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Computer Techniques for Cluster Analysis
R. Michael Perry

Abstract

Cluster analysis is a method for understanding the spatial arrangement of
pointlike objects. It is practiced informally when stars are seen as forming
galaxies or grains in film are viewed as depicting an image. This paper describes
some computer techniques for cluster analysis of a set of points when distances
between the points are known. In general points that are close together will be
grouped in the sarme cluster. Moreover, clusters of points can be treated as sin-
gle points and grouped into higher-order clusters, thereby obtaining a hierarchi-
cal arrangement that depicts large-scale features and fine detail as well. These
techniques have been used in psychological studies of conceptualization and
memory retention at the University of Colorado, and the applications are briefiy
reviewed.

1. Introduction

One of the basic mechanisms for understanding the world is to search for
groupings or arrangements among objects that are distinguished primarily by
spatial location. Thus stars are seen as forming constellations, clusters and
galaxies, Grains in film similarly reveal an image even when they can be seen
individually. Much can be learned by the recognition of groupings or clusters
among pointlike objects, and techniques for automating this process thus are of
interest.

This paper describes some computer techniques for cluster analysis of a set
of points when distances belween the points are known. These techniques were
developed in connection with studies of human conceptualization and memory
retention at the University of Colorado. The algorithms and computer imple-
mentation are described and their usage in the psychological studies is briefly
reviewed,

2. Theory

In general in a clustering problem we are given a finite, nonempty set of
points 5 with an implied distance relation, and are asked to find a "clustering"
under which points that are close together will tend to be in the same grouping
or cluster. Thus the mutual distances are regarded as defining a spatial
arrangement of the points. The purpose of clustering then is to furnish an
unambiguous interpretation of the structure of the spatial arrangement. The
interpretation in turn will depend on the method chosen for clustering, but it
can be hoped that significant features will not depend strongly on the method
that is used.

Thus in particular the notion of "cluster” implies an arrangement or struc-
turing of an "underlying set” of peints chosen from S, into a set containing indi-
vidual points or constituent clusters, with the additional requirement that the
underlying sets of different constituent clusters must be disjeint. For formal
purposes we define clusters over S inductively as follows.

1. Individual points p € § are clusters. The underlying set of a point p is
taken to be {p}, and p is then said to be an sfomic cluster and to have order 0.
All other clusters will be nonatomic and will have order >0.
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2. A nonatomic cluster C will have the form of a nonempty, nosingleton
set of clusters of lower order, which in turn will be called its constifurnis. The
one additional requirement will be that the underlying sets of these constituents
must all be disjoint. The clusters themselves will then be said to be digoint. The
order of C is defined as | + the maximum order of its constituents. The under-
lying set of C is defined as the union of the underlying sets of its constiiuents,

3. All of the clusters over S are obtained by applying rules (1) and (2).

In summary, (1) individual points are clusters, (2) any nonempty, aonsingle-
ton set of clusters whose underlying sets are disjoint, is a cluster, and (3) these
are the only clusters. Thus a cluster is a tree with the branches unordered. In
particular there are only finitely many clusters over S. If § is a singkton then
the only cluster is the single member of S (but not § itself). For larger S, S
itself will be a cluster over 5, in addition to its individual points. If § = {1, 2, 3}
the clusters over S are 1, 2, 3, {1, 2], {1, 34, {2. 3}, §1, 2, 31, §{1, 2, 33,141, 38, 2,
¢1, {2 33} For larger sets there are many more clusters,

Given a cluster C over S, a subcluster is defined inductively as either C, or
if € is nonatemic, one of its constituents or a subcluster of one of ts consti-
tuents. Thus in view of assumption (2) the underlying sets of two subclusters of
¢ must be disjoint, or one underlying set must be included in the other

A clustering of S is a cluster over S whose underlying set is §. Thus in the
above illustration there are four clusterings of the three-element set S, and in
addition, six other clusters over S. Although many clusterings of anysizable S
are possible, the meaningful ones, from our peint of view, are those in which
objects that are close together are grouped into clusters of low order. More-
over, to form higher-order clusters in a meaningful way it is necessaryto extend
the measure of distance, assumed to be given for the individual points, to arbi-
trary clusters. In this way the entire set S can be formed into a clister that
reveals large-scale structure as well as fine detail in the spatial arrangement of
points,

Something should be said about the allowable measures of distance,
whether belween points or clusters. In the most restrictive case the distance
function d was required to be a metric, that is to satisfy the following properties
for points {or clusters) %, y and z.

1. d{z,y) = 0, with equality holding if and only if z = y.

2. d{zy)=d(y.=)
3. diz,z)=d(z,y)+d(y,2).

However these properties were not always enforced, particularly in the case of
nonatomic clusters. The minirmurn conditions that were always enforced were:

1. d{z.y) =0, with equality holding if z = y.
2. dizy)=dy.z).

That is, the distance was always required to be nonnegative and reflexive, or
independent of the direction of measurement.

The methods of clustering of interest here, then, are disfance —bosed.
There are two main steps in formulating a method of this type: (1) esablishing
the distance-based criterion under which two objects (whether points or clus-
ters) will always be placed in the same cluster, and (2) extending the rieasure of
distance as far as necessary, so that a distance is defined between any two clus-
ters that would be considered for inclusion in a cluster of higher order.
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Clustering then proceeds from the original, unstructured set of points.
Points that meet the necessary criterion are grouped into clusters. One such
cluster may contain more than two points because clustering is transitive, that
is, if @ and b are in the sarne cluster, and & and ¢ are in the same cluster, then
a and ¢ must be in the same cluster. In general neighboring points will be
grouped together. On the other hand a cluster may consist of a single point if no
suitable neighbor can be found. In any case, the points are grouped into clus-
ters as far as the criterion allows, then the process is iterated, clusters being
grouped into clusters of higher order. In this manner the entire set of points is
finally structured into one large cluster., Thus on each iterative step, if there
are at least two objects, that is, if the final cluster has not already been reached,
-at least two objects must be grouped into a cluster.

3. Methods for Distance-Based Clustering

In the work reported here there were two main criteria for placing objects
in clusters during one iterative step of analysis. In the first version two objects
were putl in the same cluster if either object was a nearest neighbor of the other,
In the second version the two objects had to be mufual nearest neighbors to be
guaranteed placement in the sarne cluster. In either case the distance measure
had to be extended to higher-order clusters, The main means of doing this was
to define the distance between two clusters as the separotion distance belween
the underlying sets, that is, the minimum distance from a point in one underly-
ing set to a peint in the other,

Other measures than the separation distance, which is not a metric, were
used on occasion. It was found, however, that even when the properties of a
metric were enforced the results were not much affected so that the separation
distance, which is easy to compute, became standard.

The methods of clustering, then, were primarily distinguished by how they
placed objects in the same cluster during one step of analysis. The first version
will be referred to as the nearest —neighbor method and the second (for reasons
given later) as contowring. Both methods are illustrated in fig. 1, in which a
hypothetical array of five points is to be clustered based on the usual Fuclidean
distance in the plane. This initial array is shown with the points labeled in (1a).
The successive steps for the nearest-neighbor method are shown in (1b-c) and
the steps for contouring are shown in (1d-f).

Thus the nearest-neighbor method takes only two iterative steps to com-
plete the clustering, while three are needed for contouring. Moreover on each
step of the first method any cluster is paired with at least one other one (since it
must have a nearest neighbor), thus all constituents of a cluster must have the
same order. Contouring, however, allows constituents to have differing order.
Thus in the clustering of (lc) every constituent has order 1 while in that of (1f)
the two constifuents have orders 0 and 2,



Fig. 1, showing the successive stages of clustering for two different
methods. {a) original array of points; (b-c) nearest-neighbor method; (d-f) con-
touring.
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The two clusterings, moreover, show significant differences in structure.
Thus in (1c) point I is paired with peints 2 and 3 in one constituent while in (1f)
it is isolated as a constituent by itzelf. In (1¢) on the other hand, points 4 and 5
form one constituent while in (1f) two clusters consisting respectively of points 2
and 3 and points 4 and 5, are formed into one constituent, All this is a conse-
gquence of the fact that peint 1 is a considerable distance from the other points,
even its nearest neighbor, point 3. Thus the first method is forced teo group
point 1 with peint 3, regardless of the distance, while the second method, by iso-
lating point 1 and forming the other points into one constituent, is able to give a
better indication of the actual distances involved in the spatial arrangement.

In fact for the second method each cluster of any order has a "dispersion
distance" such that (1) the constituents are within this distance of their nearest
neighbors which are also within the cluster and (2) any other, disjoint cluster
must be at a greater distance from any constituent and thus frorm the cluster as
a whole. The given cluster, then, is contained in a "contour” drawn at the disper-
sion distance around its constituents, and thereby is isolated from all other dis-
joint clusters; thus the method has been referred to as "contouring”. In general
contouring yields a more detailed structure that better reflects the large
disparity that may exist among the nearest-neighbor distances. Often, however,
there is a great deal of fine structure for this method so that some "coarsening"
- removal of contours - is helpful in visualizing the larger-scale structure.

4. Algorithms

Both methods of clustering can be carried out efficiently, that is, in time
that is polynomial in the number of points in the set, | S|, with reasonable
assumptions aboul the representation of the points in & and the difficulty of
compuling distances between them. On each iterative step of clustering we
rmust determine the distance between clusters; clearly this is a polynomial-time
operation since it depends only on the distances between points in the underly-
ing setg, which are disjoint subsets of S. (A polynomial-time clustering was also
obtained with other definitions of the inter-cluster distance.) For the nearest-
neighbor method any cluster is joined with at least one other one on each itera-
tive step; thus the number of clusters is reduced by at least half and the total
number of steps therefore is not more than log, |5 |. With contouring it is possi-
ble for only two clusters to be joined on each step so the number of steps could
be as large as |5 |~1, but the timing will still be polynomial in |S|. (In practice
it has not been excessive compared with the other method.)

An important feature of many of the clustering problems to date is that
many of the point-to-peint distances are infinite (in practice, a very large
number). Thus a boolean relation is given such that points are a finite distance
apart or are "connected” only if the relation holds between them. Typically the
boclean connections are not much more numerous than the points themselves
but they always form a connected graph, so that a path of connections can be
formed between any two points. This means that any reasonable distance-based
clustering will have all constituents of any subcluster at finite distances from
their nearest neighbors,

The nearest-neighbor method is implemented as follows. On each iterative
step an array of clusters is formed. These clusters are to be grouped into clus-
ters of the next-higher order. To each cluster in the array is associated its
"adjacency list" - those clusters at a finite distance from it. These clusters are
sorted by increasing distance and those at the smallest distance -- the nearest
neighbors - are "marked" along with the original cluster, with a number denot-
ing the cluster of next-higher order into which they will be placed. Meanwhile
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the original cluster is placed on a list assigned to this number. This list, in
effect, is the cluster of next-higher order that is being formed.

The marking itself proceeds by examining each cluster in the array in turn.
It a cluster has already been roarked with a number ths nuwmber is retained;
otherwise a new number is created. Then the nearest neighbors of the cluster
are examined. All of these should be marked with the sane number as the origi-
nal cluster. For those thal are, nothing is done. If sy have not yet been
marked at all, then they are assigned the new number and are added to the
cluster list for this number. However, if a cluster has alrrady been marked with
a different number, then (1) the cluster list assighed to the old number is
retrieved, (2) all clusters in this list, together with the neighboring cluster itself,
are marked with the new number, (3} all these clusters are added to the cluster
list for the new number, and (4) the cluster list for the old number is made
emply. In this way clusters of the next-higher order aregradually built up and,
whenever two clusters touch each other, they are coalesced into one.

When the process is complete the numbers denoting the higher-order clus-
ters are examined. For those having nonempty lists the lists are retrieved ~
these are the clusters of next-higher order, If there is ony one such cluster the
analysis is complete. Otherwise the iterative step is repeated with the new clus-
ters.

For contouring we could use the same approach, that is, form the new clus-
ters the same way on each step, except that now the neighboring clusters would
have to be mutual nearest neighbors, in keeping with the rationale for contour-
ing. Instead we use a different algorithm which sometines is much faster, and
appears to be faster in general. This algorithm is recumive rather than itera-
tive. Initially it is given list of clusters to be formed into 1 clustering. If this list
is a gingleton, that is, if it has only one element, then just the one elerment is
returned. If it contains two elements or is larger but al the nearest-neighbor
distances are the same, then the list itself ig returned. Otherwise a nontrivial
clustering is carried out.

First clusters are formed into an array and to eachis associated an adja-
cency list as before. Next a "contouring distance” is chesen. Currently this is
the median of the nearest-neighbor distances of all clusters in the array (with a
given distance being counted the number of times it occurs, rather than just
once), but other choices would also be acceptable, as is noted later. Any two
clusters that are not more than this distance apart are grouped together into a
cluster of next-higher order.

The grouping into clusters is done the same way as i the nearest-neighbor
method except that different clusters are treated as "neerest neighbors’, in this
case, those that are not more than the contouring distance from each other.
Thus (1) not all clusters grouped together will be nearesi neighbors and (2) not
all nearest neighbors will be grouped together. A cluster that is more than the
contouring distance from its nearest neighbor will remuin isolated. When the
grouping into clusters is complete, then, there will be sane newly-formed clus-
ters of higher order and some isolated clusters that were not grouped.

Next the algorithm is applied recursively to each rewly-formed cluster in
turn using its constituents as the initial list of clusters. In this way these clus-
ters are structured as they will appear in the final clustering. Finally the algo-
rithm is applied recursively again, this tirme to the list containing all the newly
structured clusters, together with the older, isolated ores. This results in the
final clustering.

In particular it is easy to show that, unless the algorithm is given a single-
ton list of clusters to start with, this case can newr arise. Instead the
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clustering will proceed recursively until each list to be clustered las all the
nearest-neighbor distances the same and no further clustering is possible. For
the algorithm to work properly, however, the contouring distance must be
chosen so that clustering will go to completion. Any distance less than the max-
imum nearest-neighbor distance, and not less than the minimum such distance
will do, though certain distances are expected to result in faster clustering.

A particular case that illustrates how timing depends on the method is one
in which the points, call therm p,, P2, . . ., Pn. are structured so thal their dis-
tances d{p;, p;,,) form a decreasing sequence of (finite) values whle all dis-
tances d{(p;, p;) for [i—~j|>1, are infinite. Thus p;,; will be the (unique) nearest
neighbor of p; whenever 1 <1 <n but only p, ., and p, will be mutual nearest
neighbors, If these are formed into a {({wo-constituent) cluster then snly it and
Pr-z of the remaining points will be mutual nearest neighbors, and so .

Thus if we applied the nonrecursive technique initially suggested for con-
touring, in which only the mutual nearest neighbors would be grouped on each
iterative step, only one new cluster could be formed on each step and the
number of steps needed would be n—1. Each of these in turn would require time
proportional to the number of clusters so the overall timing would be propor-
tional to n?.

With the recursive algorithm, using the median of the nearest-neghbor dis-
tances as the contouring distance, the size of the problem is reduced by half for
each of the two recursive calls thal follow the initial call, so the timing will be
proportional to nlogen. The timing will vary if a different choice of the contour-
ing distance iz used. For example, suppose it is chosen to be the kth mmallest of
the nearest-neighbor distances, with k/n close to some constant ¢ between 0
and 1. (For the median ¢ would be 0.5.) The timing can be shown to be propor-
tional to nlogyn where b = 1/ mazic,1—c, so that the ratio of the timing to
that for the median case is logyn/logen. This ratio, congequently the timing, is
minimized for the median case in which b reaches its maximum of 2.

This result, however, is problem-dependent. For other distance r:lations on
the n points other choices of contouring distances may give faster tinings. Still
the recursive algorithm, with some reasonable choice of the conteuring dis-
tance, seems likely to have better worst-case behavior than the iterative algo-
rithm,

Typically with contouring there is much fine structure and the order of the
clustering is much higher than in the nearest-neighbor case. Thus it i desirable
to show several versions of the clustering representing differing amounts of
"coarsening” or removal of contours from the original clustering. This will make
the larger structures more apparent and also will give some indication of how
much the clustering depends on small differences in the point-to-poin! distances
or how "robust” the clustering is. Thus if what is expected to be a smmll amount
of coarsening in fact destroys most of the structure then it must have depended
on small differences in the distances but if most of it survives thenit is more
robust.

The rationale used for coarsening is to start with the origina set of n
points, their nearest-neighbor distances, and the "fine-structure’” clustering
given by contouring. Nexi a contouring distance d ig chosen as the kih smallest
of the nearest-neighbor distances where k/n is close to a fixed value ¢, {Actu-
ally we choose k so that (k—1)/{n—1) is as close as possible to ¢.) Next all the
nonatomic subclusters in the clustering are examined "top-down' -- that is,
beginning with the whole clustering, proceeding to its constituents, then to their
constituents and so on. Any subclusters in which the dispersion distence is not
more than d are “flattened” - replaced by their underlying sets -- and are then
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marked "atomic”. From this point on they will be treated as single points and
will not be further coalesced during more advanced stages of the coarsening.

For the next stage, then, the partially-coarsened clustering will be further
coarsened using the same method. However the "points” will consist of the
"top-level-atomic” clusters - those that are atomic or are marked such and are
not subclusters of any others marked atomic. There will be fewer such "points”
than on the previous step. Their nearest-neighbor distances are determined and
the contouring distance is selected as before, using the same value of ¢. Next
the clustering is examined top-down again, and any subclusters that are not
marked atornic and whose dispersion distance is not more than the contouring
distance are flattened, down to the top-level-atomic subclusters, and are
marked atomic themselves,

The above step is iterated until it can go no further, that is, until the con-
touring distance equals the dispersion distance of the entire clustering. In par-
ticular if ¢ =1 then many contours will, in general, be removed leaving a coarse
structure, while more of the fine structure will be preserved for smaller ¢, with
all of it being retained if ¢ =0,

Sample experimental output for both the nearest-neighbor method and
contouring, including coarsening, will be shown in the next section. Both
methods as implemented require extensive list processing as well as arrays of
lists, so that LISP was found to be a convenient programming language. In par-
ticular the LISP recursion facility was useful for contouring because it allowed
arraey names and the arrays themselves to be dynamically created and des-
troved on recursive calls,

The programming was done on a VAX 11/780 computer in Franz LISP, under
the UNIX operating system. Execution times varied widely depending on the
paricular application. Typically the CPU time was of the order of 1-2 min. for a
set of aboul 50 points with about 80 boolean connections, so that most of the
point-to-point distances were infinite. Much more time, about 20-30 min., was
needed for this number of points with every distance finite, since this made the
adjacency lists much larger. No doubt the tirning could be improved; so far this
has not been necessary,

5. Applications

Al present there are four major computer techniques for clustering, each in
two versions, that is, using the nearest-neighbor methed and contouring, making
eight programs in all. All were created for studies of human conceptualization,
learning and memory retention at the University of Colorado Department of
Psychology [ 1]. In these studies model objects such as helicopters or cranes are
assembled from component parts. Typically an object has about 50 parts. Each
part is connected to one or more others. Parts that are not physically con-
nected are considered to be an infinite distance apart, except for a few cases in
which a finite distance implying a "connection’ was accepted on grounds of sym-
metry. The number of connections in the object ranged from a few percent
more to 507% more than the number of parts; thus most of the parts had only a
few parts connecting.

In the most basic clustering problem we are given the order of request of
the parts when an object is assembled and are asked to find the "conceptualiza-
tion" used in making the assernbly, Essentially the conceptualization is a
hierarchical subdivision of the object in which the individual connected parts are
grouped into larger connected units, and these into still larger units, and so on.
In short it is a distance-based clustering of the parts, Parts that are connected
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and whose orders of request are nearly equal are assumed to belong near each
other in the clustering, that is, as part of the same subcluster of low order. The
distance between connected parts, then, is just the absolute value of the
difference in the orders of request. Thus the parts are treated as individual
points and the clustering is formed. One variation of this analysis is to obtain a
"consensus’ conceptualization by averaging the orders of request over several
assembly trials,

A second problem concerns the clusterings that are obtained by the above
analysis when a number of subjects all assemble the same object under varving
conditions. We would like to know if these clusterings fall into meaningful pat-
terns or hierarchies. For instance we can ask whether there is essentially one
conceptualization with minor variations or several essentially different concep-
tualizations. Thus a clustering of the conceptualizations is called for.

To do this we must define a distance between conceptualizations. The way
this has been done is to consider the boolean relation or set of connections in
the object. The connections, represented by pairs of parts, are numbered
1,2 ... ,m. Each connection is represented by a pair {p,, ps}. Given any clus-
tering there will exist a minimal subcluster C that contains both p; and ps, so
that p, and ps will be in different constituents of C.

Next we define the order of {p;, 2l as the order of €. This is the "bottom-
up” order since it depends on the order of the constituents of C. An alternative
is the "top-down" order which is the depth of C within the clustering, where the
clustering itself will have depth zero, its constituents depth one, their consti-
tuents depth two and so on. Al any rate for any clustering we obtain an m-
vector (vy. vy, .. ., Uy Where v; is the order of the ith connection. It is not
difficult to show that an entire clustering can be reconstructed from its associ-
ated vector. {For example we can start with the pairs of lowest bottom-up or
highest top-down order and add pairs of succeeding orders until the entire
arrangernent of pairs is determined.) Thus two clusterings with the same vector
raust be identical.

Finally, the distance between two clusterings is defined as the distance
between the associated vectors, using a metric on an m-dimensional vector
space. The metric that has been most useful is the Euclidean 1-normn, that is,
the sum of the abselute values of the differences of the corresponding terms of
two vectors. The bottom-up order and the l-norm distance were used exten-
sively in studies based on the nearest-neighbor method of clustering [1]. For
contouring, however, the top-down order is probably more appropriate since the
clusterings are not "flat-bottomed"”; that is, constituents in a subcluster can
have variable order. This means that the bottom-up order of a connecting pair
can depend on a constituent that contains neither point of the pair, something
that does not occur with the top~-down order. The latter, then, seems to offer a
more reasonable indication of how "similar” the components of a connection are.

It should be noted that in this sort of analysis, regardless of how the order
is measured, all distances between points (in this case, clusterings) are finite.
Thus there are large adjacency lists for the points and extensive computation is
required for a moderately-sized problem; about 25 min. of CPU time on the VAX
computer was needed for one typical case involving 47 points.

Thus far two techniques for clustering problems have been described, both
dealing with cases in which the objects were correctly assembled. Two other
technigues have been developed for understanding what is involved when the
assembly is incorrect. {Incorrect assembly occurred when objects were recon-
structed from memory, without a correctly assembled object as reference.)



_.1{}..

In the first case we are trying to determine how the different connections in
the object influence the errors that are made. Thus the connections are treated
as the "points” in a cluster analysis. Two such connections are connected them-
selves if they have an endpoint in common. Thus a boolean relation can be
defined on the set of connections. Two connections that are not connected to
each other are at an infinite distance apart; otherwise the distance will depend
on how errors are made at these connections when assembly of the object is
attempted, '

Thus it is assumed that, whenever the object is incorrectly assembled,
there is a way of unambiguously deciding at which connections the errors are
made. For the analysis, then, a number of cases of an incorrectly-assembled
object are considered. To define the distance between two connections in the
object that have an endpoint in common we consider the sets 5, and S5 of cases
in which errors were made on the first or second connection, respectively. The
distance is then defined as |S;=S3|/ | 5,USs]|, that is, as the ratio between the
number of points in the symmetric difference of the two sets (where the sym-
metric difference is the set of points in the union that are not in the intersec-
tion) and the number of points in the union. This distance can be shown to be a
metric on finite, nonempty sets [2]. In particular the distance is always <1; it is
get to 1 by default if 5,5, is empty.

The distance is smaller if there is greater agreement between the errors
made on one connection and those on the other. Thus the clustering will tend to
identify groups of connections for which the pattern of eérrors is similar, such as
those on which nearly all subjects made errors. In this way it is hoped that con-
nections that are consistently troublesome can be identified so that instruc-
tional sequences can be designed to reduce the incidence of errors.

The second technique, which is the final one considered here, iz concerned
with identifying meaningful patterns of error making among different subject
groups, Subjects within a group assemble the object under similar conditions.
For example, visual instructional material may be presented. For each subject
within a group, then, we have the list of connections on which errors were made.
For any group we define an m-vector (v, vg, . . . Uy by v; = average number of
errors made on the ith connection = number of subjects who made the errors
divided by the number of subjects in the group. The distance between groups is
then defined as the distance between vectors, measured as before, and cluster-
ing can proceed as in the earlier case.

An illustration of this technique is shown in fig. 2 The twelve peints in each
clustering represent twelve subject groups. The object in this case has 58 con-
nections. Thus each point represents a location in a 58-dimensional vector
space and the point-to-point distances, which were given by the 1-norm, are only
roughly indicated in the figure. (2a) shows the clustering obtained by the
nearest-neighbor method, while (2b-d) show the results of contouring with
increasing amounts of coarsening. Thus (2b) has no coarsening, {(2¢) has a
moderate amount, with the coarsening parameter ¢ =05, and (2d) has the larg-
est amount, with ¢ =1. Certainly the two methods show differences but there are
basic similarities too. In particular the nearest-neighbor method seems to
correspond best to contouring with a moderate amount of coarsening.
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Fig &, showing results of clustering by the nearest-neighbor method (2a)
and contouring with increasing amounts of coarsening (2b-d).
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