POLISH 77: USER'S GUIDE
by

Chang-Lin Chen* and Lloyd Fosdick**

CU-CS-220-83 July, 1983

*Chang-Lin Chen is a Visiting Scholar from the Institute of
Computing Technology, Chinese Academy of Sciences, Beijing,
The People's Republic of China.

**Department of Computer Science, University of Colorado,
Boulder, CO 80309 USA

This research was supported, in part, by the National Sci-
ence Foundation, grant MCS 8000017; by the Department of
Energy, grant DE-AC02-80ER10718; and by the National Bureau
of Standards.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

Errata
page 5, line 1 should read

After a separator 1f the parenthesis level is
greater than one.

(Note - this erratum reflects a software change that was
made after this guide was printed. The illustrations are
consistent with the original wording on page 5, line 1).

POLISH 77

Intreduction
Formatting Features
**Margin control
**Token spacing
*$Blank lines
**Breaking a statement line
**CONTINUE at end of DO range
**Indentation

..

...

..

..

...

...................................

..............................

..

User’s Guide

..............................

..............................

.............................

..............................

..............................

..............................

DS i

..

..............................

*¥Move FORMAT statements e
R COITITIIETIES 1ottt e s et r e et e e

**Stopping and restarting formatting
How to Use P77

..

..............................

..............................

L S 1e e iaer et

Error Handling

References
Appendix 1;
Appendix 2.
Appendix 3:
Appendix 4
Appendix 5:
Appendix 6:

...

Formatting Parametersc........
Sample Main Programoooo00
Error Messagescc.ocniiiviin
External Files ...

...........................
..
..

Machine Dependent Procedures

............................

..............................

..............................

..............................

..............................

Cyber 750 Machine Dependent Procedures.

Table of /0 unit names and numbers.

R R N R

(22BN BN e N o B« T o s B I w3 BN S

21
28
23
25
28
29
31

POLISH 77 1 User’s Guide

1. Introduction.

Polish 77 (P77) is a formatter for programs written in Fortran 77 (F77).2 It
provides the usual features found in these tools; for example, indentation of con-
trol structures, systematic token spacing, systematic labelling, and line
identification. An illustration of the kind of formatting done by P77 is shown in
Figures 1a and 1b. Figure la is the original program; it is the input for P77. Fig-
ure 1b is the same program after formatting; it is the output from P77. Notice
that statement labels are ordered, control structures are indented, each DO-
range ends on a distinct CONTINUE statement, lines are identified, and a group
of comment lines has been decorated with-a box.

SUBROQUTINE MMM(A, B, C, M, N)
C) MATRIX-MATRIX MULTIPLY.

C INPUT A, B, M, N

C A,B: MATRICES, DIMENSION(M,M), ORDER N
C ouTpUT C

Cc C: C=A*B

C ERROR

Cc

MESSAGE IF N.LT.1 OR N.GT.M
INTEGER M, N
REAL A(M,*),B(M,*),C(M,*)
COMMON /ERRM/ ERRM1, ERRMZ, ERRM3, ERKM4 , ERRMS
C LOCAL
INTEGER I,J,K
IF((N.LT.1).0R.{(N.GT.M))THEN
C ORDER EXCEEDS RANGE
CALL ERROR{ERRM3)
RETURN
ELSE
DO 10 I=1,N
DO 10 J=1,N
c(1,J3)=0
DO 10 K=1,N
10 C(I,Jd)=C(I,T)+A(I,K)*B(K,J)
ENDIF
RETURN
END

Figure la: Subroutine before processing by P77.

8 [ANSI FORTRAN] -- Citetions in the running teéxt appear in square brackets. The list of refer-
ences appears at the end of this text,

POLISH 77 2 User’s Guide

SUBROUTINE MMM(A,B,C,M,N) MMM 10
(FRARAIARARKRAL LR E R AL AR R A hhbhhhhhhbhhhikhitk MMM 20
C * MATRIX~MATRIX MULTIPLY. * MMM 30
C * INPUT A, B, M, N * MMM 40
¢ * A,B: MATRICES, DIMENSTON(M,M), ORDER N * MMM 50
C * OUTPUT ¢ * MMM 60
C * C: C=A*B * MMM 70
C * ERROR * MMM 80
C * MESSAGE IF N.LT.1 OR N.GT.M * MMM 90
C HEAAEALAXARAAN LA RAL R T Ao bbbk h it hhhhthhihhdsk MMM 100
INTEGER M, N MMM 110
KEAL A(M,*), B(M,*), C(M,%) MMM 120
COMMON /ERRM/ ERRML, ERRMZ, ERKM3, ERRM4, ERRMS MMM 130
C ** LOCAL MMM 140
INTEGER I, J, K MMM 150
C MMM 160 -
IF ((N.LT.1).OR.(N.GT.¢)) THEN MMM 170 -
C ** ORDER EXCEEDS RANGE MM 180
CALL ERROR (ERRM3) MMM 190
RETURN MMM 200
C MMM 210
ELSE MMM 220
DO 30 I =1, N MMM 230
DO 20 J = 1, N MMM 240
C(I,d) =0 MMM 250
DO 10 K = 1, N MMM 260
C(L,Jd) = C(I,J) + A(L,K)*B(K,J) MMM 270
10 CONTINUE MMM 280
20 CONTLINUE MMM 290
30 CONTINUE MMM 300
END IF MMM 310
RETURN MMM 320
c MMM 330
END MMM 340

Figure 1lb: Subroutine after processing by P77.

POLISH 77 3 User’s Guide

The following requirements influenced the design of P77.

(1) Textout* should be readable by an F77 compiler and should yield the same
object code as textin?,

() P77 should be fast. A consequence of this is that P77 uses only lexical
analysis, not a full parse of the program.

(3) P77 should be easy to use. Accordingly, the number of parameters is small
and default values for all of them are provided. Also, no modification of tex-

tin is necessary; i.e. no special formatting marks need be placed in textin
before it is given to P77,

(4) For flexibility P77 should be a user callable subroutine. Thus the user must
write a main program to call P77. The main program opens files and initial-
izes parameter values when default values are to be overridden. A sample
main program is in Appendix 2.

(5) Formatting should be restricted as much as possible to rearranging white
space. The only transformations made by P77 that are not a rearrangement
of white space are: relabelling, insertion of a CONTINUE statement to ter-
minate a DO-range, insertion of line continuation marks (the character put
in column 6 on a continuation line), line identification, relocation of FORMAT
statements, and decoration of comment blocks. All of these transforma-
tions except the continuation mark transformation can be disabled.

(6) P77 should be portable, Therefore, P77 is written in F77. Machine dependen-
cles are isolated in a few small subprograms described in the "Installation"”
section.”

This guide is designed to serve the needs of the user and of the installer.
Sections 2, 3 and 4 are for the user. Section 2 describes the formatting done by
P77, Section 3 explains how to use P77, and Section 4 discusses error messages.
Section 5 is for the installer. It discusses machine dependent procedures.
Appendices contain lists of error messages and other important reference infor-
mation.

P77 is & descendant of Pelish [Dorrenbacher 78], a formatter for Fortran 66
programs which has been widely used since 1974. Many people have contributed
to the production of P77. The requirements for P77 and its general design were
written by Lloyd Fosdick. A prototype program was written by Jonathan Corbett,
Rebecca Sobol, Sue Ross and Charles Manlove as a student project. The current
version was written by Chang-Lin Chen. The scanner, the "front end" of P77, was
written by Geoffrey Clemm [Clemm B1], Linda Lindgren of the National Bureau of
Standards tested P77. This work is a part of the Toolpack Project [Osterweil 82).

2. Formatting Features.

This section defines fixed formatting features (fff's) and variable formatting
features (vff's). Variable formatting features can be controlled by the user by
essignment of values to parameters before formatting begins. Fixed formatting
features cannot be controlled by the user. The parameters for vff's are sum-
marized in Appendix 1.

The positions on a line in which characters can be written are numbered 1,
R, from left to right. We call the position number the "column index".

4 The words "textin” and "textout" are used throughout this document to denote, respectively,
the F77 program that is the input for P77 and the formatted text that is the output from P77.

5 One departure from strict F'77 is present. Hollerith strings are used as in F88. We believe that
most F77 compilers support this anachronism.

POLISH 77 4 User’s Guide

2.1. Margin control.

Left and right margins for a statement are vfI's. They are controlled by the
parameters LMARGS and RMARGS: LMARGS is the column index of the left margin
for statements; RMARGS is the column index of the right margin for statements.
They must satisty the conditions:

LMARGS >= 7, RMARGS <= 72, RMARGS - LMARGS +1 >= 30.
Their default values are:

LMARGS =7, RMARGS = 72.

The left margin for a comment is a viff. It is controlled by the parameter
LMARGC. It must satisfy the conditions:

LMARGC >= 2, LMARGC <= 80.

This parameter controls the left margin of the comment text. It does not affect
the position of the comment line designator (C or *). The default value is:

LMARGC = 3
The right margin for a comment is column index 72 and is a fff,

2.2. Token spacing.

A token is a lexical element of the language: a name, a constant, an arith-
metic operator, ete. The spacing of tokens is a fIf and the rules governing it are
given below. In these rules the following terms are used:

delimiter
Any symbol in the set {() ' /] . The interpretation of / as a delimiter
depends on the context. It is a delimiter before and after names of COMMON
blocks and value lists in DATA statements.

operator
The F77 definition applies except that the character = is called the assign-
ranent operator here. \

separator
Any symbolin the set §, 4.

parenthesis level
A non-negative integer denoting the depth of nesting of a token within
parentheses. A token that is not contained within parentheses is at
parenthesis level zero; one that is contained within a single pair of
parentheses is at level 1, and so forth.

precedence
Operator precedence as defined for F77.
The spacing rules follow. There is one space between adjacent tokens within

a statement except there is no space in the following circumstances:

Before a left delimiter if the preceding token is a name;
After a left delimiter;

Before a right delimiter;

Before a separator;

POLISH 77 B User’s Guide

After a separator if the parenthesis level is greater than zero;
After a unary operator,

Before and after a binary arithruetic operator if the operator does not have
lowest precedence, or if the parenthesis level is greater than zero;

Before and after the assignment operator if the parenthesis level is greater
than zero; :

Before and after a relational operator if the parenthesis level is greater
than one;

Before and after a binary logical operator if the parenthesis level is greater
than one or the operator has highest or next-to-the-highest precedence;

Before and after the concatenation operator.

Z.3. Blank lines.

This is a fIf. Blank lines appear in textout to mark a break in control flow. In
particular, there will be a blank line after the following statements: GO TO;
RETURN; PAUSE; STOP; END {except for the very last END). There is a blank line
before an ELSE statement and an ELSE IF statement, The idea is that these
blank lines indicate an interruption of control flow.

A blank line separates the non-executable specification statements at the
front of a program unit from the executable staterments. There is one exception:
the blank line will come before any statement function specifications.

A blank line appears before and after sequences of FORMAT statements.

2.4. Breaking a statement line.

This is a fIf except that the indentation of the continuation line is controlled
by the parameter INDNTS (see below). A statement line must be broken, and a
continuation line created, if the statement would extend beyond RMARGS. The
following rules control the line breaking action.

The token before the break is (in descending order of preference): a
separator with parenthesis level zero; a lowest precedence binary operator
with parenthesis level zero; a binary operator with parenthesis level zero; a
separator; a binary operator; any token except a left delimiter; a left delim-
iter.

The break is at least half-way between the start of the line and RMARGS.
(Note that the start of a line is not necessarily IMARGS because the line
may be indented.)

Subject to the above rules, the break is locate as far to the right as possi-
ble. Thus, the break occurs at the rightmost separator with parenthesis
level zero, if one occurs half-way between the start of the line and RMARGS;
otherwise, the break occurs at a lowest precedence binary operator with
parenthesis level zero, if one occurs half-way between the start of the line
and RMARGS, and so forth.

The continuation line is indented relative to the start of the initial line by
the amount specified by the indentation parameter INDNTS. The continuation
line designator, the character in lire position 8, is the currency symbol.

Statement line continuations in textin are not preserved. When P77 reads a
statement from textin it assembles it internally as a single “line", removing all
line breaks that might have been present. Before P77 writes the statement in
textout it breaks the internal line, if necessary, to create the output line.

POLISH 77 6 User’s Guide

©.5. CONTINUE at end of DO range.

This is a fIf except as noted below under "Labels". In textout every DO
range ends on a CONTINUE statement and nested ranges end on separate CON-
TINUE statements.

2.6. Indentation.

This is a vfl, controlled by the parameters INDNTS for statements and
INDNTC for comments, INDNTS specifies the number of line positions used for
indentation of statements. As already noted, continuation lines are indented.
Also, statements are indented when they fall in the range of a DO or when they
fall in an IF-block, an ELSE IF-block, or an ELSE-block. Indentation is relative to
the header line: the DO, the IF, ete. Indentation of statements does not extend to
the right of line position RMARGS-30. There is no indentation of statements when
INDNTS is zero. The default value of INDNTS is 2.

When a comment line falls within the scope of one of the above control
blocks it will be indented by the amount specified by INDNTC. See Figure 1b,
where INDNTC=2. If indentation of a comment line would cause it to extend to
the right of column 72 the comment line is left alone (it is in the same position
in textout as it is in textin). There is no indentation of comment lines when
INDNTC is zero. The default value of INDNTC is 2.

2.7. Labels.

This is a vff, controlled by the parameter LABELS. If the value of LABELS is
X, X not equal to zero, the first label in textout is x, the next is 2x, the next 8x,
and so forth. If the value of LABELS is zero then no relabelling is done. Also, if
the value of LABELS is zero no change is made to DO loops to make the range
end on a CONTINUE (this might force the creation of a new label). The default
value of LABELS is 10.

2.8. Line identification.

This is a vff, controlled by the parameter IDENTL. If IDENTL is equal to 1
then identification information is in the column field 73...80. The first half of this
field contains the first four characters of the program unit name, and the
second half contains a sequence number. If IDENTL is zero then the field is
blank in textout. The default value of IDENTL is 1.

When P77 reads textin any information that might have been in columns 73
through 80 is lost {unless the FM STOP comment is used, see below), Therefore
this information will always be replaced by something else in textout.

2.9. Move FORMAT statements.

This is a vfI, controlled by the parameter MOVESF, If MOVESF is equal to 1
then format statements are located at the end of the program unit in textout. If
MOVESF is equal to zero they are left in their original positions. The default value
of MOVESF is 0.

2.10. Comments.

Comment lines may be indented and decorated. This is a vff, controlled by
two parameters, KCMMNT and MCMMNT. The first of these, KCMMNT, defines the
kind of decoration used and the second, MCMMNT, defines the start of the text of
the comment line. In explaining the meaning of the values for these parameters
the term "comment block” is used: it means an uninterrupted sequence of com-
ment lines. Figures 2-9 illustrate the effect of using these (as well s the other

POLISH 77 7 User’s Guide

formatting) parameters. Fach figure has three sections: the PARAMS section
contains the ten formatting parameters used to produce the results shown -

parameters are in the order listed in Appendix 1; the STDIN section shows textin:
the STDOUT section shows textout.

KCMMNT = 1
Dashes precede the text of an indented comment line. See Fig. 2.
KCMMNT =2 '
Asterisks precede the text of a comment line. See Fig. 8.
KCMMNT = 3
Half box of asterisks drawn around comment block. See Fig. 4.
KCMMNT = 4
Full box of asterisks drawn around comment block. See Fig. 5.
KCMMNT =5 ,
If the first character of the text of a comment block is preceded by a right

parenthesis then draw a full box arcund the block (as in KCMMNT = 4) oth-

erwise precede the text of an indented comment line with asterisks (as in
KCMMNT = 2). See Fig. 8.

KCMMNT = 8

Leave cormument lines alone. They will appear in textout exactly as in textin,
pee Fig. 7.

MCMMNT = 0
Discard leading blanks on a comment line. See Figs. 2-7.
MCMMNT = 1
The first non-blank character on the comment line is a flag marking the

ok ok

start of the comment text. See Fig. B.
MCMMNT = 2
Do not discard leading blanks on a cornment line. See Fig. 9.

The default values are KCMMNT = 5 and MCMMNT = 2.

POLISH 77 8 User’s Guide

PARAMS :
LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MOMMNT
22 70 3 4 4 0 10 1 1 0
STDIN:
SUBROUTINE TEST(M,N)
c 1.
C MCMMNT = 0
C KCMMNT = 1
DO 10 I = L,N
¢ 2.
C MCMMNT = 0
C KCMMNT = 1
M=M+ I
DO 10 J = L,N
C 3.
C MCMMNT = 0
C KCMMNT = 1
M=H+J
10 CONTINUE
RETURN
END
STDOUT :
SUBROUTINE TEST(M,N) TEST 10
c 1. CTEST 20
C MCMMNT = 0 TEST 30
C KCMMNT = 1 TEST 40
C TEST 50
DO 20 L =1, N TEST 60
C == 2. TEST 70
C —- MCMMWT = 0 TEST 80
C -— KCMMNT = 1 TEST 90
M=M+ I _ TEST 100
DO 10J =1, N TEST 110
R 3. TEST 120
C ~~ MCMHNT = 0 TEST 130
C —= KCMMNT = 1 TEST 140
M=k o+ J TEST 150
10 CUNTINUE TEST 160
20 CONT INUE TEST 170
RETURN TEST 180
C TEST 190
END TEST 200

Figure 2: Example showing effect of KCMMNT = 1.

POLISH 77 9 User’'s Guide

PARAMS :
LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MOMMNT
22 70 3 4 4 0 10 1 2 0
STDIN:
SUBROUTINE TEST(M,N)
C 1.
C MCMMNT = O
C KCMMNT = 2
DO 101 = 1,N
C 2.
C MCMMNT = O
C KCMHMNT = 2
M = + I
DO 10 J = 1,N
G 3.
C MCMMNT = O
G KOMMNT = 2
M=M+J
10 CONTINUE
RETURN
END
STDOUT :
SUBROUTINE TEST(M,N) TEST 10
C *% 1. TEST 20
C *% MCMMNT = 0 TEST 30
C *% KCMMNT = 2 TEST 40
C TEST 50
DO 201 =1, N TEST 60
C *%k 2. TEST 70
C ®% MCMMNT = U TEST 80
C *k KCMMNT = 2 TEST 90
M=M+1 TEST 100
bu 10 J = 1, N TEST 110
C k% 3, TEST 120
C *% MCMMNT = O TEST 130
C %% KCMMNT = 2 TEST 140
M=M+J TEST 150
10 CONTINUE TEST 1060
20 CONTLINUE TEST 170
RETURN TEST 180
C TEST 190
END TEST 200

Figure 3: Example showing effect of KCOMMNT = 2.

POLISH 77 16

User's Guide

LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT

PARAMS :
22 70 3 4 4
STDIN:
SUBROUT INE TEST(M,N)
C 1.
C MCMMNT = O
C KCMMNT = 3
DO 10 L = L,N
C 2.
C MCMMNT = ©
C KCMMNT = 3
M=M+1
DO 10 J = 1,N
C 3.
C MCMMNT = O
C KCHMMNT = 3
M=M+J
10 CONTINUE
RETURN
END
STDOUT :
SUBROUTINE TEST(M,N)
Cc* 1.
C * MCMMNT = O
C * KCMMNT = 3
C Hkkkkkrhhhhs
C
PO 201 =1, N
C * 2.
C * MCMMNT = O
C # KCMHNT = 3
C kddkkrkkihtk
M= M -
bo 10 J 1, H
C * 3.
C * MCMMNT = 0
C * KCMMNT = 3
C hhkkkhhkkhkk
M=4+J
10 CONT INUE
20 CONTINUE
RETURN
C
END
Figure 4: Example showing effect of KCMMNT = 3.

U

10

1 3

0

TEST

TEST

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

10
20
30
40
50
60
70
8V
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230

POLISH 77 11 User’s Guide

PARAMS :
LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT
22 70 3 4 4 0 10 1 4 0
STDIN.
SUBROUTINE TEST(M,N)
c 1.
C MCMMNT =0
C KCMMNT = 4
DO 10 I = 1,N
c 2.
o MCMMNT = {
C KCMMNT = 4
M=M+ I
DO 10 J = 1,N
¢ 3.
C MCMMNT = 0
C KCMMNT = 4
M=M+J
10 CONTINUE
RETURN
END
STDOUT :
SUBROUTINE TEST(M,N) TEST 10
C #rkdhhdhhikdhkhk TEST 20
cC* 1. * TEST 30
C % MCMMNT = 0 * TEST 40
C * KCMMNT = 4 * TEST 50
C Fhkdhdhhkrhhhin TEST 60
C TEST 70
DO 20 T =1, N TEST 80
C KRdekhhhhdhhihhs TEST 90
C x 2. * TEST 100
C * MCMMNT = O * TEST 110
C * KCMMNT = 4 * TEST 120
C hhkhhhhkhhhihkk TEST 130
M=M+1I TEST 140
DO 10 J =1, N TEST 150
C KhFhhhihkhhhhin TEST 160
C ® 3, * TEST 170
C *OMCMMNT = O * TEST 180
C * KCMMNT = &4 * TEST 190
C hkhbdhdh ik hhd TEST 200
M=M+J TEST 210
10 CONTINUE TEST 220
20 CONTINUE TEST 230
RETURN TEST 240
C TEST 250
END TEST 260

Figure 5: Example showing effect of KCMMNT = 4.

POLISH 77 12 User’s Guide

PARAMS :
LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT
22 70 3 4 4 0 10 1 5 0
STDIN:
SUBROUTINE TEST(M,N)
c 1.
C MCMMNT = O
C KCMMNT = 5
DO 10 I = 1,N
C 2.
C MCMMNT = O
C KCMMNT = 5
M=M+1
DO 10 J = 1,N
C)3.
C MCMMNT = 0
C KCMMNT = 5
M=1M+J
10 CONTINUE
RETURN
END
STBOUT :
SUBROUTINE TEsT(M,N) TEST 10
C Fhhkkkkhbhihhk TEST 20
c * 1. * TEST 30
C % MCMMNT = O #* ' TEST 40
C * KCMMNT = 5 * TEST 50
T T T TEST 60
C TEST 70
DO 201 =1, N TEST 80
C *% 2. TEST 90
c’ *% MCMMNT = O TEST 100
C ®% KCMMNT = 5 TEST 110
M=1+1 TEST 120
DO 1UJ =1, N TEST 130
C fehkkhhhhrhhh ik TEST 140
C * 3, * TEST 150
C * MCMMNT = 0 * TEST 160
C * KCHMMNT = 5 * TEST 170
C EE T R T T TEST 180
M=M+J TEST 190
10 CONTINUE TEST 200
20 CONTINUE TEST 210
RETURN TEST 220
C TEST 230
END TEST 240

-

Figure 6: Example showing effect of KCMMNT = 5.

POLISH 77 13

User’s Guide

LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT

PARAMS :
22 70 3 4 4 0
STDIN:
SUBROUTINE TEST(M,N)
C 1.
C MCMMNT = 0
C KCMMNT = 6
DO 10 I = L,N
C 2.
C MCMMNT = O
C KCMMNT = 6
M=M+ 1
bo 10 J = 1,N
C 3.
C MCMMNT = O
C KCMMNT = 6
M=M4+J
10 CONTINUE
RETURN
END
STDOUT 2
SUBROUT INE TEST(M,N)
c 1.
C MCMMNT = 0
C KCMMWT = ©
C
DO 201 =1, N
C 2
C MCMMNT = 0
C KCMMNT = 6
M= M-+ I
DO 10U J = 1, N
C 3
C MCMMNT = O
G KCMMNT = o
M=M+J
10 CONTINUE
20 CONTINUE
RETURN
C
END

Figure 7: Example showing effect of KCMMNT

10

1

6

0

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
THST
TEST
TEST

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
100
170
180
190
200

POLISH 77 14 User’s Guide

PARAMS :
LMARGS RMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT
22 70 3 4 4 0 10 1 1 1
STDIN: ,
SUBROUTINE TEST (I, N)
C *1.
C *MCMMNT = 1
c *KCMMNT = 1
DO 10 I = 1,N
C %2,
C *MCMMNT = 1
C *KCMMNT = 1
M=M+ I
DO 10 J = 1,N
C %3,
C *UCMMNT = 1
C AKCMMNT = 1
M=M+J
10 CONTINUE
RETUKN
ELD
STDOUT :
SUBROUT INE TEST(M,N) TEST 10
C 1. TEST 20
C MCMMNT = 1 TEST 30
C KCHMMNT = 1 TEST 40
c TEST 50
DO 20 I =1, N TEST 60
C - 2. TEST 70
C =— MCMMNT = 1 TEST 80
C =-- KCMMNT = 1 TEST 90
M=M+1 TEST 100
DO 10U J =1, N TEST 110
[— 3. - TEST 120
C -— MOMMNT = 1 TEST 130
C ~— KCMMNT = 1 TEST 140
M=M+J TEST 150
10 CONTINUE TEST 160
20 CONTINUE TEST 170
RETURN TEST 180
C TEST 190
END TEST 200

Figure 8: Ixample showing effect of MCMMNT = 1.

POLISH 77 15 User’s Guide

PARAMS :
LMARGS KMARGS LMARGC INDNTS INDNTC MOVESF LABELS IDENTL KCMMNT MCMMNT
22 70 3 4 4 0 10 1 1 2
STDIN:

SUBKOUTINE TEST(M, i)

cl.
C MCMMNT = 2
C KCMMNT = 1
I

it

DO 10 = 1,N
C2.
C MCMMNT = 2
C KCMMNT = 1
M=M++ I
Du 10 J = 1,N
C3.
C MCMMNT = 2
C KCOMMNT = 1
M=M+J
10 CONTINUE
RETURN
END
STDOUT:
SUBROUTINE TEST(M,N)
C 1.
C MCOMMNT = 2
C KCMMNT = 1
C
DO 201 =1, N
c - 2.
c -- MCMMNT = 2
c - KCMMNT = |
M=mu+ 1
DO 10 J = 1, N
C === 3.
C - MCMMNT = 2
C - KCOMMNT = 1
M=HM+J
10 CONTINUE
20 CONT INUE
RETURN
C
END

Figure 9: Example showing effect of MCMMNT = 2.

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

POLISH 77 16 User’s Guide

2.11. Stopping and restarting formatting.

It is possible to stop the formatting action. The stop signal is the comment
line: C8 FM STOP

which must be in textin before the program unit, or sequence of program units
it guards. In particular it must come before the subroutine, function, block data,
or program statement, For example, if the user does not want the subroutine
SAVE formatted, then textin would contain the lines

C# FM STOP
SUBROUTINE SAVE(X,Y)
{body of the subroutine}
END

C$ FM START

The "FM START" line restarts the formatting. Everything between "FM STOP" and
"FM START" is left alone. It is copied, as is, from textin to textout. These special
control cards cannot appear within a program unit. Thus formatting cannot be
turned off for only part of a program unit.

3. How to Use P77

It is expected that the user will write a main program that will open and
close various files used by P77, read a dala file containing values for the format-
ting parameters if the default values are not acceptable, and then call P77. An
example of a main program is given in Appendix 2. In this section the files
required and how they are used will be described and we will give the invocation
rules for P?77.

3.1. Files.

There are three "permanent files”, one for textin, one for textout, and one
for error messages. A fourth file for initializing the formatting parameters is
optional-- it is not needed if default values are used or if the values are initial-
ized in the main program by assignment statements. P77 uses the unit names
STDIN (textin file), STDOUT (textout file), and STDERR (error message file). If the
parameters are on the user's file named P77PAR, if textin is on the user's file
named SOURCE, if textout is to go lo the file named PRETTY, and if the error
messages are to go Lo the file named ERRORS, then these OPEN statements
should be in the user's main program:

OPEN{PARAMS, FILE="P77PAR' STATUS=0LD)
OPEN(STDIN, FILE="SOURCE’,STATUS=0LD)

OPEN(STRQUT FILE="PRETTY' . STATUS=NEW
OPEN(STDERR, FILE="ERRORS’,STATUS=NEW

See Appendix 2 for a sample main program.

P77 uses seven work files with unit names TMP1, TMPZ, ..., TMP?. These rmust
be opened in the main program. They can be removed after executing P77 since
they contain no important information for the user.

Ordinarily, the user does not need to know the numerical values that P77
assigns to the 1/0 units. However, there would be trouble if the user attempted
to assign one of these units to some other file. Therefore they have been listed in
Appendix 8.

POLISH 77 17 User’s Guide

3.2. Common block communication.
The following declarations must appear in the main program.

C == DECLARATIONS FUR FORMATTING PARAMETERS.
INTEGER KMARGS
COMMON /USKER/ LMARGS, RMARGS, LMARGC, INDNTS, INDNTC,
$ MOVESF, LABELS, IDENTL, KCMMNT, MCMMNT
C -~ DECLARATIONS FOK FILES.

INTEGER STDIN, STDOUT, STDERR
INTEGER TMPL, TMPZ, TMP3, TMP4, THP5, TMP6,

$ T™MP7

COMMON /FILES/ STOLN, STDOUT, STUERK,
3 TMPL, TMP2, THP3, TMP4, THPS,
5 TMP6, TMP7

C —— DECLARATION FOR NUMBER OF BITS PER WORD (NBTPWD)
INTEGER NBTPWD
COMMON /NBTPWC/ NBTPWD

C —= CYBER VALUE OF NBTPWD IS 60
DATA NBTPWD/60/

POLISH 77 i8 User’s Guide

3.3. Invocation of P77.

The formatting parameters are referred to within P77 by the names intro-
duced above (LMARGS, RMARGS, ete.). If the user's main program does not
assign a value to a parameter then the default value will be used. The example
in Appendix 2 shows the values being read from a file.

After the permanent files and work files have been opened and new param-
eter values have been assigned (whenever the default is not to be used) the user
gives the command:

CALL SCNPOL

to invoke execution of P77, The name SCNPOL is a reflection of the fact that P77
consists of two major components: scanner and polisher. The scanner breaks
textin into a sequence of tokens. These are written to one of the work files. The
polisher reads the tokens from the work file and creates textout.

After control returns from SCNPOL to the main program nothing further
needs to be done and execution can be terminated.

4. Frror Handling.

Errors are treated differently depending on whether they are detected dur-
ing scanning or during formatting. If errors are detected during scanning, then
control returns to the main program after the scanning process has completed
and before the formatting process begins. Error messages will be found on the
error message file. These messages all have the form:

SCAN ERROR NO. xx NEAR TOKEN yy
or
FATAL ERROR NO. xx NEAR TOKEN yy

where xx is an error message identification number and yy is a token location
number. The meaning of the error number is given in [Clemm B1]. The token
location number is to be used with the "listing” to determine where the error
was found by the scanner. The listing will be on the file connected to STDOUT
(i.e. the file that would contain the formatted program if there were no errors).
This file contains textin augmented with token numbers on the left. The listing
file for the subroutine in Fig la. is shown in Fig. 10. If no erors are detected in
scanning, then no listing is on the [STDOUT] file.

POLISH 77 19 User’s Guide

1 SUBROUTINE MMM(A, B, C, M, N)
C) MATRIX~MATRIX MULTIPLY.

C INPUT A, B, M, N

C A,B: MATRICES, DIMENSION(M,M), ORDEK N
C OUTPUT C
C
C
C

C: C=A*B
ERROR

MESSAGE IF N.LT.1 OR N.GT.H
16 INTEGER M, N
21 REAL A(M,*),B(M,*),C(M,*)
43 COMMON /ERRM/ ERRML,ERRMZ, ERRM3, ERRM4 , ERRMS

C LOCAL
58 INTEGER I,J,K
65 IF((N.LT.1).OR.{N.GT.M))THEN
C ORDER EXCEEDS RANGE

32 CALL ERROR(ERR3)
83 RETURKN
9u ELSE
9z DO 10 L=1,N
100 DO 10 J=1,N
108 C(L,J)=0
117 DO 10 K=1,N
125 10 C(I,I)=C(1,J)+A(T,K)*B(K,J)
154 ENDIF
157 RETURN
159 END

Figure 10: Example of a listing file.

The number in the first column of Fig. 10 is the number of the first token on the
line, Tokens have their usual meaning, that is they are the elementary syntactic
elements or lexemes, except that a comment block counts as one token and the
end-of-line counts as one token. Thus on the first line there are 13 'visible”
tokens, and an end-of-line token, then there is a comment block, the fifteenth
token, and the sixteenth token starts the line "INTEGER ..."

If the message is "FATAL ERROR ..." then it is almost certain that a table has
overflowed. To fix the error the dimensions of certain arrays in the scanner
must be changed. The reader should consult the FSCAN-B1 report [Clemm B1]
for details, Fortunately, fatal error messages are unlikely.

If the message is "SCAN ERROR ..." then it is almost certain that textin has a
syntax error in the neighborhood of the token location given in the message. The
user should find the error by looking in the listing file and repair it.

If no errors are detected by the scanner then formatting will take place. If
errors are detected during formatting then messages will be written on the
error message file Error messages of this type are most likely due to erroneous
formatting parameters. When the user has given illegal formatting parameters
no formatting will be done. Warning messages are written when a statement
cannot be formatted. Examples are statements with long character strings that
cannot fit between the left and right margins, and long statements that require
more than 19 continuation lines when they are formatted. In cases like this P77

POLISH 77 20 User’s Guide

will write a correct, but unformatted, statement. A list of all of the error and
warning messages written by the formatter is given in Appendix 3.

H. Machine Dependent Procedures.

There are five machine dependent procedures that must be supplied at
installation of P77. Copies of these procedures for a Cyber 750 under NOS are
shown in Appendix 5. They are also supplied on the distribution tape.

INTEGER FUNCTION INMAP(C)

This function converts a character te the internal integer representation of
the character. The parameter C is the character as read using an Al format
specification. The output (INMAP) is the integer value of the 7-bit ASCII code
for the character.

CHARACTER FUNCTION OQUTMAP(C)

This function converts the internal integer representation of a character
into the external representation of the character. It is the inverse of INMAP.
The parameter C is the integer value of the 7-bit ASCII code for the charac-
ter. The output (OUTMAP) is the representation of this character appropri-
ate for writing it with an Al format.

INTEGER F'UNCTION HOLCHR(HCONST, ICHAR)

This function returns the ith character in A1 format of a Hollerith constant.
The value of i is passed in as the value of ICHAR. The value of the Hollerith
constant is passed in as the value of HCONST. An example of its usage is
given below:

MSSG(7) = HOLCHR(SHERROR, 4)

This would put the letter "0" in Al format into the integer array MSSG at
position 7. A subsequent write statement like

WRITE (8, 99; MSSG(7)
99 FORMAT(A1

would write the letter "O" to unit 8. Note that passing a Hollerith string in a
procedure call and using an integer array to hold characters as shown here
is nonstandard F77. However, in Appendix C of the F77 Standard it is recom-
mended that extensions of F77 to support Hollerith strings (as in F66) allow
the kind of usage shown above. We believe that most systems support this
remnant from F66. We will repair this deviation from strict F77 in a subse-
quent release of P77.

INTEGER FUNCTION LRS(IVAL, ICOUNT)

This function returns the logical right shift of ICOUNT binary places of the
value IVAL. The shift is "zero-fill".

INTEGER FUNCTION LLS(IVAL, ICOUNT)

This function returns the logical left shift of ICOUNT binary places of the
value IVAL The shift is "zero-fill". '

POLISH 77 21 User’s Guide

6. References.

[ANSI FORTRAN]
ANSI X3.9-1978 FORTRAN. American National Standards Institute, Inc., New
York NY 10018,

[Clemm 81]
Geoffrey M. Clemm: FSCAN-81 Report and User's Manual Tech. Rept.
R0R(June 1981), Dept. of Computer Science, University of Colorado, Boulder
CO BD309.

[Dorrenbacher 78]
d. Dorrenbacher, D. Paddock, D. Wisneski, and 1. Fosdick: POLISH, A Tortran
Program to Edit Fortran Programs. Tech. Rept. 50(1974, rev. May 1978),
Dept. of Computer Science, University of Colorado, Boulder CQ 80309,

[Osterweil 82]
Leon J. Osterweil, Stephen Hague, Webb Miller: TOOLPACK Architectural
Design - The User's Perspective. (April 15, 1982) Available from Toolpack
coordinator - Wayne R. Cowell, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne IL 80439,

POLISH 77 22 User’s Guide

Appendix 1.
List of formatting parameters.

LMARGS
Left margin for statements. Default value is 7.
RMARGS
Right margin for statements. Default value is 72.
LMARGC
Left margin for comments. Default value is 3.
INDNTS
Indentation for statermnent lines. Default value is 2.
INDNTC
Indentation for comment lines. Default value is 2.
MOVESF
Move format statements to end of program unit. MOVESF = 0 means do not
move format statements. MOVESF = 1 means move format statements,
Default value is 0.
LABELS

Value of first label and of the label increment. LABELS = 0 means do not
change labels. Default value iz 10.

IDENTL
Fill identification field with line number and abbreviated unit name. IDENTL
= 0 means leave identification field blank. IDENTL = 1 means fll in
identification field. Default value is 1.

KCMMNT

Parameter controlling display form of comments. Possible values are 1
through 6. See Figs. 2-7 for examples. Default value is 5.
MCMMNT

Parameter controlling interpretation of start of comment line. Possible
values are 0 through 2. See Figs. 2, 8, 9 for examples. Default value is 2.

POLISH 77

o ao;

OO

OO

3

e

@]

aa

[N e

Example of a main program for invoking P77.

23

Appendix 2.

PROGRAM MALINPO
B R R T R S A SO AN AR NP
* PROGRAM MATINPO

*
E

EXAMPLE OF MAIN PROGRAM

User’s Guide

E
*®
*

RRRRE IR E IR I IRRAIRRIERRRARIARIR T A RRRA R AR AR AR AR R AR 7Aook h k& Rk ke
INTEGER RMAKGS, PARAMS

COMMON /USER/ LMARGS, RMARGS, LMAKGC, INDNTS, INDNTC, MOVESE

$ LABELS, IDENTL, KCMMNT, HCMMNT
INTEGER STUDIN, 5TOOUT, STDERK, TwPL, TebP2, TMP3, TMP4, TMPS,
$ TMP6, TMP7

COMMON /FLLES/ STDIN, STDOUT, STDERR, TMPl, TMP2, TMP3, TMP4,

$ IMP5, TMP6, TMP7
INTEGER CMNTFL, ERRORS, SUURCE, TABLES

COMMON /1UCNLS/ SOURUE, LISTNG, TABLES, CMNTFL,

LR R R T R TR L R Y U ROR I SOR S N
* NUMBER OF BITS PER WORD = NBTPWD *
* MACHINE DEPENDENT PARAMETER *
kFkhhkhhhhdhhhhhd ok ki hhhhhhhhdhkhkh
CUMMON /NBTPWG/ NBTPWD

INTEGER NBTPWD

KRk hhdhhhhhhdhhhdhhhhhhdhhhhhhhittrd

* VALUE FOK CYBER 60U BLTS PER WURD *
B I T S P Y P T L T

DATA NBTPWD/0O/

PARAMS = 30

AARKRFIIRAARKKARKAR AR AT A AR AARERARRKR KA XAk Arkkk

*

OPEN FILES

* THE FOLLOWING ARE TEMPORARY WORK FILES:

* TMPL, TMP2, TMP3, TMP4, TMP5, TMP6, TMP/
k**kk**k***k*k*k********k*kk*******kk****

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

(PARAMS, FLLE="P77PAR™, STATUS="0OLD")
(STDIN, FILE="SOURCE" , STATUS="OLL")
(STDOUT, FILE="PRETTY" ,STATUS= "WEW")
(STDERR, FILE="ERRORS ", STATUS="NEW")
(TMPL, FILE="TMP1” STATUS="NiW")
(TMP2, FILE="THMP2" , STATUS="WEW")
(TMP3, FILE="THMP3" STATUS="NLW")
(TMP4, FILE="TMP4" STATUS="NEW")
(TMPS, FLLE="THP5" , STATUS="NEW")
(TMP6, FILE="TtP6" , STATUS="NEW")
(IMP7, FILE="TMP7 ", STATUS="NEW")

REWLND PAKAMS
REWIND STDIN
READ (PARAMS,10) LMARGS, KMARGS, LMARGC, INDNTS, INDNTC,

$ MOVESF, LASELS, LDENTL, KCMMNT, MCMMNT

10 FORMAT (LO14)

ERRORS

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MATIN
AN
MALN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MALN
MALN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MALN
MALN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MALN
MAIN
MAILN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

10

20

30

40

50

60

70

&0

9u
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
450
260
270
2380
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

POLISH 77 &4 User’s Guide

CALL SCNPOL

AT THIS POINT, ON CERTAIN OPERATING SYSTEMS, ALL TEMPORARY WORK

FILES MAY BE REMOVED USING A SYSTEM DEPENDENT SUBROUTINE. ONE CAN
INSERT WHATEVER ROUTINE IS NECESSARY TO REMOVE THESE FLILES SLINCE
USER WILL NOT NEED THIS INFORMATION AFTER THE PROGRAM TERMINATES.

CALL RHMFILS
STOP

END

MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

500
510
520
530
540
550
560
570
5380
590
00U
610

POLISH 77 25 User’s Guide

Appendix 3.
List of Error messages,

Polish Error Messages

#*+ LRROR 1 --—- { INVALID CONTROL PARAMETER)

One of the formatting parameters (see Appendix 1) has an illegal value.
*+% ERROR 2 -~ { RMARGS - LMARGS + 1 < 30)

Line width for statements is too short,
+ FRROR 8 - (TABLE 1 EXCEEDS ITS DIMENSION)

Table 1 is defined in the source as TAB1(4,25) within SUBROUTINE POLISH,
The second dimension is equal to the maximum number of distinct labels
used in DO staterments in a program unit. If this error message oceurs, it
means that more than 25 DO labels are required in textout for the program
unit being processed at the time of the message. To remedy this table
overflow, change the second dimension of TAB! as appropriate. Also, the
variable NTAB! must be initialized to whatever value is given to the second
dimension of TAB1. This initialization appears near the front of SUBROUTINE
POLISH.

ERROR 4 --- (TABLE 2 EXCEEDS ITS DIMENSION)

Table R is defined in the source as TAB2(4,50) within SUBROUTINE POLISH.
The second dimension is equal to the maximum number of applied
occurrences of labels, except in DO statements, in a program unit. The
appearance of a lael within a statement is called an "applied occurrance”;
the appearance of a label at the left of a statement is called a "defining
occeurrance"”. 1If this error message occurs, it means that more than 50
applied occurrences, excluding DO statements, are required in the program
unit being processed at the time of the error message. To remedy this
table overflow, change the second dimension of TAB2 as appropriate. Also,
the variable NTABZ must be initialized to whatever value is given to the
second dimension of TABZ. This initialization appears near the front of SUB-
ROUTINE POLISH.

¥** LRROR B - (TABLE 3 EXCEEDS ITS DIMENSION)

Table 3 is defined in the source as TAB3(4,125) within SUBROUTINE POLISH,
The second dimension is equal to the maximum number of defining
occurrences of labels in a program unit. If this error message occurs, it
means that more than 125 defining occurrences of labels are required in
the program unit being processed at the time of the error message. To
remedy this table overflow, change the second dimension as appropriate.
Also, the variable NTAB3 must be initialized to whatever value is given to the
second dimension of TAB3. This initialization appears near the front of SUB-
ROUTINE POLISH.

*** ERROR 6 -—-- { CONTINUE LINES > 19)
Statement with too many continuation lines in source program.
¥*+ MESSAGE 7 - (CAN NOT BREAK LINE)

Cannot satisfy conditions for breaking a line. Line is not broken in the for-
matted output,

**+* MESSAGE B --- (COMMENT BLOCK UUUUSSSS -- UUUUEEEE LEFT AS IS)

POLISH 77 26 User’s Guide

Comment block in program unit UUUU (abbreviated name) starting at Yine
identification number SSSS and ending at EEEE is left ag it is in textin. This
is caused when movement of the block, according to formatting rules, would
cause it to extend to the right of column 72,

MESSAGE 9 --- (TWO "FM START" IN ROW, LAST AFTER UNIT UUUU)

Improper sequencing of FM START commands in source program; UUUU is
abbreviated name of program unit immediately preceding the second of two
F'M START commands that do not have an intervening M STOP command.

*** MESSAGE 10 - {TWO "F'M STOP" IN ROW, FIRST AFTER UNIT UUUU)

Improper sequencing of FM STOP commands in source program; UUUU is
abbreviated name of program unit immediately preceding the first of two
FM STOP commands that do not have an intervening 'M START command.

#+* MESSAGE 11 - ("FM START" IN PROGRAM UNIT ???7?)

Improper placement of FM START command. This command can only be
placed between program units.

*** MESSAGE 12 -— ("FM STOP" IN PROGRAM UNIT ???7)

Improper placement of FM STOP command. This command can ’only be
placed between program units,

POLISH 77 27

Scanner Error Messages

SCAN ERROR NO. xx NEAR TOKEN yy
FATAL ERROR NO. xx NEAR TOKEN yy

See discussion in text "Error Handling".

User’s Guide

POLISH 77 28 User’s Guide

Appendix 4,
List of external files.

P77 uses eleven files {one is optional). These files must be opened in the main
program (supplied by the user) as illustrated in Appendix 2. The files are
identified below by the internal name used for the unit number of the file.
PARAMS
This file is optional and listed here only for completeness. It is used in the
sample main program, Appendix 2, for initializing the formatting parame-
ters. The initialization is unnecessary if default values are used.
STDIN
This file holds the program to be processed by P77,
STDOUT
This file holds the output from P77, or if a syntax error is found by the
scanner it holds the listing file (see Fig. 10 for example of a listing file).
STDERR
This file holds error messages and warning messages written by P77.
TMP1-7
These seven files are work files used by P77,

PCLISH 77 29

[}

[

@

@]

10

10

v

Appendix 5
Cyber 750 Machine Dependent Procedures

INTEGER FUNCTION INMAP(C)

INTEGER ¢

COMMON /MAPBLK/ MAPIN, MAPOUT

INTEGER MAPIN(O:63), MAPOUT(0:63), SMALL
DATA MASK/Q"7700"/

SMALL = LRS(C,54) :

IF ((SMALL.LT.0).0R.(SMALL.GT.63)) GO TO 10
INMAP = MAPIN(SMALL)

RETURN

PRINT *, “EKROK IN INMAF, BAD CODE”
RETURN

END

INTEGER FUNCTION OUTMAP(C)

INTEGER €

COMMON /MAPBLK/ MAPLN, MAPOUT

INTEGEK MAPIN(O:63), MAPOUL(0:63), KEY
DATA MASK/0"5555555555555555"/

KEY = C ~ 32

I¥ ((KEY.LT.U).OR.(KiLY.GT.63)) GO Tu 10
OUTMAP = OR(LLS (MAPOUT (KEY), 54) , MASK)
RETUKN

PRINT *, "ERROR IN OUTMAY, BAD CHARACTER~
RETURN

END
INTEGER FUNCTION LRS(LVAL,TICOUNT)

LRS = SHIFT(IVAL,-ICOUNT).AND.(.NOT.MASK(LCOUNT))
RETURN

END
INTEGER FUNCTION LL3(IVAL, ICOUNT)

LLS = SHIFT(IVAL, LCOUNT)
RETURN “

END

INTEGER FUNCTION HOLCHR(HCONST, ICHK)
INTEGER WORD, HCONST(l0)

User’s Guide

ITNMA
INMA
INMA
INMA
INMA
INMA
INMA
INMA
INMA
TNMA
INMA
INMA
INMA
ITNMA
INMA

OUTHM
OUTM
ouTM
ouTH
ourM
OUTM
OUTM
ouUTM™
OUTHM
OUTM
OUTM
OUTM
QUTH
ouUTH
OUTH

LRb
LIRS
LRS
LES
LRS
LRS

LLS
LLS
LLS
LLS
LLS
LL5
HOLC

HOLC
HOLC

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

10
20
30
40
50
o0
70
80
90
100
110
120
130
140
150

10
20
30
40
50
60

10
20
30
40
50
60
10

20
30

POLISH 77

O

(@]

$

WORD

0"77000000000VLOOCO0CLOL™)

= (LCHR-1)/10 + 1
ICHPOS = (LLS(HCONST(WORD),(ICHPOS~1)%6).AND.

RETURN

END

BLOCK DATA MAPS
COMMON /MAPBLK/ MAPIN, MAPOUT
INTEGER MAPIN(O:63), MAPOUT(0:63)

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

END

MAPTIN(U)
MAPIN(L)
MAPIN(2)
MAPIN(3)
MAPIN(4)

HAPIN(59)
MAPIN(60)

MAPIN(oL)

MAPIN(62)
MAPIN(63)

MAPOUT (V)
HAPOUT (1)
MAPOUT(2)
MAPOUT(3)
MAPOUT (4)

MAPOUT (59)
MAPOUT (60)
MAPOUT (61)
MAPOUT (62)
MAPOUT (63)

e e T N N T T T

N N

58
65
66
67
68

62
o4
92
94
59

45
54
52

43

49
ol
50
b2
53

T TN S el T T T TN T T Y

s T S S S

30

+OR.

User’s Guide

0"00555555555555555555"

HOLC
HOLC
HOLC
HOLC
HOLC
HOLC

40
50
60
70
80
90

POLISH 77 31 User’s Guide

Appendix 6
Table of T/0 unit names and numbers.

Name Number Remark

STDIN 27 Textin.

STbouT 28 Textout, or listing if errors in scan.
STDERR 29 Error uessages.

PARAMS 30 Formatting paraueters.
TMp L 31

TMp 2 32

TMP 3 33

TMP 4 34

TMPS 35 Tokens from scamner.
TMPo 36 Buffer for comments.
TMP7 37 Listing from scanner.

The unit numbers are assigned in the program unit BLOCK
DATA TOKLET.

