we define f+g and f g

by their action on an arbitrary m € M.

(F+g)m) = f(m)+g(m),

(Jrg)m) = f(m)g(m)
The zero for addition is the morphism that takes every m ¢ M to the zero in B, while

the unit is the morphism that takes every m € # to the unit in B. Viewed as a multipro-
cess server, f+g is nondeterministic; it is either f or g, but not both. In a similar way,

J g consists of f and g acting concurrently on the some input.

This semiring of morphisms is characterized by two particular morphisms:

choice! 4> A®A and fork A->A®A. These are defined by their values at any m € M

choice(m) = (m®1)+(1&m.),
fork(m) = (m&1) (1®m.) = (m&m).
In concurrent processing, these are important processes. The fork morphism allows a
message to split into two identical messages, each of which’proceeds along a separate

&

data path, As a flowchart, it can be drawn:

~

Any data entering at the left is duplicated at the fork and each copy continues indepen-
dently. The choice morphism sends a state to one or the other of its output lines, but
not both. The decision as to which outpul line is taken is nondeterministic. As a

flowchart, ehoice can be drawn:
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Let concurB®F -/ be the multiplication which takes each (x®y) € BRF to

zy € B. We have the following identity for all k-algebra morphisms f ,g:A-5:

concurs(f Ry )-fork = [ g.

B &
concur

The flowchart for this situation is:

A second identity is;
Y

coneurs(f &g Jechoice = [ +g.
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choice
A 3 A R A

In this case, the flowchart is:

’ /m...«. WWWWWWWWW e j‘ S—— .v,,,.._...w.‘......_w\

The algebraic structure obtained in each of these two cases has been previcusly studied

in algebraic topology, group representation theory and the theory of linear operators.

We given the necessary definitions to relate fork and choice to existing mathematics in
¥

the next section. .

6.2. Cogebras and Bigebras

An alternate definition of a k-algebra can be given in terms of diagrams. Let & be a

k-algebra. The semiring multiplication in /& distributes over addition, hence it is a bil-
5 &

Inear map from xZ Lo /7. By the universal properties of Lensor products (section 4.1)
there is a unique linear transformation ¥ BRF »F with YRy ) =z-y. (In fact, this is
the concur map we used in the last section.) The unil 1 in & also defines a linear

transformation wk -5, with p(r)=+1 for all r € k. (Here, & is considered as a

k-module, as in the examples of section 2.3.)
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In these terms, the definition of a k-algebra is a k-module B together with two
inear transformations v: B®F »5 and wk - F, such that the following two diagrams com-

mute:

QY
EF®B®HF > B& F
YR j/'%lf
BR B > 7
11[1

B®B B® DB

The map /:B-F is the identity. The isomorphism 2 k®5 -5 maps each (r®z) to rz and
similarly for &: B®k »5. The top diagram asserts thal rultiplication is associative. The
bottom diagram asserts that 1 € Z is the identity for multiplication. The proof that this
defines a k-algebra is similar to the case for ring algebras [25, X1.12]. We call ¥ the maul-
liptication mop and g the wndd mop. This k-algebra is denoted by <8 ,u>.

The advantage of this definition is that its dual is easily defined by reversing the

arrows. Bpecifically, a k-cogebra [4] is a k-module C together with twe linear transfor-

mations p:C-» R and 7 C+k, such that the following diagrams commute:
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I®p
CRCRC & C®C
pRI P
CRC¢ c
P

k®C = C =  C®k

A
n&l P p [&mn
4

C&®C C®C

We denote this k-cogebra by <C,p,n>. The linear transformation p is the comultiplica-

tion map and 7 is the counit mop,

H
The final structure defined here is simultaneously a k-algebra and a k-cogebra. Let
B be a k-algebra and suppose <FB,p,n> ak-cogebra. Then B is a bigebra [4] with comul-

tiplication p and counit 7 if these conditions hold:

(1) p:B-BRB is a k-algebra morphism,

(2) m:B -k is a k-algebra morphism.

The k-algebras & in (2) and F®F in (1) are defined in section 5.3 and 5.5

Now we return to the k-algebra 4 = k™) o demnonstrate two bigebra structures.
Let Op: A=k map each m € M to 0 and 1;:4A-k map each m € # to 1. As shown in sec-

tion 3, these maps are "conditions” in the sense of Dijkstra. In particular, 1, is the
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always false condition, and 0, is the condition that accepts exactly those nondeterminis-
tic distributions which do not include 1 (1) as a possible outcome. (Note that in general
wp (£,0) is not computable.) These two conditions are counit maps for cogebras over

the module 4;
Theorem 6.1. (4, choice,0,) is o k-cogebra.

Proof: Tirst, the diagram

[ & choice
ARAR A < AR A
A ;
choice ® / 5 choice
A® A {L A
choice

must commaute. Both paths take an element m € MCA Lo

(m,®1®1)+(fiw?;,@l)‘%-(l@];@m}
But since A is free over M, this means that the diagram commutes everywhere. The

second diagram that must commute is: !

k@A & A oy A® K

A / ' \
0, ® 7 I® 0,

/
7

ﬂichoice choice
A® A A®

5%
N

We show that the left side commutes: the right side follows by a parallel argument. The
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isomorphism % takes each 2z € A to 1&r. For any element m € i

(0x®/ )echoice(m ) = (0R1)][ (Mm®1)+(18&m.)]

H

i

(0, (m®1) + (0, (1®m)

H

(0®1) + (18&m)
=0+ (1®m.)

= (18m).
Thus, the diagram commutes for elements of #, hence it does for all of A. []

Theorem 6.2. (A fork,1;) is a k-cogebra.

Froof: The proof is identical to that of the previous theorem, replacing choice with

fork, U, with 1, and + with . []

Furthermore, fork, choice, 0p, and 1, are all k-algebra morphisms. This gives the

following corollaries:

#

Corollary 6.3. The k-algebra Ais a bigebra with comulliplication choice and counit 0.

0

Corollary 6.4. The k-algebra Ais a bigebra with comultiplication fork and counit 1. []
4

7. SYNTAX

In the study of programming languages, the division between the syntax of a program-
ming language and the interpretation of that syntax is basic. The synlaz is a set of unin-
terpreled functions or program segmentls. Some synlaclic operations, such as program
composition, may be defined on this set. For a givern syntax, an inferpretation associ-
ates a function with each uninterpreted program segment in such a way that the syntac-
tic operations are preserved. This division, originally proposed by lanov [16] is now
standard in the study of sequential programs. This section introduces and studies such

a model of syntax and interpretations suitable for programming constructs having the
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functional behavior described earlier. Additionally, the model provides an abstract syn-
tax for semantic models such as Pratt's processes [37], Kahn-MacQueen datafiow nets
[17,28], Milne and Milner's flow algebras [33] and others. The main result is that, in gen-

eral, a universal or free interpretation does not exist.

7.1. Monoidal Theories

The model of syntax we introduce is a generalization of algebraic theories [11,41],
which have been used as abstract syntax for deterministic functional languages, Essen-
tially, an algebraic theory provides a set of uninterpreted Junclions, each with a fixed
number of arguments and outpuls. An uninterpreted function J with n arguments and
p outputs is denoted f:[n]-[p] An inferpretation « assigns to each uninterpreted
function f:[n]>{p] a function o, :A™ AP, where A is a set (called the semantic domain,)
and A™ is the product set consisting of all n-tuples of elements from A,

Another related model of syntax is co-(algebraic theories), which have been used by
Elgot and others as abstract syntax with an emphasis on flow of control [8,9,23]. A
co-(algebraic theory) consists of a set of uninterpreted Slowcharts, each with a fixed
number of entry lines and exit lines. An interpretation o assigns to each uninterpreted
flowchart f:[n]-[p]a function ay mxA-pxA4, where n={12 - - - nlandp={12 - pl

3

are sels of control line numbers and 4 is the semantic dormain.

The model of syntax we introduce is called a monoidal theory. A monoeidal theory is
a set of uninterpreled nondelerministic program segments, each with a fixed number of
inputs and outlputs. An interpretation takes an uniuier preled program segrnent

. : ' ‘ :
w bransformalion f?{j" I(}"jw' PNV AL ‘/’:/}“3;5_: o Ads g Ofie saeimi-

finl={p]in the theory Lo
ring module. The syntactic operations available in a monoidal theory correspond to
composition and tensor product of linear transformations, Formeally, the definition is as

follows:
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Definition. A monoidal theory M is a family of sets <M(n p)>, where n and p range over

non-negative integers and the following operations are defined:

(1) Composition: Whenever f e M(n,p) and g € M(p.q) then gof ¢ M(n,g). The opera-
tion « is associative. For any non-negative integer n, the set M{n n) has a special

element 1,, which is a two-sided identity for «.

() Multiplication: Whenever f e M(n ,p) and g € M(l,q) then f®g cM(n+l,p+q). The
operation @ is associative and 1y is the identily for @ Furthermore, for any non-
negative integers n and p, 1,®1, = 1, 4p.

An additional condition is that multiplication preserves composition. That is:

(8) Preservation of composition: Whenever f,9.h andj are in M with fog and hoj

defined, then:
(fog)®(hej) = (f ®h)olg®7).

For f €M{n p), we write f:[n]>[p]. Such an element is an uninterpreted program
segment with an n-tuple of inputs and a p-tuple of cutputs, The syntactic operation of
composition represents the composition of linear transformations, while multiplication

of two elermnents f ®g represents taking their tensor product.

4

If M and L are monoidal theories, then a theory morphism o:M-1L assigns to each
Finl-[p]in M an element o;:[n]+[p] in L, such that « preserves o, ® and the identi-

ties. That is:

(foag = D(fmﬁg
Qrrg = Q&0
ay, = lp
Let I be a family of sets <Q(n.p)>, where n and p range over non-negative
integers. Think of ( as a set of uninterpreted program segments, from which we will

generale a monoidal theory. A function o which assigns to each f € ((n p) an element
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a7:[n]-[p] in a monoidal theory M is called an inserfion of ( into M. In this case we
write ¢:(}»M. By a free monoidal theory over (), we mean a monoidal theory F together
with an insertion 7:(0~F such that if ¥ is any monoidal theory and o:Q0-»M¥ is an insertion,

then there is a unique theory morphism o F-M such that the triangle

G
N F

X

I

i

!

!

¥
M

commutes,

A free monoidal theory over (1 is analogous to a free algebralc theory [11]. It is the
&

least constrained monoidal theory which is generaled by {1 Intuitively, it gives a free

syntax for the set of uninterpreted program segments (.

Theorem 7.1. let (O be o family of sets <llfnp)>, where n and p range over non-

negative integers. A free monoidal theory over () exisis,

.

Proof outline. The proof is by construction. From {1, we recursively construct a farnily
of sets <Z(n,p)> of derived operators. An equivalence relation is defined on each set
%{n,p), so that the resulting equivalence classes form a monoidal theory which is free
over (1. The construction parallels the construction of a frec algebraic theory [11] -~
complete details are given elsewhere [27, seclion 5.1]. Il

7.2. Interpretations

Let k£ be any positive commutative semiiring. Any k-module A determines a

monoidal theory ‘denoted MON<A> The elements of MON<A> are the linear
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transformations from ®n4 to @pA, For example, any linear transformation f AR4->ARA
is an element of MON <A>(2,2), and so on. Composition of two elements of MON<A> is

just function composition; the multiplication of two elements is their tensor product.

An interpretation is a way of assigning linear transformations to the uninterpreted
program segments of a monoidal theory. Intuitively, it gives a meaning to each uninter-

preted element in M:

Definition. Let M be a monoidal theory. An M-inlerpretuiion is a k-module A together
with a theory morphism «:M-»MON <A>. The k-module 4 is the semantic domain and o
is the interprefation funciion. Given that (4,«) and (/.f) are M-interpretations, an
¥M-homomorphism [rom (A,x) to (H,6) is a linear transformalion h:A~F such that for

all f:[n]~[p]in M, the following square commutes:

n & P
R A ——3 K4

&' &n

k) g, 1o
The wmorphisms &~ and Wh are iteraled lensor products defined as
k03 . 5 N
Kh=h® - ®h(n laclors),

One important class of inlerpretalions are the free inicrpretations. informally, a
free interpretation of a theory gives a way of carrying out symbolic execution. This is
because any other interpretation is a homomorphic image of the free interpretation, in
the same way that a symbolic interpretation of a program can be mapped onto any

other interpretation. As a result, free interpretations provide a way of reasoning about
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a whole class of interpretations at once. Initial interpretations, used by the ADJ group

[12] are a special case of free interpretations.

Specifically, if 4 is a k-module, then by a free M-interpretation over 4 we mean an
M-interpretation (#,7) together with a linear transformation f:4-F such that if (B.B) is
any M-interpretation and g:A-+F is a linear transformation, then there is a unique

M-homomorphism h:(#,y)»(B 8) with hof =g, as in the following commuting triangle:

S
A3 F
1

i
(.
g . ‘h

|
%
B

The linear transformation f A~/ is called the inserfion of 4 into F.

Given this background, an important question is: Do [ree interpretations always
exist? The remainder of this section shows thal in general they do not. The first step
toward showing this is to define a function on the elements ¢f any tensor product. If 4 is
any k-module and z is in A®4, then we define [z [, to be the smallest integer n such

that there exist sequencesy,, . . . ,y, and 2z, . .., 2, of elements from A with:

T

L Yi®2;).
The value of [z |4 is always finite since A®4 is spanned by the elements (y®z) with
y.2 €A However, [or some L-modules, the value of |z |, may be arbitrarily large, as

shown in the following:
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Theorem 7.2. Let N = k™ be the free k-module generated by the set of natural
numbers N = {0,1,2,...]. For any positive integer n, there erists an element z € NN

with [z jy=n.

Proof. Recall from theorem 4.1 that N®N is the free k-module generated by NxN.

Hence, elements of N®N are formal sums }j rgd. For any i € N, let g4 ;) be the for-
deNxN

mal sum in N®N which has 1 as the coefTicient at (1,4) and zero coefficients elsewhere.
(3

It is easy to show that the element z = Z euqyhas [z]y=n. []
i=1

A second preliminary result is that a linear transformation of the form A®h cannot

increase the value of the function [e] at any point:

Theorem 7.3. Let h:A>B be o linear transformation and z be an element of ARA. Then

[h®h(z)]p =]z ]4.

*

Proof. Suppose [z |4=n. Then there are sequences y,, .. .,y, and 2,, ..., 2z, of ele-

ments of 4 with

&£ = i (v:i®2z;). ;
i=1
Therefore:

h@h (z)= h@h{ i (yi®zi)}

=]

n, o
:2, (h(y)®h(z,)).
i=1

and [h&h(z)lp=n. []

Now we can show thal, in general, monoidal theories do not have free interpreta-
tions. In particular, if # is a free monoidal theory over a set (J and f:[n]>[p] <€ Q with

n>1, then M does not have free interpretations. This is formalized in the following
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theorem:.

Theorem 7.4. Let A be a nonempty free k-module and suppose M is a free monoidal
theory over a fumily of sets <Q(n,p)>. If Q(n.p) is nonempty for ot least one value of

n>0 and p> 1, then there is no free M-interpretation over A

Proof. For concreteness, we assume that (3(1,2) is nonempty and d:[1]-+[2] is the inser-
tion of some element from (}(1,2) into M. It is straightforward to verify that the theorem
remains valid for other values of m and p. In order to derive a contradiction, assume
(#.7) is & free M-interpretation over A with insertion f.A->F. Let ¥ be a basis element
of A and suppose i = [y4(f (¥)) |r. Also, let N be the {ree k-module k™, generated by
the natural numbers N=1{0,1,...{, and let 2 be a basis element of ¥. We will construct an

M-interpretation (N,8) which will lead Lo the contradiction.

By theorem 7.2, N®N contains some element x with [z |y >i. Now, let (N,8) be any
M-interpretation with z(z) = z. Such an interpretation exists since z is a basis ele-
ment of N. Also, since ¥ is a basis element of 4, there is a linear transformation g A >N
with g(y)=2. TFor this linear transformation g, there must be a unigue

M-homomorphism h:(#,7)- (N .8) with hof =g. Now we can derive the contradiction:
#

= lva (F (¥ r ‘ (definition 1)
= [R®R (v (f (¥)) v (theorem 7.3)
={Balh(f (W) I (h is M-homomorphisrm)
= [Balg (¥ 1w (hef = g)
= [Ba(z) I

=z v

>,

By this contradiction, we conclude there is no free M-interpretation over 4. []
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Intuitively, this theorem means that free interpretations are prevented by uninter-

preted functions whose output is not confined to a single output line.

7.3. Monweidal theories for communicating processes

Monoidal theories provide an algebraic characterization of processes which have a
finite number of inputs and outputs. The two operations which are abstracted are
sequential composition and parallel composition. This section shows how models of com-
municating systems which use these two operations are monoidal theories. Our first
example is a dataflow model, as used by Kahn and MacQueen [17,26]. The processes of
Pratt [37] and the flow algebras of Milner and Milne [30,31,32,33] provide two other
examples, We finish with a comparison of monoidal theories to Winkowski's algebraic

characterization based on Petri nets [43,44],

A basic concept in the dataflow model of computation is a stream of data. For a
given sel A, an Aslream is any countable sequence of elermnents from 4. The set of all
A-streams, denoted A", has a useful partial order defined on it. If z and y are A-
streams, then z=y I x is a prefix of y. A process with one inpul and one output is a
function f:A"»A". Because of the sequential nature of thesinpul stream, we require the

.

axiom:
z=y implies f(z)=f (y). for all z iy ¢ AT,
Intuitively, this axiom means that when a process is given additional input, it can only

produce additional output and not retract anything it h:

+ already sent Lo ils output
stream. Any funclion which meets this axiom is called continuous. MacQueen [28]
describes how continuous functions can be specified.

The set of all n-tuples of A-streams, denoted (AN, is a partial order with com-

ponentwise ordering. That iz,
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(ay, ..., o)=(b,, ..., b,)iff a;<b, for all 1<i<n.
A process with n-inputs and p-outputs is a continuous function f:(4T* = {ANP,

Now, let A(n,p) be the set of all continuous functions from (A")" to (AP, It is easy |
to see how these sets form a monoidal theocry. Composition is merely function composi-
tion. If f:(AN)™ (AT and g:(AT)>(AN)?, then we define f®g:(AN** +(ANP*Y to be the
product function which takes each ‘tuple (s;, .. .,S4.8541, ... S04) LO
F(sy oo 8p)Xg(Spuy, oo Spyy) in (AT)PHE. (Note: the composition of continuous func-
tions is continuous, and similarly for their product.) The identity in A(n,n) is simply

the identity function.

This monoidal theory is in fact an algebraic theory, essentially because there is no
nondeterminism. Several attempts have been made to extend the basic dataflow model
to handle nondeterminismi, including Kosinski [18,19], Brock-Ackerman [5] and Pratt
[37]. In the following, we show how processes of finite sort in Pratt’s model form a

monoidal theory. .

Pratt’s model of communicating processes begins with the set-theoretic notion of
the graph of a function. If f:4-A4 is a function, then its graph is the set of pairs
Hzy) | f(z)=y]. Anordered pair (z i) in this set is viewed as a pair of events, linearly

£
y, the first evenl is the arrival of an igput z, followed by the

ordered in time. Specificall
production of the output ¥ = f (x). Such ordered pairs of events are enough to com-
pletely describe functions -- even nondeterministic funclions, or relations. To describe
communicating processes, the notions of events and ordered pairs of events are gen-
eralized,

We begin with a sel 4 of data elements, a denumerable set I ={/,1;,...} of "input
ports” and a denumerable set 0=10,,0...} of "output ports’. An input event is an
ordered pair from Ax/ and represents the arrival of a datum z € A at a porti€7. Simi-

larly, an oulput event is a pair from Ax 0. For a function f, the events are all of the
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form (z,/,) and (f(z),0,). Furthermore, the event (x,/,) strictly precedes the event
(f ().04).

The generalization of this is as follows: a frace is any partially ordered multiset of
events. A process is any set of traces. The intended meaning of a process is that if the
input events of one of its traces occur in the given order, then the output events of that
trace occur. If events of more than one trace may occur, then the output is selected

nondeterministically.

A trace is of sort (n,p) if all of its input events have ports selected from
{71, ... Iy} and all of its output events have ports from {0, . . . . Op). A process is of

sort (n,p) provided all of its traces are of sort (n p).

Now we can show how processes of finite sort form a monoidal theory. Let 4 be a
set of data elements and define A(n,p) to be all the processes of sort (n.p) over this

data set. To define multiplication of processes, we first define two eperations on traces:

*

(1) Union: If 7 and o are traces, then their union, writien 7 U is the multiset union of
7 and 0. The partial order on TU o is inherited from 7 and ¢ independently -- that is,
for two events e; and ey in TU o, e <y iff

e2,ezET and e <ep in T, or,
g1,2,€0 and g%e; in o,
Note that when’7 is of sort (n.p) and o is of sort (Z,g), then TUc is of sort

(max(m i) max(n,q)).

(2) Shifts: If 0 iz atrace, then o,

np 18 the trace obtained from o by adding n to the sub-

seript of each input port and adding p to the subscript of each output port. The
partial order on o,, is inherited [rom o. Thus, if o={(x,/)) (y,0,)] with
(2, 0))=(y,0)), then o, , = {2 [,n), (¥, Ovip)f, with (2,7,,,)=(y,0,4,). Note that if o

is of sort (I,9), then o, , is of sort ({+n,q +p).
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If f €A(n,p)and g €A(l.q) are processes, then their multiplication is defined as

f®g ={ru(on,) | Tef and oy,
It is easy to see that f®g is of sort (n+l p+q) and the operation is associative. Its iden~
tity is the process {¢] of sort (0,0), which contains only the empty trace. The meaning of
JS®g is that the two processes are executed side-by-side, with the ports of g appropri-
ately shifted.
The comiposition of two processes is a generalization of the composition of relations.
If 7, 7" CAXA are relations, then their composition is the relation
ror'={(z,2) | Jy such that (z.y)er and (y,2)er].

To generalize this to processes, we need a new set C=1C.Cy,...}, of communication
porls. A communication event is a pair from AXC, and will play the role that y fulfills in
the definition of the composition of relations. A communication frace is a partially
ordered multiset of input events, communication events and output events. It is analo-
gous Lo an ordered triple (z.y.2). If 7 is a communication trace, it can be restricted toi
an ordinary trace in three ways:

Tro 1s the trace oblained by eliminating all commmunication events from 7. It is analo-

gous to obtaining the pair (z,2) from the triple (z .y 2z ). ,

Tic 1s the trace obtained by eliminating all output events {rom - and changing each
communication event (x,(}) to the output event (z,0;). It is analogous to restrict-
ing the triple (z,¥,2) to the pair (z.y).

Tco 18 Lhe trace obtained by eliminating all input events rorm T and changing each corn-
munication event (x,(;) to the input event (x,7,). It is analogous to restricting the
triple (z,y,2) to the pair (y,z).

Using these restrictions, we define the composition of two processes f and g as

Seog =iT50 | T7is a communciation trace and Tic€f and Tepeg .



For any non-negative integer 7, the identity process 1, €A(n,n) is

1p = {7 | 7 is & trace of sort (n,n) and the partially ordered submultiset of output events
of 7 is obtained from its submultiset of input events by replacing each input port I;
with ;1.

In particular, 1g={¢} is the identity for ® It is straightforward to check that composi-

tion is associative and distributes over ®.

Thus, the processes of finite sort form a monoidal theory. In a similar way, certain
of the flow algebras of Milner and Milne [30,31,32,33] form a monoidal theory, although it

is more complicated than Pratt's model because of the names of ports.

Winkowski [43,44] also constructs an algebra for comm unicating systems, based on
Petri nets, His algebras are not generally monoidal theories - the principal reason is
that multiplication is only partially defined. However, his two basic operations are the
same as ours: parallel composition (f®g ) and sequential composition (f <g). Winkowslki
mentions that these two operations have nearly the same properties as the operations
in a strict monoidal category [24]. A monoidal theory is a strict monoidal category, and

a theory morphism is a monoidal functor.

#

In summary, we emphasize that wherever the operations of parallel and sequential
composition have appeared, the monoidal theory axioms are met (or nearly so). For
this reason, we believe monoidal theories are important to the study of communicating

vrocegses.
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