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Abstract

A new class of methods for solving systems of nonlinear equations, called
tensor methods, is introduced. Tensor methods are general purpose methods
intended especially for problems where the Jacobian matrix at the solution is
gingular or ill-conditioned. They base each iteration on a quadratic model of the
nonlinear function, the standard linear model augmented by a simple second
order term. The second order term is selected so that the model interpolates
function values from several previous iterations, as well as the current function
value and Jacobian. The tensor methed requires no more function and deriva-
tive information per iteration, and hardly rmore storage or arithmetic per itera-
tion, than a standard method based on Newton's method. In extensive computa-
tional tests, a tensor algorithm is significantly more efficient than a similar algo-
rithm based on the standard linear model, both on standard nonsingular test

problems and on problems where the Jacobian at the solution is singular.



1. Imtroduction

This paper introduces a new class of methods, tensor methods, for solving

the nonlinear equalions problem
given F: K"-R"™, find z4cR™ suchthal F(zy) =0 (1.1)
where it is assumed that F(z) is at least once continuously differentiable. The
novel feature of these methods is that they base each iteration on a quadratic
model of F(z) whose second order term has a special, restricted, form. Tensor
methods are especially intended to improve upon the performance of standard
methods on problems where the Jacobian matrix of F at zy, F'(zx)€R™ ™, is
gingular or ill-conditioned. At the same time, they are intended to be at least as
efficient as standard methods on problems where F'(z,) is nonsingular. Their
storage requirements and arithmetic operations per iteration are not

significantly higher than the requirements of standard methods,

Standard methods for solving (1.1) base each iteration upon a linear model
M(z) of F'(z) around the current iterate z, € K",

Mz, +d) = F(z,) + J.d C(12)
where deR™, J,€R™"™" . These methods can be divided into two classes, those
where J, is the current Jacoblan matrix F'(z,) or a finite difference approxima-
tion to it, and those where J; is a secant (quasi-Newton) approximation to the
Jacobian. In this paper we propose extensions to the first type of methods,
those that use analytic or finite difference Jacobians, because this is the most
basic setting in which to study the new ideas of this paper. In subsequent
papers, we intend to extend tensor methods to secant methods for nonlinear

equations, and to unconstrained optimization.

When the analytic Jacobian is available, the linear model (1.2) becomes

Mz +d) = Flxe) + F'(zg)d. (1.3)

The most basic method for nonlinear equations, Newton's method, is defined



when F'(z;) is nonsingular, and consists of setting the next iterate x, to the
root of (1.3),

z, =z — F(2)  Fx,). (1.4)
The distinguishing feature of Newton's method is that if F''(z.) is Lipschitz con-
tinuous in a neighborhood containing the root zx and 7 (x) is nonsingular, then
the sequence of iterates produced by (1.4) converges locally and gq-quadratically
to Zx. This means that there exist 6>0 and c¢=0 such that the sequence of
iterates {x; ! produced by Newton's method obeys

o sy — zull < €l — 2l 4
if |lzg — zx|]| < 4. In practice, local g-quadratic convergence means eventual fast

convergence,

Newton's method is not usually quickly locally convergent, however, if
F'(zy) is singular. For example when applied to one equation in one unknown
{n=1) where f'(zx)=0 but f'(z4)#0, Newton's method is locally g-linearly con-
vergent with constant converging to %, meaning that the sequence of iterates

{xy ] obeys

[Zesr — Zx| = cp |2 — 2], ]lci_{gﬂk =%
if oy~ 24| is sufficiently small. For systems of equations, the situation is more
complex and has been analyzed by many authors, including Decker and Kelley
[1980a, 1980b, 1982], Decker, Keller, and Kelley [1982], Griewank [1980a, 1980b,
1983], Griewank and Osborne [1981], Keller [1970], Kelley and Suresh [1982],
Rall [1966], and Reddien [1978, 1980]. In summary, their papers show that from
many starting points, Newton's method for systems of equations also is locally
g-linearly convergent with constant converging to % although from sc;\me start-
ing points arbitrarily close to z,, (1.4) may be repulsive. In practice, Newton's

method usually exhibits local linear convergence with constant 2 % on singular

problerns (see Table 6.6), much slower convergence than one would like.
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Several of the above mentioned papers, for example Decker, Kell:er, and Kel-
ley [1982] and Griewank [1980a, 1983], propose methods that are rapidly conver-
gent on some singular problems. Most of these methods are related to the one
dimensional acceleration technique of taking 7 times the Newton step if one has
a j™ order singularity. This requires deciding whether the problem is singular,
which probably makes such methods unsuitable for general purpose use. The
major aim of this paper is to provide a general purpose method that has rapid
local convergence even when F’(:r,e) is singular. In addition, tensor methods
usually will not experience any special difficulty when F'(z,) is singular or ill-

conditioned, while methods based on (1.3) must be modified in this situation.

Systems of nonlinear equations with F'(z ) singular or ill-conditioned occur
in a number of important practical situations. For example, conservation laws
in stiff systems of ordinary differential equations sometimes cause the Jacobian
of the associated system of nonlinear equations to be very nearly singular for all
z. In curve tracing problems it also is not uncommon to generate systems of
nonlinear equatiéns with nearly singular Jacobians. In unconstrained minimiza-
tion problems arising from data fitting, the Hessian matrix V3f (x,) usually is
singular if the problem is over-parameterized, and often VPf (zy) is ill-
conditioned because the data fitting model is far more sensitive to some param-
eters than to others. In all these cases, it is important to notice that the (near)
rank deficiency in the derivative matrix usually is small. This is the case in
which our miethods are intended to improve upon standard methods. Our
methods are not intended for problems where the rank of F'(zy) is small in
comparison to its dimension, although sometimes they are effective in this case

in practlice,

The other well-known disadvantage of Newton's method is that it may not
converge to any root xy if it is started too far from any root. The main remedies

used in practice are augmenting (1.4) by line search or trust region algorithms,



see for example Fletcher [1980], Gill, Murray, and Wright [1981], or Dennis and
Schnabel [1983]. Our new methods use the same strategies when the new local

step is unsatisfactory.

It is important to consider the costs associated with solving systems of non-
linear equation by standard methods. These can be divided into three types: the
arithmetic operations required by the algorithm (excluding function and deriva-
tive evaluations); the storage required, and the evaluations of the nonlinear
function F(z) and the Jacobian #'(z), if it is provided. For algorithms that use
an analytic or finite difference Jacobian, the deminant arithmetic cost is one
matrix factorization per iteration, requiring n3/3 (for LU) or 2n®/3 {for QR)
additions and multiplications per iteration. Al least n? storage is required, for
the Jacobian, and some algorithms store a second mxn matrix. Finally, F'(z)
must be evaluated at least once per iteration; in addition, either F'{z) is
evaluated once per iteration, or it is approximated by finite differences, requir-
ing up to n additional evaluations of F(z) per iteration. In many practical prob-
lems, the evaluations of F(z) and F'(x) are expensive and dominate the other
éosts. The main efficiency goal of our new method is to decrease the number of
function and derivative evaluations required to solve systems of nonlinear equa-
tions; however, no substantial increase in the arithmetic cost per iteration, or in

the storage requirements, will be permitted.

Our new methods are based on expanding the linear model (1.3) of F(z)
around z; to the quadratic model

Myp(zo+d) = Fz,) + F'(z,)d + %T.dd (1.5)

where T, € R™*™** The three dimensional object 7, often is referred to as a ten-

sor, hence we call (1.5) a tensor model, and methods based upon (1.5) tensor

methods, We define the notation 7, dd used in (1.5) before proceeding,



Definition 1.1. Let TeR™™**  Then 7 is composed of n horizontal faces
H,eR™™ 4 =1, - n, where Hy[j k] =T[ij.k] Forv,weR" Tvweck" with

Powli) = v = 3 5706 kIl holk)
j= =1

Note that Mp(z,+d) is simply the n-vector of n quadratic models of the
component functions of F'(z),
(Mplzg+d))i] = fo+gld + %d"Hd, i=1,- - n
where f; = F(z,)[i], gf = rowi of F'(z.), and H; is the Hessian matrix of the i

component function of F(z), or an approximation to it.

The obvious choice of 7, in (1.5) is the matrix F'''(z,) of second partial
derivatives of F' at z,; this makes (1.5) the first three terms of the Taylor series
expansion of F around z,. Several serious disadvantages, however, make (1.5)

with 7, = F""(x,) unacceptable for algorithmic use. They include:

(1) The n® second partial derivatives of 7' at z, would have to be computed at

each iteration.
(2) The model would take more than n3/ 2 locations to store.

(3) To find a root of the model, at each iteration one would have to solve a sys-

tern of n quadralic equations in n unknowns.
(4) The model might not have a real root.

To use a model of form (1.5) and avoid these disadvantages, our tensor
method uses a very restricted form of 7,. In particular, our tensor model
rkequires no additional derivative or function information; the additional costs of
forming and solving our tensor model are small compared to the O(n®) arith-
metic ‘cost per iteration of standard methods; and the additionai storage
required for our tensor model is small compared to the n* storage required for
the Jacobian. The key contribution of this paper is showing how one may con-

struct a useful quadratic model that satisfies these criteria. Our tensor model



still does not always have a real root, and we will address this issue.

The remainder of the paper is organized as follows. In section 2, we discuss
briefly the specialization of our tensor method to one nonliner equation in one
unknown. Of course, when n=1, many of the disadvantages stated above for a
second order Taylor series model are irrelevant, and indeed, various methods
for solving a single nonlinear equation are based on using quadratic models. The

material in section 2 is included only to motivate our multi-variable method.

The heart of the paper, our techniques for forming and solving the tensor
model for systems of nonlinear equations, is contained in sections 3 and 4,
respectively. The full tensor algorithm is presented in section 5 and various
implementation consideralions are discussed. In section 6 we present test
results of our tensor method on the problems of Moré, Garbow, and Hillstrom
[19‘81][ and on modifications of these problems constructed so that F'(zy) is
singular. We compare our tensor algorithm to an algorithm that uses the stan-
dard linear model (1.3) but is identical in virtually all other respects. We com-

ment briefly on extensions of our tensor methods in section 7.

Notice that we have denoted members of a sequence of n-vectors = by §x,}
where each z, €R™, and components of a vector veR™ by w[i]eR. The conven-
tion of using non;numer'ical subscripts for replications and bracket notation for
scalar components is continued throughout the paper. In section 4, integer sub-

scripts are used to denote portions of vectors or matrices that are themselves
vectors or maltrices; for example, the portions d,€ " ? and de R? of the vector

r;fe:}?", and the portions 516}?“"(7‘“3’) and 5261?’”‘1) of the matrix JER™™, are

defined in step 2 of Algorithm 4.1.



2. The tensor method for one equation in one unknown

In this section, we discuss briefly the restriction of our tensor method to
the case n=1. The use of a quadratic model for solving one nonlinear equation
in one unknown is well known and a part of some software libraries; an early
reference is Muller [1956]. We make no atternpt to compare the one variable
version of our tensor algorithm to similar algorithms for solving a single non-
linear equation. Rather, the material in this section is included solely to
motivate some features of the tensor algorithm for systems of equations that

follows.

The quadratic model (1.5) restricted ton=1 is
my(ze+d) = f () + [ (ze)d + Joto d? (2.1)
where all quantities now are scalars. We said in section 1 that we would not use
second derivatives. Then an obvious way to select £, is to ermulate the secant
method by asking the model (2.1) to interpolate the value of f (z) at the previ-
ous iterate x _. This means

F (@)= fme) + Fi(me)s_ + Bos? (2.22)

where we define
S_=x_ -3, {2.2b)
the step from %, to x_. The second derivative appmxima‘ticn t. is determined

uniquely by (2.2).

The roots of {(2.1) are found by solving one quadratic equation in one unk-
nown. Usually, (2.1) will have either no real roc;ts or two real rocts. If there are
two real roots, then a reasonable way to choose between then is to let z, be the
root that is cleser to z,. This is written in a numerically stable way as

RS (24)
T () + sign(f(z.)) V(F (%)) = 2t f (=)

Lye =2 — (2.3)




If (2.1) has no real roots ((f'(z;))? < 2t, f {x;)). there are two obvious alter-
natives: try the Newton step

2l =z~ flz) 7 f(=), (2.4)
or try setting =, to the critical point of (2.1),

2P =z = fl(xe) / e, (2.5)
where the absolute value of the quadratic model is smallest. The latter strategy
definitely is advantageous close to a root z, where f'(zy) = 0 #f (x4).  In this
case, the iterates produced by (2.2, 2.5) converge to z, with q-order (]_+\f5)/2
% 1.81, as this is just a variant of the secant method for minimizing or maximiz-
ing f(z). The step (2.2, 2.3) may or may not be defined in this case; if it is
defined it is also quite satisfactory as the iterates it produces will converge to x4
with g-order (1+V3)/2 2 1.37. (See e.g. Traub [1984] for very similar proofs.)
On the other hand, we have already stated that the iterates produced by (2.2,

R.4) are q-lineaﬂy convergent to zy with constant converging to % in this case.

When f'(x,) # 0, the quadratic model (2.1, 2.2) will have real roots for z,
sufficiently close to zy. In general, however, (2.1) may not have real roots, and
aside from the above-mentioned case, neither z¥ or zmin consistently is the
better choice. In Frank [1982], we implemented a method for solving one non-
linear equation in one unknown based on (2.2 - 2.5) and a line search. We found
that when the quadratic model had no real root, a good strategy for choosing
between the steps to z¥ and z ™" as the initial step in the line search was to
choose the longer step. This is equivalent to choosing z{" if and only if
Imy(z™)| <% |f(x;)|. This strategy always prefers x ™ over z¥ sufficiently
close to a root x, where f'(z4)=0, guaranteeing fast local convergence in this

case.

One case where this strategy is not desirable is when the algorithm cannot

locale a root of f(z) and must converge to a stationary point of f(z). In this



case the step to zM" is shorter but considerably more desirable than the New-
ton step. The algorithm in Frank [1982] contains a simple strategy to recognize

this situation and uses the step to z " instead of the Newton step in this case,

Several aspects of the algorithm for one nonlinear equation carry over to
systems of equations. There we again use the extra freedom in the quadratic
model to interpolate function values at past iterates. The multi-variable qua-
dratic model again may have multiple real roots or no real roots. In the former
case we again hope to find the root closest to z,. In the latter case, we again use
either the step to the minimizer (in the i3 norm) of the quadratic model or the
Newton step for our line search direction, choosing between the two steps by cri-

teria similar to those described above.

3. Forming the tensor model

We now show how we select the tensor term T, €R™***® in the model -
Mp(ze+d) = Fzg) + Flz,)d + %T.dd. (3.1)
Our choice of 7, will cause the second order term T, dd in (3.1) to have a simple,

useful, form.

We have already stated that 7, will not contain actual second derivative
information. Another way we can use the second order term in (3.1) is to ask
the model to interpolate additional values of the function F(z) or the Jacobian
F'(z) that have already been computed by the algorithm. In our method, we will
select some set of p not necessarily consecutive past iterates z_;, - - - & 5, and
require the model (3.1) to interpolate the function values F'(x_) at these points‘

That is, the model should satisfy

Flz_p) = F(z,) + F ()8, + $Tosese, k=1, p (3.Ra)
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where ‘

Sp =L g —x., k=1, p . {3.2b)
First we describe how the past points z_,, - -+ & _, are selected. Then we show
how we choose T, to satisfy (3.2). Alternative ways to select T, are mentioned

briefly in section 7.

For the equations (3.2) to always be consistent, it is clear that the set of
directions {s;} from x, to the selected past points z_, must be linearly indepen-
dent. In fact, our computational experience with other algorithms that interpo-
late information from past iterates has shown that the directions s} should be
strongly linear independent, in the sense that each direction s, should make an
angle of at least @ degrees with the linear subspace spanned by the other direc-
tions; values of ® between 20 and 45 degrees have proven appropriate in prac-
tice. At each iteration, therefore, we choose the past points §z_,} that we
include in (3.2) by the following procedure. We consider the past iterates in
order starting with the most recent. We always select the most recent iterate,
and then select each preceding past iterate if the step from it to z, makes an
angle of at least ® degrees with the subspace spanned by the steps to the
already selected more recent iterates. This procedure is implemented easily

using a modified Gram-Schmidt algorithm.

We also set an upper bound p on the number of past function values inter-
polated by the model at each iteration. Since the set {sp{ must be linearly
independent, clearly p<n, bul we enforce a much smaller bound,

p < ~n. (3.8)
This bound also was motivated by our computational experience with other algo-
rithms that interpolate information from past iterates; we found that using
more than about Vn interpolation conditions rarely was beneficial (see e.g.

Stordahl [1980]). The bound (3.3) also is crucial to the efficiency in storage and
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arithmetic operations of our tensor method. For example, since we also only
consider a maximum of Vn past iterates in the above mentioned Gram-Schmidt

algorithm, it requires about n* additions and multiplications.

Now we discuss how we choose T, to satisfy (3.2). It is convenient to rewrite
(3.2) as

TeSeSp =2, k=1, p (3.4a)
where

2 €R™, 2, =2 Flz ) — Flz,) ~ F'{z:)s; ). (3.4b)
This is a set of np <n'® linear eguations in the n® unknowns 7,[i.j.k],
1=i 7 k=n. (Actually there are (n®+n?)/ 2 unknowns since each horizontal face
of 7, must be symmetric; this symmetry is provided automatically by the follow-
ing derivation.) Since (3.4) is underdetermined, we follow the standard and suc-
cessful practice in secant methods for nonlinear equations and optimization (see

e.g. Dennis and Schnabel [1979]) and choose the T, that satisfies

zggggf 176 p (3.5)

subject to Toses, =2, , k=1, p
where ||, ||z, the Frobenius norm of T, is defined by

17§ = LLL i k]

i=1 =1 k=1
The solution to (3.5) is given by Theorem 3.2. First we define a rank one tensor.

Definition 3.1. Let u, v, wek™. The tensor TER™™® for which T[ij,k] =

wli]*v[jl¥ wlk] 1=i,j k=n is called a rank one tensor and denoted T = uwvw.

Note that the 1% horizontal face of the rank one tensor www is the rank one
matrix «{i]{(vw’). Theorem 3.2 shows that the solution to (3.5) is the sum of p

rank one tensors whose horizontal faces are symmetric.
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Theorem 3.2. Let p=n, let s, €R™, k=1, - p with {5} linearly independent,
and let z€R", k=1,- - ,p. Define McRP*® by M[ij] = (sfs;)? 1=ij<p,
ZER™P by column k of Z = 2, k=1, - -+ ,p. Then M is positive definite, and the
solution to (3.5) is |

i1
I, = kz U Sk Sk (3.8)
=1

where a; is the k* column of ACR™P, A definedby A =42 * 41,

Proof : Problem (3.5) is equivalent to solving independently the n separate prob-

lems over the n horizontal faces H; of 7,

minimjze 1 Hillr (3.7)
subject to  sTHs, = 2 [i], k=1, - P

because the constraints and the objective function of (3.5) may be decomposed
into these n separate constraints and objective functions each involving one of
H;'s, and the optimal value of any one H; clearly does not affect the optimal
value of any other H;. Problem (3.7) simply is an underdetermined system of p

linear equations in n® unknowns. To express it in standard form, let

heR™, (3.8)
h, = H[1,1], H;[1,2]),- - - H[1in], H[21), - Hl2n] - Hin1), -, H[nmn],
SerP*®  rowk of S = sp[1]¥ sk, sel2]¥s6, -, seln]® sk

and Z; = row1 of 7, that is,

geRP, Elk]=z[i] 1<isn, 1<k<p.

Then {3.7) is equivalent to

miminize llh;lla subjectto S h; = Z;

and S has full row rank because {s,] are linearly independent. Therefore the
solution to (3.9) is

h = 57 (§87) 1 7,
It is straightforward to verify that SS7 = M, which also shows that ¥ is positive
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definite. Since by definition row i of A = M~ ¥*(row i of Z),

he = ST &, (3.10)
where @; = rowi of 4, that is,

LeRP, ak] = o] 1<izn, isk=p
Now note that if the transformation (3.8) that transforms H; ER™*" to b, €R™ is
applied to spsfeR™ ", the result is row k of S. Therefore, since (3.10) is

equivalent to

hy = i} a[k] *rowk of § = i a,[i] *rowk of S, (3.11)
k=1 k=1

transforming (3.11) back to the nxn matrix H; yields

H; = i (1] si si. (3.12)
k=1
Finally, combining the n horizontal faces H; given by (3.12) to reform T, gives

(3.8).

Substituting {3.8) into the tensor model (3.1) gives

Uyp(z+d) = Flz,) + F'(z)d + %ki; o (d7s,)?. - (3.19)
The simple form of the second order term in (3.13) is the key to being able to
efficiently form, store, and solve the tensor model. The additional storage
required by (3.13) is 2p n-vectors, for {a,] and {s;}. In addition, the 2p n-
vectors {x_,{ and {F(x_)! must be stored. Thus the total exira storage
required for our tensor model is 4n'® since p<vn . The reader can verify that
the entire process described above for forrrﬁng T, requires np + O(np®) multi-
plications and additions. The leading term comes from calculating the p
matrix-vector products F'(z,)se, k=1, - - ,p; the cost of solving 4 = Z" M1is
O(np?). Since p=V7n , the leading term in the cost of forming the tensor model
s]

is at most n*° multiplications and additions per iteration, small compared to

the at least n%/ 3 multiplications and additions per iteration required by stan-
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dard methods that use analytic derivatives. In the next section, we will see that

the extra cost to solve the tensor model also is at most O{n?%).

4. Solving the tensor model

In this section we give an efficient algorithm for finding a root of the tensor

model derived in section 3, that is,

find d€R™ such that (4.1)

Mz, +d) = F(z,) + F'(z)d + % 3, oy (d7s,)? = 0,
k=1

We show that the solution of (4.1) can be reduced, in O(n®p) operations, to the
solution of a systern of ¢ quadratic equations in p unknowns, plus the solution of
a system of n—g linear equations in n—p unknowns. Here g = p, with g =p
whenever F'(z,) is nonsingular. In addition, if /''(z;) is singular but has rank at
least n —p, we show that g still usually equals p and the aforementioned system

of linear equations still is well conditioned. We also show that our algorithm

efficiently solves the generalization of (4.1),

mlélég}‘me |Mp(ze +d)|. (4.2)
That is, our algorithm will find a minimizer of the tensor model when the model

has no real root.
Let us define S€F™? by column k of § = ;.

The basic idea of the algorithm is that since (4.1) is linear on the n—p
dimensional subspace {d | S7d = 0}, (4.1) really only should be quadi\‘atic inp
variables and linear in the other n—p. This is accomplished in steps 1 and 2 of
Algorithm 4.1 by making a linear transformation of the variable space; an

orthogonal transformation is used mainly because it already will be available



15

from the Gram-Schmidtl process used to select {sy]. Then a linear transforma-
tion of the equations, steps 3 and 4 of Algorithm 4.1, is used to eliminate the
n—p transfermed linear variables from p of the equations. The result usually is
a system of p quadratic equations in p unknowns, (4.5b}, that is solved in step 5
of Algorithm 4.1, and a system of n—p equations (4.5a) that are linear in the
remaining n—p unknowns and can be used to compute these unknowns once the
system of quadratics is solved. The exceptional case ¢ > p arises when this sys-
tem of linear equations would be singular. In this case, the number of linear
equations is decreased by this rank deficiency and the number of guadratic
equations is increased correspondingly, but the number of variables in each sys-
tem is unaffected. Of course in practice, the mathematical notion of rank
deficiency is replaced by the numerical notion of adequately small condition

number.

Algorithm 4.1 gives the method we use for solving (4.2). Theorem 4.2
verifies that it selves this problem, and gives several other important properties
of the algorithm. After the proof of Theorem 4.2 we discuss the efficiency and
numerical stability of Algorithm 4.1. We also mention several alternative

methods for solving problem (4.2).

We introduce the notation that given v € R™, {v1? denotes the vector weR™
for which w(i] = v[i]? i=1,- - - ,m. This allows us to denote the second order

term of our tensor model below by % A {STd {2

Algorithm 4.1. let p<n, FeR™, JeR™" A, ScR™™, S having full column rank.

Comment : Steps 1-2 transform the system of n equations in n unknowns

Ft+Jd+%AiSTd)? = (4.3)

to the system of n equations in the n unknowns 5!161?"“9 and tAigE[x’P



16

F o+ Jidy + Jodp + % A §Sadp}? = 0. (4.4)

1. Find an orthogonal QE€R™*" such that 7S = S, where

Sc kP =

and §3 has the triangular shape shown.

2. Calculate J = J* & and let fﬁ}?“"(n“") and ngRnXp denote the first n—p and
last p columns of 5 respectively.
Also define d = QTd, and let (Aileii’"”p and agERp denote the first n—p and last

p components of d, respectively.

Comment : Steps 3-4 transform the system of equations (4.4) to

n—p P VY
+ 1 }2 d| + %4 §§232§2 = 0,
K A

that is, to the system of n—g equations inn unknowns

o e o A ~ ATA
Fy+ Jidy + Jodpg + % Ay (Sade}? = 0 (4.52)

and the system of g equations in p unknowns
-~ . . WT ]
Fy+ Jadg + % Ag 1Spdp}® = 0 (4.5b)

3. Find an orthogonal QER™™ and a permutation matrix PeR® PX7nP) gych

that

where g=p and J 1 is upper triangular with a non-zero diagonal. Define
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31 = PT&L alﬁif?""p,

4, Calculate

A
Sy
[av]
i
<,
fa]

n-q

- q

Similarly calculate A = @A, and let Zle‘,}??"”“‘? and Egﬂi’p"q denote the first
n—g and the last g rows of A respectively; also calculate F= @F, and let

f’ﬁ}i’"“‘l and ]:;261?‘1 denote the first n—g and last ¢ components of F, respec-

tively.
5. {Solve (4.5b) in the least squares sense.) Solve

~ ~ A ~ AT
minimize [[Fy + Jadg + % Ag {Szdai®(lp. (4.8)
deRP
8. (Backsolve (4.5a) for d,.) Find a d, that solves

T

e ~ 1A

Jldl = "“;—'1 - 21 252%;2 (4'7)

7. Calculate &1 = Pz};, d = Qc;i

Theorem 4.2 shows that Algorithm 4.1 finds a root or minimizer of the tensor-
model, and gives some properties of some matrices used in Algorithm 4.1 whose
relation to the numerical stability of the algorithm is discussed later in this sec-
tion. Recall that for any WeR™™, the rank of W is the dimension of the linear
subspace spanned by the rows or columns of W, and the nullity of ¥, the dimen-

sion of the linear subspace { y€R™ | Wy = 0}, is (m ~ rank(W)).



i8

Theorem 4.2. Algorithm 4.1 calculates a selution to

i T 7121,
mlﬁgkmeﬂﬁ’ tJd+ A §STd ], (4.8)
J
Furthermore, define JgcR{(P+PXn = - Then
S
g =p + (n — rank(Js)). (4.9)
If rank(Jg) = n, then g=p and
K() = K(Js), (4.10)

where K{W) denotes the I, condition number of W. Also -

rank(Jg) = p — (rank(Jg) — rank(J)). (4.11)

Proof : Substituting QQTd for d in (4.3) and using the definitions in steps 1 and 2
transforms (4.3) to (4.4), and clearly the transformation does not affect the

smallest I, norm value of the system of equations, Next, it is straightforward to

verify that premultiplying (4.4) by 9, substituting PPTd, for d, in (4.4), and using
the definitions in steps 3 and 4 yields (4.5). The minimum l; norm values of
these two systezﬁs of equations are equivalent because premultiplying a vector
by an orthogonal matrix deesn't alter its I; norm. Finally, since 31 has full row
rank, given any &3, a &1 may be found that solves (4.5a). Therefore, ’the
minimum value of (4.8) is the minimum i, norm value of (4.5), and by the above,
of the original problem (4.8), and the I; minimizer of (4.5) is found by (4.8-4.7).

Step 7 reverses the transformations in variables made in steps 2 and 3 to obtain

the minimizer of {4.8) from the minimizer of (4.5).
Now let @,€R"*(»"P) and Q,cK™P denote the first n—p and last p columns
T (
of the ¢ used in step 1 of Algorithm 4.1. Then since ST =5 | we have STQI = 0

. T - -
and STQ, = S;. Similarly from step 2 of Algorithm 4.1, J@, = J,, /@ = Jo. Thus
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Ji |
Js@ = 7
Sp
T
and since ¢ and Se are nonsingular,
nullity(/s) = nullity(Js @) = nullity(J,). (4.12)

From step 3, nu].lity(jl) = g ~p, and by definition, nullity(Js} = n — rank(Jg), so
(4.12) implies (4.9). Next, if we use the notation that for v €Rk™, v, denotes the
first n—p components of v and v, the last p components, and let ||-|| denote the

iz vector norm, then

max ||Js @l / vl

K(Js) = K(JsQ) = ”Eiin Vs Qull 7 Twl

m
weRD
max sl /il max [Twill/
vER"‘., v,=0 - v ERTTP - K(jl) = K<jl)
w€f§‘],lia=0 HJSQw” ’ HwH wrgl;??ﬁ? “jlwlil/ lelH

with the last equality a direct consequence of step 3 of Algorithm 4.1. Also, since

N A U
&J QP
U 5,3

where PER™ ™ is the permutation matrix with P as the upper n—pxn—p subma-
trix and the identity otherwise, and since J 1 has full row rank, we have

nullity(J) = nullity(@/@P) = nullity(J,) + nuility(Js). (4.13)
Substituting again nullity(J/,) = g¢—p as well as the definitions nullity(J) =

n —rank(J) and nullity(J3) = p — rank(J3) into (4.13) yields (4.11).

The first virtue of Algorithm 4.1 is its efficiency. Let us examine the opera-
tion counts for multiplications (and divisions); the counts for additions and sub-

tractions are very similar. While Algorithm 4.1 is valid for any p = n, here we
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reinstate the bound p < V7 from section 3. Then the dominant cost in Algo-

rithm 4.1 is the QR factorization of J, which requires about 2n3/3 - n®p + 0(n?
multiplications. The next largest cost is the 2n?p + O(n?) multiplications for the
matrix rnultiplication J* @ in step 2. The reader can verify that all other por-
tions of stepy 1-4 and 6-7 require at most O(nz) multiplications. The remaining
cost is the solution of the nonlinear least squares problem in step 5. While (4.6)
rmust be solved by an iterative algorithm, the point is that the total cost of solv-
ing this problem is negligible. In the usual case ¢ =p, each iteration of the non-
linear least squares algorithm requires O(p®) multiplications, and it is reason-
able to expect at most a small multiple of p iterations to suffice. (We use the
bound Bp in our implementation.) Thus solving (4.6) usually can be expected to
cost O(p*) = O(n®) multiplications. If g>p, this cost could rise to O(gp®) =
0{n?®), However in our practical experience, ¢ =p almost all the time and g is
hardly greater than p otherwise; some summary statistics are given at the end
of Section 6. Thus it is reasonable to expect that the nonlinear least squares
problem ih Algor'ithm 4.1 requires at most O(n®) multiplications.

So the total cost of Algorithm 4.1 is about 2n®%/ 3 + n®p multiplications, at

most n?®

multiplications more than the QR factorization of an n xn matrix. For
small n, these numbers are inconsequential; for moderately large n, the 2n3/3
dominates and is the same cost as a standard method for nonlinear equations
would have if it used the QR factorization. While some standard algorithms for
nonlinear equations de use a QR factorization (see e.g. section 8.5 of Dennis and
Schnabel [1983]), others use a PLU factorization and require only n%/ 3 multipli-

cations per iteration if F'(x.) is nonsingular. Algorithm 4.1 also 'icould be

modified to use n%/ 3 + O(n?p) multiplications per iteration when J is nohsingu"

lar, by using a PLU factorization of 31 al step 3. If the resultant pxp system of

guadratics (4.5b) had a solution, no further modification would be necessary. If
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not, the minimum norm solution to this new system of quadratics no longer
would correspond to the solution of (4.8), and steps 5-6 would have to be com-
bined into the nonlinear least squares solution of the full system (4.5). This still
could be accomplished in O(n?p) operations when J is nonsingular by using an
algorithm that takes advantage of the special structure of this problem. We
prefer the more expensive QR-based algorithm, however, because it is simpler

and more stable numerically, especially when the tensor model has no real root.

The other virtue of Algorithm 4.1 ig its numerical stability, even when the
Jacobian J is singular or ill-conditicned. This is reflected in the conditioning of
the systern of linear equations, (4.7), that is solved by Algorithm 4.1, Equations
(4.9) and (4.10) of Theorem 4.2 show that if the (n+p)xn matrix Jg formed by
adding the p rows of ST beneath J has safely linearly independent columns,
then this linear system will be square and at least as well conditioned as Jg. In
practice, this means it is likely that the system of quadratics will be pxp and
the linear system will be square and well conditioned whenever J has at most p
zero or small sinéular values. Notice that (4.10) also implies that the condition-
ing of the linear system solved by the tensor algorithm always will be as good or

better than the conditioning of the linear system solved by Newton’s method.
Of course, if J is singular, this singularity does not magically disappear in
Algorithm 4.1, Equation (4.11) shows that if J is rank deficient but Js has full

rank (the likely situation when rank(J) = n~p), then J5 will have the same rank

deficiency as J. However the whole point of the tensor algorithm when J is

singular is that the singular submatrix 573 is used in the system of quadratic

equations (4.6b), which also contain a portion of the second order information in

the tensor model. This system is not necessarily ill-conditioned even if 5‘3 is; for
example, one quadratic equation in one unknown with no linear term is not ill-

conditioned. Furthermore, this system of quadratics has maximal dimension
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vn, and in our practical experience even this small upper bound is not
approached as n becomes large. Thus when the Jacobian is singular, the effect
of the tensor algorithm usually is te isolate this rank deficiency as the linear
term in a small system of quadratic equations that contains useful second order

information and may be solved accurately without great cost.

If the tensor algorithm converges to a root zyx where F''(xy) is singular, the

Jacobians of the nonlinear least squares problems (4.6) also will become nearly

singular because T 3 will be nearly singular and the solution ag will be small
However the cost of solving these small nearly singular nonlinear least squares
problems still will be insignificant. So on nonlinear equations problers where
F'(zy) is singular, it appears the effect of the tengcr algorithm is to transfer the
slow convergence of Newton's method to a series of small guadratic subproblems
where slow convergence does not hurt the overall efficiency of the algorithm.
More importantly, no additional function evaluations are used in solving these

small subproblems.
A minor deficiency of Algorithm 4.1 is that it relies upon the QRP decompo-

sition to deterrmine rank when J 1 does not have full rank (¢ >p); a singular value
decomposition would be preferable in this case. We have already mentioned that
this case is very unusual in practice. Note that when ¢>p, Algorithm 4.1 easily

Is modified to find the smallest d, in the I; norm, that minimizes the I, norm of

the tensor model; all that is required is to find the smallest &I that solves the

system of linear equations (4.7) that is underdetermined in this case.

It is interesting to consider when our tensor model has a complex root,
Even though this information is not of practical value to our tensor algérithm, it
turns out to give a succinct explanation of how the Jacobian J, past directions
S, and second order information A used in Algorithm 4.1 are interrelated.

Clearly a necessary condition for (4.3) to have any root is that F be in the linear
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subspace spanned by the columns of J and A; it is easy to show by the tech-
niques of proof of Theorem 4.2 that this is equivalent to ﬁ’g being in the linear

subspace spanned by the columns of Js and A;. A sufficient condition for (4.3)
to have a complex root, a direct consequence of a result of Garcia and Li [1980],

is given in Theorem 4.3.

Theorem 4.3. Let all the notation be the same as in Algorithm 4.1, and let

J 45 CRAPIX(n D)

J A
sT_jo
If J45 is nonsingular, (4.3) has 2F (not necessarily distinct) roots in n dimen-

Jas =

sional complex space.

%

Proof : From the proof of Theorem 4.2, it is clear that (4.3) has a complex root if

and only if (4.5b) has a complex root. It follows easily from Theorem 3.4 of Gar-

. T
cia'and Li [ 1980]-that (4.5b) has a complex root if 4z and Sy are nonsingular. We

show that this is implied by J4¢ nonsingular.
Let @,cR®*PXn+P) he the orthogonal matrix with @ as the upper left nxn
submatrix and the identity elsewhere, and let @Q,eR®*PXn+P) pe the

correspending augmentation of (:? Then it is straightforward to verify from Algo~

rithm 4.1 that

}1 Jg Al
§ Jas @ =] 0 §J3 {Azl= Jus.
T P
S

If J4¢ is nonsingular then 3;13 is nonsingular which implies that 31 is square (i.e.
A7’ el ~
g =p) and nonsingular and S; is nonsingular. Since Jys and J, are nonsingular,
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. - . T
the bottom right 2px2p submatrix of Jus composed of J3, 4p, and Sz must be

- T
nonsingular, which implies that A is nonsingular because 5; is nonsingular.

The only case in which we can guarantee that our tensor model has a real
root is when the tensor algorithm is sufficiently close to a root zy where F '(z)
is nonsingular. Here one can show that the second order term in the tensor

model becomes small enough that the tensor model must have a real root.

Finally, we mention other approaches for minimizing the Iz norm of the ten-
sor model (4.1). In Frank [1982], we discuss a method that first tries to find a
root of the tensor model and if it is unsuccessful finds a minimizer. It is related
to the version of Algorithm 4.1 using the PLU factorization that we discussed
above. Another possibility is to use Newton's method, with a line search on the
I, norm of the tensor model, to solve (4.2). If the Jacobian J is nonsingular, then
by using the Sherman-Morrison-Woodbury formula each iteration would cost only
O(p?®) operations after a start-up cost of the factorization of J plus O{n®p). We

i
prefer Algorithm 4.1 because of its greater robustness and numerical stability.

5. Implementation of the tensor method

In the previous two gections we presented the main new features of our non-
linear equations method, namely, how we form our quadratic ("tensor”) model of
the nonlinear function, and how we calculate a root or minimizer of this model
efficiently and stably. Algorithm 5.1 outlines the complete algorithm we have
implemented to test these ideas. The remainder of this section clarifies various
aspects of this algorithm and its computer implementation. Our test results are

presented in section 6.
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Algorithm 5.1. An Iteration of the Tensor Method
given x,, F'(x;)

1. Calculate F''{z,) and decide whether to stop. If not :

2. Select the past points to use in the tensor model from among the vVn most
recent past points.

3. Calculate the second order term of the tensor model, T, so that the tensor
model interpolates F'(z) at all the points selected in step 2.

4. Find the root of the tensor model , or its minimizer (in the I, norm) if it has
no real root,

5. Select z, = 2, ~ A\; d;, where d,; either is the step calculated in step 4 or the
Newton step, using a line search to choose A, .

6. Setzx, « x,, F(z,)« F(z,), gotostep 1.

Several standard sections of our implementation of Algorithm 5.1 use algo-
rithms from Appendix 1 of Dennis and Schnabel [1983]. The Jacobian is approxi-
mated by their finite difference algorithm A5.4.1. The stopping criteria are their
elgorithm A7.2.3; the algorithrn stops if the relative size of {z, — z;) is less than

107° or the relative size of (J7F) is less than 1075

Step 2 was described completely in section 3; we set the angle ® mentioned
there to 45 degrees. Step 3 calculates the smallest 7,, in the Frobenius norm,
for which the tensor model satisfies the interpolation conditions, using the pro-
cedure of Theorem 3.2. Before performing these calculations, the steps to the
past points {s;} all are normalized to have I, norm one. This assures that the
linear systems A = Z*M ! solved in step 3 are well conditioned. The normaliza-
tion does not alter the tensor algorithm in exact arithmetic; each a; simply is

multiplied by |ls||# and T, is unchanged.
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Step 4 of Algorithm 5.1, the solution of the tensor model, is accomplished
by Algorithm 4.1. The QR decomposition of S in step 1 of Algorithm 4.1 is avail-

able from the modified Gram-Schmidt algorithm used to select the past points,

The QRP decomposition of J 1 is the standard QR with column pivoting (see e.g.
Dongarra et. al. [1979]); a column is considered zero if its {; norm is less than
10 Vmachineps ||F'(z,)|l;. The subproblem (4.6), finding the minimum I, norm
value of a system of ¢ quadratic equations in p unknowns, is solved using a stan-
dard algorithm and analytic derivatives since they are easily available. The algo-
rithm terminates when a root or minimizer of the system of equations is found,
or after Bp iterations. When p=g =1, the problem is solved analytically. The one
difficulty with solving this system of quadratics is that it is likely to have multi-
ple roots or minimizers. Among these, it seems sensible to try to find the root
closest to the Newton step. We attempt thiz by making the starting guess for
the small system of quadratics the component of the Newton step in this sub-
space,

-1

~ o

o=~ Jy Fy
or the linear least squares solution to this system if g >p. When 33 isn't well con-

ditioned, a different procedure is used.

Step 5 of Algorithm 5.1 usually consists of a line search in the direction to
the root or minimizer of the tensor model obtained in step 4. We use the line
search a},gorithm A6.3.1 from Dennis and Schnabel, requiring sufficient decrease
on |F(z)|lz. In some cases, aline search in the Newton direction is used instead.
(The Newton direction is obtained in O(n*) operations as a byproduct of the algo-
rithm for solving the tensor model.) These cases are when Algorithm 4.1 finds a
root of the tensor model that isn't a descent direction for ||F{x)|]s, a very rare
océurrence in practice but not precluded in theory;, when Algorithm 4.1 fails to

find a root or minimizer of the tensor model; and sometimes when Algorithm 4.1
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finds a minimizer of the tensor model that is not a root. The complete strategy
for determining the search direction is given in Algorithm 5.2 below. The cri-
terion for choosing between the Newton direction and a minimizer of the tensor
model is an extension of our strategy for one dimensional problems discussed in

section 2.

Algorithm 5.2. Step Selection, Step 5 of Algorithrn 5.1

Let J, = approximation to £'(z,),
dy = root or minimizer of the tensor model,
dy = Newton step —~J.'F(z.) if J, is sufficiently well conditioned,

Levenberg-Marquardt step —(JJJ, + &I)7! JIF(z,) otherwise, where ¢

=~n ¥ machineps |[J/J.|l; (see Dennis and Schnabel [1983])

IF {no root or minimizer of the tensor model was found) OR ((minimizer of ten-
sor model that is not a root was found) AND (||Mz(z. + dp)lls > % ||F'(z:)]l2)
THEN
xy ez, +Nody, A €(0,1] selected by line search
ELSE
X, e T, +dp
IF z, is not acceptable THEN
IF dp is & sufficient descent direction
THEN z ¢z, + A, dp, A, € (0,1] selected by line search

ELSE z ¢z, + Acdy, A € (0,1] selected by line search
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8. Test Resuits

We tested our tensor algorithm on a variety of nonsingular and singular
problems. We compared it to an algorithm that is identical except that the
second order term 7, always is zero. That is, the comparison algorithm is finite
difference Newton's method with a line search, except that the Newton step
~J, 1 (z,) is modified to the approximation to the pseudo-inverse step
—(JI7, + el)"V JIF(z,) given in Algorithm 5.2 when J, = F(z,) is singular or
sufficiently ill-conditioned. In this section we summarize our test resuits. Prob-

lem by problem data is provided in the appendix.

All our computation was performed on the DEC VAX 11/780 of the University

of Colorado Department of Cornputer Science, using double precision arithmetic.

First we tested our algorithms on the set of nonlinear equations problems in
Moré, Garbow, and Hillstrom [1981]. All these problems have F''(z) nonsingular,
with the exception of Powell's Singular Function where n=4 and
rank(F (z4)) = 2. Our results are given in Table A.1 in the appendix, and sum-

marized in Tables 6.1 and 6.2 below.

Several comments about the test set are necessary. The 100z, case is
excluded for three problems, Brown Almost Linear, Rosenbrock, and Wood,
because the objective function overflowed at the starting point or during the
first iteration. (The largest real number on the VAX is about 10%.) We ran many
of the variable dimension problems for n = 10, 20, 30, 40, 50, and include here
the n = 30 results, which are representative. The discrete boundary problem is
very easy in all cases, we include n = 10 because it is slightly harder than n =
30. The Chebyquad problems also had overflow problems when the (iimensi.on
and starting point were large, so we include the casesn = 7 and 9 from xzg and n
= 4 from 10z, which seemed representative. Our Variable Dimension problem is

a slight alteration of the problem in Moré, Garbow, and Hillstrom, which has n +2
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equations in m unknowns; we simply eliminate their n—1% and n‘* equations.
(The first n equations in the standard problem are linear.) Our Wood function is

the gradient of the standard Wood function for minimization.

The three columns in Tables 8.1 - 6.5 labelled "Average ratio, Tensor method
/ Standard method," contain the averages of the ratios for each problem of the
number of iterations, Jacobian evaluations, and function evaluations {excluding
those used for finite difference Jacobians), respectiveiy, used by the tensor
method versus the standard method. For example, if the test set contained two
problems for which the tensor method required 3 and 5 iterations, respectively,

and the standard method 3 and 10 iterations, respectively, then the average

iteration ratio would be %(2—4— T%-) = 0.75. Thus each problem is given equal

weight. Since some of the problems are very easy, a second line in each table
contains the same statistics using only those problems where the slower method
required at least 10 iterations. The three colurnns labelled "Tensor better --
Standard better - Tie" are based on a composite consideration of iterations and
function evaluations; there were no problems where one method used more
function evaluations but fewer iterations. For both algorithms, the number of
Jacobian evaluations per problem always is one more than the number of itera-
tions.

The most striking aspect of the test results on nonsingular problems is that
the tensor methed virtually never is less efficient than the standard method,
and almost always is more efficient. In fact, on problems requiring ten or more
iterations of the standard method, it is always more efficient. The gains in
éﬁiciency are considerable: an average of 21-23% improvement (dependmg on
which measure is used) if all test problems, including some very easy problems
where no gains are likely, are considered, and an average of 36-39% improve-

ment on the harder problems. This combination of consistency with reasonable
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Table 6.1 -- Summary for Problems with 7''(x,) Nonsingular

Problem Number of Average Ratio, lensoriStandardTie
Set Problems|Tensor Method / Standard MethodBetter, Better

lterations Jacobian Function
evaluations|evaluations

All problems 28 0.770 0.781 0.793 21 1 1¢]
Harder problems only * 14 0.812 0.636 0.6586 14 0 0

Additional problems solved by standard method only : 2
by tensor method only : 1

Table 8.2 - Summary for Powell's Singular Function

Stopping Tolerance 10“3 3 ” 0.442 } 0.489 ; 0.510 H 3 l 0 l 0
Stopping Tolerance 107 3 0.343 0.385 0.403 3 0 0
Table 6.3 -~ Summary for First Singular Test Set with Rank (7 (zy)) = n—1
All Problems 17 1 0.576 } 0.609 ' 0.603 H 15 l 0 # 2
Harder Problems Only * 9 0.392 0.429 0.434 9 0 0
Table 6.4 -- Summary for Singular Test Set with Rank (F''(z4)) = n—2
All Problermns | 13 1[ 0.631 | 0664 t 0.729 11 { 2 , 0
Harder Problems Only * 7 0.499 | 0.535 0.542 7 0 0

Additional problems solved by standard method only : 1
by tensor method only : 5
Table 8.5 - Summary for Second Singular Test Set with Rank (F'(zy)) = n—1
All Problems 18 ]l 0.801 1 0.806 l 0.849 ” 11 } 2 : 3
Harder Problems Only * 11 0.701 0.711 0.787 10 1 0

Additional problems solved by standard method only : 1
by tensor method only : 5

* Problems where slower method required at least 10 iterations
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Improvement in efficiency indicates that tensor methods may be preferable to

standard methods for solving nonsingular systems of nonlinear equations.

Three nonsingular problems were solved by one method and not the other.
(We discount the Watson function because the standard method never really
found roots and the two methods always went to different regions.) The standard
method solved the 10z, Biggs Exp8 problem in 119 iterations while the tensor
method didn't solve it in 150; the tensor method solved the Chebyquad n =9
problem in 33 iterations while the standard method didn't solve it in 150; the
standard method solved the 10zy Wood problem in 80 iterations while the tensor
method didn't solve it in 150. This last problem illustrates an occasional
difficulty when testing on pathological functions : the tensor method made
better progress than the standard method during the first twelve iterations, but
reached a point from which neither the tensor method nor the standard method
could make reasonable progress. Overall, we noticed no large difference in the
success rates of the standard and tensor methods, although the tensor method

did have appreciably more successes on two of the three singular test sets.

Table 6.1 also excludes four problems (Box 3D from 10zg and 100z, and
Watson from z, and 100z,) where the two methods converged to different solu-
tions. The tensor method required fewer iterations and function evaluations
than the standard method in two of these cases, and the same number in the

other two.

On Powell's Singular Function, Table 6.2 shows that the tensor method was
49-567% less expensive, on the average, than the standard method. The stopping

tolerance we use, that the relative size of F'(z)7#(z) must be less than 1075, is

a fairly loose stopping criterion that we believe is typical of tolerances used in

practice. Table 62 shows that if this stopping tolerance is tightened to 1078

(about the best one can achieve on a VAX using finite difference Jacobians), the

LR AR,
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average cost of the tensor method on Powell's Singular Function is 60-667% less
than the corresponding cost of the standard method. Presumably this is a
reflection of faster local convergence by the tensor method on singular prob-
lems, an issue we comment upon later. All our subsequent tests on singular
problems use the looser stopping tolerance, 107° the improvements by the ten-
sor method over the standard method generally would be more dramatic with a

tighter tolerance.

The only other singular nonlinear eguations test problems in the literature
that we are aware of are the small family proposed by Griewank [1980a]. These
four problems all have n=3, either a one or two dimensional nullspace for
F'(zy), and either a first or second order singularity. Our results on these prob-
lemns are given in Table A2 in the appendix, but they don't appear very meaning-
ful, because the standard method failed on 6 of the 12 runs and once converged
to a different root than the tensor method. The tensor method was successful in
all cases and always was more efficient than the standard method. ~

We crealed éingular test problems by modifying the nonsingular test prob-
lems of Moré, Garbow, and Hillstrom in two different ways. The first is to create

problems of the form
ﬁ(m) = F(x) — F'(zy) A(ATAY AT (z—2y) (6.1)
where F(z) is the standard nonsingular test function, z is its root, and A€ ™"
has full column fank with 1=k=n. Clearly ﬁ‘(z*) = 0 and
Fi(ze) = F'(z) [1 ~ A(ATA) AT

has rank n—k. A disadvantage of this problem class is that ﬁ‘(zr) may have roots

that are not roots of F{z). There is likely to be a manifold of singular Jacobians

of ﬁ'(x) in a neighborhood of x4, but this is not guaranteed. A manifold of singu-

larities is considered desirable because it makes the problems harder and
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because we believe it is reflective of most practical singular problems.

We used (6.1) to create two sets of singular problems, with ]}'(x) having

rank n—1 and n -2 respectively, by using

AcR™, AT =(1,1,, 1)
and
it 111 - 1
AERan‘ AT:
1 -1 1 -1 -+ %1

respectively. We tested our method on the singular versions of all the nonsingu-
lar problems except Watson's function, which we excluded because it was quite
expensive to run and the two methods never converged to the same root. Our
results are given in Tables A3 and A4 in the appendix and summarized in Tables

6.3 and 8.4

The improvement by the tensor method over the standard method on the
problems with rank(F (z4)) = n—1 is substantial : an average of 40-43% improve-
ment on all problems and 57-61% on the harder problems. We speculate this is
due in part to thefensor method achieving superlinear convergence in this case,
and comment further on this at the end of this section. In 9 cases the two
methods converged to different roots; in 6 more cases they converged to the
same root but not the singular root x4 These problems are excluded from the

summary statistics in Table 6.3; they point out a deficiency of the test set.

On the test set with rank(# (zy)) = n—g, the improvement by the tensor
method over the standard method was 27-37% on all problems and 46-50% on the
harder problems, These are still substantial gains but not as large as when
rank{F '(zy)) = n—1. We speculate in section 7 that our tensor methé(d is not
necessarily superlinearly convergent in this case, and mention ‘some
medifications that might make it superlinearly convergent when the rank of

F'(zy) is less than n—1. The tensor method also solved 5 of the rank n —2 prob-
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lems that the standard method didn't, the standard method solved one that the

tensor method didn't.

Qur second method for generating singular test functions from standard

nonsingular problems has the desirable preoperty that x4 is a root of the new

singular function F{z) if and only if it is a root of the original nonsingular func-
tion F(z). This class of functions is described in Theorem 6.1, The functions we
generated using this method turned out to be less useful test problems than the
singular functions already described, for reasons we will discuss. However they

may be a useful class of singular problems for future testing.

Theorem 6.1. Let F(z): K™ »RE"™ and z3€R™ with F'(zyx) = 0 and F '(zy) nonsingu-
lar. Define Dpg(z ) K™ by

Dpp(z) = diaglf y(x)? - fa(z)¥
where f;(z) denotes the i component function of F(x). Let AcR™ ¥, |<k<n,

have full column rank, and let v €K™ have the property with 4 that (4)[i] = 0

only if row i of A = 0. Define F{(z):R"»R™ by

Fz) =[] = A(ATA) AT |F () + % Dpolz) Av. (6.2)
Then #(Z) = 0 if and only if /(£) = 0, and F”(:x:m) has rank n—k.

Proof : It is obvious that ]7’(5{") = 0if F(Z) = 0. Now suppose F(Z) = 0, and con-
sider first the case when A has no nonzero rows. Then by definition w=A4v has
ne nonzero components, and
0= vTATF(@) = %o AT Dpofz) o = 5 3 (f (2 )w[i])?
i=]
which implies that F(Z) = 0. Now consider the case when A has some zero rows,

and assume without loss of generality that A7 = [ B" | 0 ] where BeR™* m=k,

has full column rank. Let G{z):R"-R™ and H(z):R™->Rk™ ™ denote the first m
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and last n—m components of F'(z) respectively, and similarly let &{z) and H(x)

denote the first m and last n —m components of z;:"(a:). Then

G(z) = [I ~ B(BTBYBT] G(z) + % Dgalz) Bu
and

where

Dez(x) = diaglf ((z)% - - frm ().

1t follows by the same argument as we used above that G(z) = 0 if (&) = 0, and
since H(Z) and H(z) are identical, F(z) = 0 if 7(z) = 0.

Finally, it is straightforward to verify that

Flz) = ([ - A(ATAYAT] + Dp(z) Dy ) F(z) (6.3)
where
Dp(z) = diaglf(z), -+, fal(x)}, Dy =diaglw[l], - wn]j.
Thus
Filas) = (1 — A(ATATAT] F(z5)
has rank n.—k .

F (z) given by (8.3) almost always has a manifold of singularities around z .

For example, if A is the first & columns of the identity matrix, then f;(z) =

v[i] fo(z)? i=1, - -k, so F'(z) is singular whenever any f;(z) =0, i=1, - - - k.

More generally, it follows from (8.3) that # (z) is singular whenever F(z) has

(n+1-k) zero components; this usually implies a manifold of singularities

around z, whenever £>2. Finally, it is easy to show that # (z) is singular when-

ever
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z[i]+ filz)wli] (z[i] + (4y)[i]) =0, i=1,..m (6.4)
where z €R™ is any vector in the null space of A” and y is any vector in R*; for

small z, (8.4) is likely to have solutions.

We used (B.2) to generate two sets of singular test problems with

rank{F '(zy)) = n—1, by setting k=1, v=1, and 4 = {1,1,---,1) and 4 =
(1,0,0, - - - ,0,1) respectively. Neither was a very illuminating test set. The prob-
lems with 4 = (1,1, - - - ,1) were too hard for either algorithm, each solved only

30-40% of the problems. In addition, there were numerous overflows due to the
squares of the original component functions appearing in the new problems, and
the small exponent range of the VAX. The standard method solved 9 problems,
overflowed on 7, and failed on 19, the tensor method seolved 11, overflowed on 8,
and failed on 18. On the few problems solved by both methods, the tensor
method was always at least as efficient as the standard method, with improve-
ments ranging from 0 to 82%. The problems with 4 = (1,0,0, - - - ,0,1) were easier
although there still was a considerable number of overflows and failures. The
results are given in Table AS and summarized in Table 6.5, The standard method
solved 20 problems, overflowed on 5, and failed on 9, the tensor method solved
24, overflowed on 4, and failed on 6, The average improvement by the tensor
method was 15-20%, 21-30% on the problems that required at least ten itera-
tions. These improvements are lower than on the first set of nonsingular prob-

lems but do not reflect the higher success rate of the tensor method.

Taken together, our test results seem to indicate that the tensor method is
consistently more eflicient than standard methods in solving problems where
F'lzy) has a small rank deficiency. We speculate that when F (z4) has rank
n—1, the tensor method is superlinearly convergent in most cases. ;Po check
whether this is a reasonable possibility, we examined the sequence of ratios

lize = zxll 7 ll@e 1 — 2

produced by the standard and tensor methods on problems with rank(F (z4)) =

haad

LA
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n—1, Ratios for a typical problem are given in Table 6.6. In almost all cases, the
standard method exhibited local linear convergence with constant very nearly
0.5, as the analysis of various authors mentioned in Section 1 would predict. The
local convergence of the tensor method clearly is faster; the final ratio of about
0.01 is typical and might be smaller if analytic Jacobians or tighter stopping
tolerances were used. Whether this is superlinear convergence remains to be

determined.

Table 6.6 -- Speed of convergence on a typical problem with rank }%’{x,() =n-1

(Broyden Banded, n = 30, as modified by (6.1), started from 10z)

Iteration (k) e = xxll / ll2e -1 — 24|
Tensor Method Standard Method
1 0.838 0.638
2 0.511 0.626
3 0.502 0.810
4 0.428 0.591
) 0.330 0.570
B 0.204 (.549
7 0.0918 0.532
8 0.01086 0.520
9 0.511
10 0.508
11 - 0.5083
12 0.501
13 0.5007
14 0.5003
- 18 0.5002
16 0.50009
17 (.50005
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It is important to comment that on the test problems where either method
had difficulty, it appeared to us that a trust region method that biased short
steps towards the steepest descent direction often would have helped. We used
a line search algorithm in our tests because we did not want to introduce the
unresolved questions about trust region strategies for nonlinear equations into
our comparison of the standard and tensor models. It will be important to inves-
tigate whether the computational comparison between methods using these two

models is similar in a trust region setting.

Finally, we make some comments on details of the tensor algorithm we
observed in our testing. The linear independence requirement usually limited
the number of past points interpolated at each iteration to a smaller number
than the upper bound V. For example on the 100zy Broyden banded problem
where n. = 30, the algorithm used one past point in B3% of the iterations and two
past points in the remaining 17%, although it could have used up to six past
points; similarly on the zy Trigonometric problem where n also is 30, it used
one, two, and three past points on 20%, 80%, and 20% of the iterations, respec-
tively, Thus the tensor method seems to obtain surprisingly large improvement
from a comparatively small amount of additional information. We tested the
algorithm on the nonsingular problems with the linear independence angle
reduced to 22.5° (from 45°); there was some fluctuation in the results on indivi-
dual problems but no overall improvement or deterioration in efficiency, and the
number of past points interpolated at each iteration increased somewhat but
not dramatically. 'From past experience, a very small angle, say less than 10°,
would give inferior results. The system of linear equations that is solved as part
of solving the system of quadratics at each iteration was square and reésbnably
well conditioned (i.e. ¢ =p) almost all of the time; ¢ was greater than p at about
71% of the iterations on the singular and nonsingular Biggs functions, and at

about 3% of the iterations on all the other test problems. While the step to the

i
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root of the tensor model is not guaranteed to be in a descent direction, on the
nonsingular problems this only occurred on 5 of the 44 problems, and there only

ebout 25% of the time, mostly when the method got stuck in one place.

7. Future research on tensor models

The comput’ational results in section 6 indicate that tensor methods may be
preferable to standard methods for solving general systems of nonlinear equa-
tions where analytic or finite difference Jacobians are available, and that they
may have a substantial advantage on problems where the Jacobian at the solu-
tion has a small rank deficiency. To firmly establish such a conclusion, addi-
tional testing is required, including tests comparing trust region versions of
standard and tensor methods for nonlinear equations. Our inclination is to use

dogleg-like methods in these trust region tests.

- Tt would be ;rery helpful to obtain local convergence results for our tensor
algorithm applied to singular problems. Hopefully, the algorithm can be shown
to converge faster than linearly to a root zx where F (zy) has rank n—1 and
F''(z4) obeys appropriate conditions. Related results of this type recently have
been obtziined by Griewank [1983]. Griewank shows that an algorithm that also
bases its iteration on a quadratic model with a simple second order term is
locally 2-step g-superlinearly convergent in the above case. His algorithm, how-
ever, forms the second order term in the quadratic model using information
about the singularity in F'(z4) that would not be available to general purpose

noenlinear equations solvers.

We believe that the tensor method presented in this paper may not always

achieve faster than linear convergence on problems where the rank of F''(zy) is
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n—2 or less. To justify this remark, suppose z,, ' - ,2,, is a basis for the null
space Z of F'(zy), where m>1. For a method based on a quadratic model to
achieve fast convergence, it seems necessary that the second order term in the
fn_odel be a good approximation to F'(z,) acting on Z. This seems to require
((m?+m)/ 2) n-vectors of information, to characterize F''(zy)z;2;, 1<i<j<m.
Our method, however, may not contain this much information even if the past
points are in the desired directions; for example, if all the past directions were
in 7, our method would interpolate at most m function values. Thus our method
does not seem to interpolate enough information to always achieve fast conver-
gence on problems where the dimension of the null space of F'(x,) is greater
than one. This speculation is not well supported by our computational results,
however; our tensor method seems to perform almost as well on problems where

F'(z4) has rank n—2 as where F''(xy) has rank n -1,

There are several ways to incorporate more information inte our tensor
model and eliminate the objection raised in the previous paragraph. One is to
interpolate values of F'(z, +5;) at a set of points for which the steps {s} may not
meet the linear independence criterion of section 3, requiring instead that the
matrix SER™P used in Theorem 3.1 meets this criterion. It is easy to show
that this procedure would allow choosing up to ((m®+m)/ 2) directions from an
m dimensional subspace while leaving the calculation of the second order term
T, well conditioned. A second alternative is to choose 7; using information from

Jacobians at past iterations. We intend to investigate these alternatives.

The methods proposed in this paper can be adapted easily to remain
efficient on large, sparse systemns of nonlinear equations. In particular, the main
additional computational costs of our method are Jacobian-vector products, and
presumably these can be performed efficiently when the Jacobian is sparse. Two

modifications required would be to select the maximum number of past points
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small enough that the cost of solving pxp linear and quadratic subproblems
remains acceptably small, and to use an eflficient sparse factorization in the

t

algorithm for solving the tensor model,

The methods discussed in this paper also could be applied with very little
modification to nonlinear least squares problems. Nonlinear least squares algo-
rithms virtually always use analytic or finite difference Jacobians so the re quire-
ments of the tensor methods presented in this paper are no restriction in this
case. The augmentation of the linear model by a second order term would lead
to natural extensions of Gauss-Newton or Levenberg-Marquardt methods, and
tensor methods might require fewer iterations and function evaluations than
these methods, especially on problems where the Jacobian at the solution is
rank deficient. It is not clear how tensor methods for nonlinear least squares
would perform on large residual problems, and whether there is any reason to
prefer them to quasi-Newton methods like those of Dennis, Gay, and Welsch

[1981] in this case.

We are curre;;xtly developing extensions of our tensor methods to secant
methods for nonlinear equations, and to unconstrained minimization. Neither
extension is straightforward. In secant methods for nonlinear equations, ana-
Iytic or finite difference Jacobians are not available, but it is possible to interpo-
late all the function values F(z, +5;) used in section 3 with a linear model (see
e.g. Gay and Schnabel [1978]). To create a useful second order term it is neces-
sary to interpolate function values in {(nearly) dependent directions. The pri-
mary difficulty in extending tensor methods to unconstrained minimization is
that for problems where the Hessian matrix at the minimizer is singular, an
approximation not to the third but to the fourth derivative matrix is necessary
to speed convergence. This is because the projection of the third derivative
onto the null space of the Hessian must be zero at such a minimizer. In addi-

tion, all derivative approximations for minimization must be symmetric. Our

-t N
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solutions to these difficulties will be reported in future papers.
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Appendix

Tables Al - A5 contain the results of the tests described in Section 8. The
problems in Table Al are from Moré, Garbow, and Hillstrom [1981]. The prob-
lems in Tables A3 - A5 are singular modifications, described in Section 8, of the
problems in Moré, Garbow, and Hillstrom. The starting points used for all these
problems are the ones suggested by Moré, Garbow, and Hillstrom; the third
column of each table designates whether the starting point is xy, 10z, or 100z,
where zg is the point listed in Moré, Garbow, and Hillstrorm. The problems in

Table A2 are taken from Griewank [1980a].

The two columns in each table labelled "%l|F(z )5 give half the sum of
squares of the compenent functions values at the final iterate for the standard
method and tensor method, respectively, using abbreviated notation : e.g. 43-12
means 0.43x107%*. If the method failed on a problem, this column instead con-
taing one of the following alphabetic codes :

OF -- metvhod overflowed
D -- divergence detected (5 consecutive very long steps)
F -- method failed to find a root in 150 iterations

S - method stalled at non-root

The rightmost column in each table, labelled "same zx 7", contains a Y
(yes) if the two methods converged to the same point on this problem, a N (no)
otherwise. Only problems that converged to the same root are included in the

statisties in Tables 8.1 - 8.5,

In Tables A3 - A5, the two columns labelled "n.s. z4 ?" (short for "nonsingu-
lar z,?"), contain a Y (yes) if the method converged to the same roét ‘as the
corresponding nonsingular problem in Table Al, a N (no) otherwise. Only prob-
lems were both methods converged to the same root and the same root as in the

nonsingular case are included in the statistics in Tables 6.3 - 8.5.
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Table A1 -- Results on More’, Garbow; and Hillstrom Test Set

FMunction n | x Standard Method Tensor Method
Fen | Ttns | Jl|F(z)]f | Fen | Itns | BlIF(zy)|3 | same
vals vals Zu?

Biggs B 11 209 | 104 .97-18 157 70 13-12 Y
Exp6 101 228 | 119 .22-5 200 | 150 F -
100 || 308 | 150 F 305 | 150 F -
Box 3D 3 1 5 4 .10-18 4 3 10-11 Y
10 20 14 .566-19 12 B 1B-12 N
100 4 3 .16-8 4 3 A48-10 N
Brown Alm. | 10 1 15 11 B7-12 10 7 .3B-11 Y
Linear 10 11 9 .25-15 10 7 40-11 -
Broyden 30 1 8 5 J12-15 5 4 Jde-11 Y
Banded 10 12 11 .16-22 9 8 92-13 Y
100 17 16 95-14 14 13 71-20 Y
Broyden 30 1 5 4 .08-18 5 4 R0-12 Y
Tridiag. 10 B8 7 47-13 6 5 .98-20 Y
100 11 10 B84-10 8 5 B7-16 Y
Chebyquad 7 1 11 7 .38-16 8 B 63-18 Y
9 1 332 | 150 F 63 33 68-15 -
41 1014 51 35 .90-20 44 24 11-11 Y
Discrete 10 1 3 2 A4B8-156 3 2 23-18 Y
Boundary 10 4 3 .15-17 4 3 13-18 Y
100 9 8 10-13 8 7 13-10 Y
Discrete 30 1 3 2 J18-12 3 2 21-14 Y
Integral 10 4 3 48-15 4 3 R7-18 Y
100 9 8 AD-11 9 B 70-16 Y
Helical 3 1 12 9 17-20 11 8 78-18 Y
Valley 10 17 13 23-21 16 11 .16-18 Y
1001 21 18 2214 18 11 1e-22 Y
Powell 4 1 9 8 19-7 4 3 2515 Y
Singular 10 13 12 .43-8 & 5 13-16 Y
100 18 15 10-7 10 8 26-186 Y
Rosen- 2 1 27 14 J10-7 12 7 .14-20 Y
brock 10 5 3 .0 8 4 A7-14 Y
Trigono- 30 1 31 16 19-12 21 11 14-4 Y
metric 10} 326 | 150 F 145 64 S -
100 )| 334 | 150 I 132 B2 S -
Variable 10 1 14 13 24-9 3] 5 20-13 Y
Dimension 10 15 14 .10-8 o 4 .556-18 Y
(Altered) 1004 191 18 .10-8 14 | 11 22-12 Y
Watson 31 1 5 4 .10-6 5 4 48-15 N
10 41 25 25-6 378 | 150 F -
100 || 456 28 .35-8 27 17 B80-11 N
Wood 4 1 24 17 23-28 11 9 R7-17 Y
Gradient 10 1 1058 61 .30-24 366 | 150 F -

~ ol

o
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Table AR - Results on Griewank’s Singular Functions

Function n| zg Standard Method Tensor Method
Fen | Itns | B|F(ze)|f || Fon | 1tns | B|[F(zy)|| | same
vals vals Tx?
Dimension of 3 1 9 B 2-10 6 5 .1-10 Y
Nullspace = 1 100 15 ] 14 .1-10 7 8 9-18 N
Order of 100 21 19 J1-10 18 14 7-10 Y
Singularity = 1
Dimension of 3 1 11 8 .3-10 7 B B-11 Y
Nullspace = 1 10 332 | 150 F 11 9 3-11 -
Order of 100 || R97 | 160 F 17 13 1-11 -
Singularity = 2
Dimension of 3 1 11 g .3-10 7 8 5-11 Y
Nullspace = 2 104 332 | 150 F 11 9 3-11 -
Order of 100 || 297 | 180 F 17 13 1-11 -
Singularity = 1
Dimension of 3 1 11 9 .3-10 7 6 511 Y
Nullspace = 2 101 332 | 150 F 11 9 3-11 -
Order of 100§ 297 | 150 F 17 13 =11 o
Singularity = 2
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Table A3 -- Results on First Singular Test Set with Rank (F'(z4)) = n-1

Function |n | zg Standard Method Tensor Method
Fen | Itns | B|F (z4)]|§ | n.s.|| Fen | Itns | ¥ F(z )5 | ns. | same
vals x 47 vals Zyu?ll Tw?

Biggs 5] 1 74| 52 J12-10 N {|411 150 ¥ N N
Exp6 10 33) 19 56-17 N 88| 38| .14-8 N N

100 8 5 D N1 3051 150 F N N

Box 3D 3 i 10 9 .96-13 Y B 5| .57-15 Y Y

10 OF - 11] 107 .42-7 N -
100 4 31 .48-15 N OF - -

Brown Alm. | 10 1 7 6 337 Y 5 40 417 Y Y
linear 100 221 21 D1-7 Y 9 7 .39-9 Y Y
Broyden 30 i 12| 11 .88-11 Y B 51 .65-14 Y Y
Banded 10 184 17 11-10 Y 10 9| .54-156 Y Y

100 241 231 .37-11 Y 141 131 .48B-11 Y Y

Broyden 30 1 9 B .16-9 Y 6 51 .80-12 Y Y

Tridiag. 10 14 13| .10-9 Y 5] 5| .15-13 Y Y
100y 171 18 32-9 Y ) 4 18-12 Y Y

Chebyquad | 7 1 11 71 .38-18 Y B 6] .98-14 Y Y
9 11 86| 33| .29-13 N ||R94 | 103 | .80-13 N N

41 101200 1061 .90-16 N 8l 421 .19-17 N N

Discrete 10 1 3 2 .16-9 Y 3 2 .14-9 Y Y
Boundary 10 5 41 .36-10 Y o 41 20-13 Y Y

’ 100 9 8] .13-10 N 7 61 .10-13 N Y

Discrete 30 1 5 41 229 Y 4 3] .R0-11 Y Y

Integral “10 1§ 5 .82-9 Y 5 41 .68-1R2 Y Y
1004 10 9, .65-18 N 9 B .32-23 N Y

Helical 3 1 8 7] .17-18 N ke B8] .B4-14 N Y

Valley 10 7 8| .38-14 N 7 6| .27-13 N Y
100 7 &) 10-14 N 7 61 .70-22 N Y

Rosen- 2 i 15 14 .16-13 Y 4 3 4714 Y Y
brock 100 17, 16| .77-13 Y & 41 .22-28 Y Y

Trigono- 30 i 19 11 .10-10 N 24| 13| .82-10 N N
metric »

Variable 10 i 14 13 \24~9 Y 10 9] .46-15 N N
Dimension 10 15 14 B3-12 N 12 11 .18-18 N N
(Altered) 1000 18] 17 14-15 | N | 11] 9] 1815 | N | Y

Wood 4 10 21 RO} .B2-15 Y 121 11 41-18 Y Y
Gradient 100 281 251 .94-15 Y 151 141 .156-20 N N
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Table A4 -- Results on Singular Test Set with Rank (F'(z4)) = n -2
Function |n | zg Standard Method Tensor Method
Fen [Ttns | B|F(z )| | ns.| Fen | Itns | ¥||F(z)|l#| ns. | same
vals z4?vals TPl Ty?
Biggs 6] 1§ 27| 17 .5-8 N | 32| 18 4-10 N N
Exp8 101306 | 150 F - 113901 150 F - -
100 6 5 D - 6 9) D - -
Box 3D 3 1 8 7 1-10 Y 12 7 7-1R Y Y
101 11 10 J1-12 Y 12] 11 212 Y N
100 OF - OF - -
Brown Alm. | 10| 1 7 6 A1-10 N 6 4 9-13 N N
Linear 104 19| 18 2-15 N_|| 37| 17 B-17 N N
Broyden 30 1111911 99 B-12 Y B 7 B-11 N N
Banded 101304 | 150 F - 21} 18 1-12 Y -
100 251 21 9-19 N | 88| 35 1-13 Y N
Broyden 30 i 10 9 8-12 Y 141 10 .1-13 Y Y
Tridiag. 101298 | 150 ¥ - 7 8 718 N -
100 191 18 .3-11 Y B8 7 2-19 N N
Chebyquad | 7 1] 10 9 9-11 Y 8 7 A-13 Y Y
’ 9 111335 | 150 F - 12 9 .1-19 N -
4] 10]3011150 F - 631 32 4-20 N -
Discrete 10 1 B 4 2-10 Y 4 3 B8-11 Y Y
Boundary 10 9 8 3-10 Y 5 4 .8-10 Y Y
100 121 11 1-13 N _ 1306 150 F - -
Discrete 30 1 8 7 310 Y 5 4 6-10 Y Y
Integral “10) 11] 10 .6-10 Y 8 7 2-8 Y Y
1000 9 8 .6-18 N 18] 14 3-10 Y N
Helical 3 1) 15| 14 1-12 Y 8 7 B-21 Y Y
Valley 10} 156} 14 .6-13 Y 7 6 -1 Y Y
1000 151 14 6-13 Y v 6 6-13 Y Y
Rosen- 2 1y 11 10 .1-8 Y 4 3 4-9 Y Y
brock 10] 1831 12 .5-8 N ) 4 1-11 N Y
Trigono- 30 111318 | 150 F - 12 7 3-14 N -
metric

Variable 10 1l 14] 13 2-9 Y B 7 B-18 Y Y
Dimension 10 18] 15 6-10 N 12 8 .2-9 N Y
(Altered) 100l 20 19] .4-10 N | 111 B! 413 N Y
Wood 4 1) 21 20 .1-16 Y 147 12 A4-16 Y Y
Gradient o0 271 26 2-16 Y 491 28 45 N N
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Table A5 -- Results on Second Singular Test Set with Rank (F'(z4)) = n~1

Funection |n | zg Standard Method Tensor Method
Fen | Itns | BlIF (x| | ns. || Fen | Itns | ¥l F(z )13 | ns. | same
vals z,7? | vals Tu?) T e?

Biggs B8 1 OF - 1351150 F - -

Exp6 101292 ] 160 F - OF - -

1001304 | 1560 P - 113031560 " - -

Box 3D 3 1 OF - OF - -

10 OF - OF - -

100 oFr - ) 4 =10 Y -

Brown Alm. | 10 1 OoF - OF - -

Linear 104 401 39 9-10 Y 441 33 2-10 N N

Broyden 30 Iy 13 12 .2-10 Y 10 9 2-11 Y Y

Banded 10{ 303 | 150 F - 15| 14 3-12 Y -

1001302 | 150 F - 371 28 1-15 Y -

Broyden 30 1) 12] 11 4-9 Y 10 9 1-15 Y Y

Tridiag. 10} 28| 21 .B-9 Y 2] 11 4-1B Y Y

100 25 24 .5-8 Y OoF - -

Chebyquad | 7 1 11 7 4-18 Y 8 8 6-18 Y Y

g 113051 160 F - 1182 71 5-182 Y -

41 1012931150 F - OoF - -

Discrete 10 1 4 3 7-9 Y 4 3 .e-10 Y Y

Boundary 10 5 4 2-8 Y 5 4 411 Y Y

1000 121 11 .6-8 Y g2l 15 =15 Y Y

Discrete 30 1 3 2 5-10 Y 3 2 .5-10 Y Y

Integral 10y b 4 3-7 Y 6 5 A4-15 Y Y

1004 15 14 A-17 Y 121 11 4-14 Y Y

Helical 3 11239 | 183 S7-13 Y 1561 11 3-13 Y Y

Valley 10y 20| 18 J1-18 Y 16 12 A4-15 Y Y

100y 221 21 1-12 Y 211 18 A-17 Y Y

Rosen- 2 111313 150 F - 451 23 1-15 Y -

brock 10322 | 150 F - 311 18 1-17 Y -

Trigono- 30] 1] 49| 25 1-9 N | 231 12 3-10 N N

metric

Variable 10 1 28] 27 .B-10 Y 17 18 1-10 Y Y

Dimension 100 32| 31 4-10 Y | 20| 1@ 2-9 Y Y

(Altered) 100 37| 36| .3-10 Y | 37 27 8-9 Y | Y

Wood 41 1|R92 | 150 F - 11329 150 ¥ - -

Gradient 101 401 38 2-12 N 114521150 F - -
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