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Software Aids for Optimizing 0-1 Matrices
R. Michael Perry

Abstract

Here we consider the problem, given a real m-vector b and an integer
n < m, of finding an mxn matrix A such that the least-squares residual norm,
b —Az || where = = (ATA)7 A6, is minimized, subject to the constraint that the
entries of A must be 0's or 1's. This problem has arisen in a study of the reten-
tion of information from visual and verbal sources. Mathematically it is likely to
be a difficult problem, however, and thus only "good"” not optimal solutions are
expected. A software package has been written to assist a human operator in
searching for such desirable matrices. This is described here, and its use in the
study is reviewed.

1. Introduction

In the standard linear least-squares problem we are given an m-
dimmensional vector b and an mXxn matrix 4, with n <m, and asked to find an
n-dimensional vector z such that Az approximates b in a least-squares sense,
that is, so that the Euclidean 2-norm residual, ||b —Az[|, is minimized. The solu-
tion vector z is given (ignoring possible conditioning problems with matrix A) by
z = (ATA)"1ATb . The resulting residual norm [|b —Az|| will be denoted by r(b,A).
It should be noted that computation of the solution x and the residual r(b,A)
are straightforward and can be performed reasonably efficiently, that is, in time
that is a fairly small polynomial in the parameters m and n that determine the
size of the problem.

Here we will consider the problem, given a real m-vector & and an integer
n <m, of finding an mXxn matrix A such that r{b,A) is minimized, subject to
the constraint that the entries of A must be 0's or 1's. This problem has arisen
in a psychological study of the retention of information from visual and verbal
sources [1]; a further discussion is given later. Mathematically the problem is
known to be NP-complete in some forms [2]. Thus, unlike the least-squares
problem, no efficient algorithms for solving it are known for most cases of
interest and quite possibly none exist. That is, although the problem could be
solved by exhaustively considering all the 2™ possible 0-1 matrices with dimen-
sions m Xn., it is doubtful if there exists any algorithm that always finds a best
matrix in time that is polynomial in m and n. In practical terms the optimiza-
tion problem is likely to be unsolvable even for small values of m and n (say, for
mn < 100).

Often, however, one is not interested in an optimal matrix exclusively, but
would simply like to find the best matrix possible, that is, the one with the smal-
lest residual, subject to a reasonable limit on the time spent searching. Com-
plex strategies using more basic heuristics may prove useful. Thus user interac-
tion is desirable so that the search can be guided by intelligent decision-making.

In the work described here, several software tools were created for con-
structing and modifying 0-1 matrices. Among these are heuristics to find a
matrix with low residual norm or to modify a previously found matrix to reduce
the residual. Most of the procedures are straightforward and are not described
in detail but are mentioned in the section on implementation. The section on
algorithms that follows will deal with the two major heuristics that are used,
both of which were suggested by Andrzej Ehrenfeucht.
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2. Algorithms

There are two Iimportant algorithms used in generating low-residual
matrices. One adds a "best” column, the other modifies the rows to reduce the
residual. Thus to use these heuristics it is necessary to have a matrix to start
with. In the application [1] it is assumed that the first column of any matrix is
filled with 1's, so that an initial matrix is always given. Strictly speaking, this
changes the optimization problem from what was defined above, since the first
column of the matrix is not allowed to vary, but the modified problem is still
likely to be intractable, so that similar considerations will apply.

To add a "best" column we start with an m X (n—1) matrix 4p assumed to
contain a 'constant” column filled with 1's, and look at the residual vector
v = b — Agzp obtained by subtracting the least-squares approximation Agzg from
b. The column to be added will be the one which, when linearly combined with
the constant column, secures a least-squares fit to the residual vector. Thus in
essence the column sought is a basis function which secures a best fit when
linearly combined with a constant function. Since the column or basis function
is limited in its values to 0 and 1, the fitting function obtained by linear combi-
nation must also be two-valued, though in this case the values can be arbitrary
real numbers. The best column can thus be determined by finding the best two-
valued approximation of the vector w. That is, if f is a two-valued function that
secures a least-squares fit to v (over the set of all two-valued functions), then
the desired column will be obtained if the ith entry of the column is set to 0
whenever f (1) is the smaller value, and to 1 otherwise. (Or the 0 entries could
correspond to the larger values f (i) and the 1's to the smaller values. The
existence of the constant column allows any other column in the matrix to be
complemented without affecting the residual norm.)

To find the best-fitting two-valued function f, we first sort the entries of v
in the order of increasing size. This will greatly simplify the problen, and the
desired solution for the original case can then be determined by a straightfor-
ward unscrambling.

Assuming then that the entries w; of v are sorted as indicated, that is, so
that v;=v; whenever j=1, it remains to determine a best-fitting function f; This
will not be difficult once it is established that f too can be an increasing func-
tion, i.e., that for some best-fitting f, f(j) = f (i) whenever 7 = 1. To show this
in turn, suppose that f is a function such that f () < f (i) for some j =1. Then
a function that fits just as well can be defined by interchanging the values of f
so that f(j) is assigned to 7 and f (i) to j. In other words we claim that the
discrepancy in fitting for the new function is no worse than that for the old, or
that

(vi = f NP+ (uy = F()P= (v = F())P + (v; — f(5))2 (1)

To show this in turn, let p=v;, g=v;, r=f (), s=f(i). Then p=q, r=<s, and we
claim that

P-m)?+(g-s)P=(p-s)®+ (g—7)% (2)
By expanding terms the above inequality is equivalent to

Pr+qs = ps+gr. (3)
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Clearly (2) holds when p = 7 because for this case p is = both g and s, thus
lg—s | = |p—s]; (3) must hold also. Next, suppose that (2) and (8) hold for some
values p, ¢, 7, and s. Then (3) must also hold for p, g, r+£, s+, where ¢ is an
arbitrary real constant, as can be seen by expanding terms. From this it follows
that (2) and (3) must hold for arbitrary p, g, 7, s when the initial inequalities
are satisfled. From this in turn we can assume without loss of generality that
the function f is increasing.

Since, on the other hand, f has only two values it must have the form
f(7) =7 whenever 1 <j<i for somei <m and f(j) =s fori <j <m. (Here
we assume m = 2; also note that the case that v is constant, which will only
occur if v=0 in view of the constant column, is handled by allowing r=s=0.) The
best choice for f will be one that minimizes the discrepancy with v, which in
turn is given by

ng(uj-—'r)g + J}"j (=5 )2, (4)

j =i+ 1

For a given value 1, the best choices of » and s are respectively the means of Uy
over the intervals 1 < j <4 and i+1< 7 < m; thus

7
N HE D N (5)

The best choice for f, then, is found by selecting the value 7 that achieves the
minimum discrepancy according to (4), using the values for r and s given in (5).
By expansion of terms the expression to be minimized becomes

Elv’? B %{Exw F - '5{1':{{1 R (®)

=i+1

which is convenient for computation.

The best f can then be decoded as indicated earlier {including unscram-
bling) to obtain a best column to add to matrix Ag. In this way a matrix A can be
built up column by column. Although the matrix will not in general be optimal
the heuristic has proved highly useful, particularly when combined with other
heuristics, the most important of which will now be described,

This heuristic modifies the rows of 4 in an attempt to find a better matrix.
Initially we are given vector b, matrix 4, and the least-squares solution vector z .
Each entry b; of b is approximated by taking the inner product of the ith row of
A and the vector z. A better matrix will result if this ith row is replaced by
another row whose inner product with x gives a better approximation to &;.
Rows of 4 can be modified independently of each other to find improvements in
this way. The result (assuming some improvements are found) will be a matrix
A' such that ||b—A'z]| <|[b—-Az|. z. however, will not in general be the least-
squares solution vector for A'; this latter vector, call it z', must then be com-
- puted and will give a still better fit to b. The heuristic can then be reapplied to
the rows of A’ using the new vector z'.

In practice the new rows are found simply by exhaustive searching. In par-
ticular, since the m rows of A can be modified independently of each other,
there are only m-2" combinations that must be considered for the most general
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casge, rather than all the 2™ possible matrices. Thus if n, the number of
columns, is not too large the rows can be searched exhaustively to find the best
A'. (This of course will not guarantee an optimal matrix but like the other
heuristic it has proved useful.) In practice it has generally been desirable to
limit the columns to be modifled in searching for the best rows; for example a
constant column has usually remained fixed. By suitably limiting the columns in
this way, search tirnes can be kept reasonable even when n is large.

3, Implementation

A software package has been created to assist a human operator in search-
ing for 0-1 matrices with small residual norms. A number of user-defined con-
straints can be imposed on the matrices that are to be found. Thus a variety of
problems can be defined and the search can be guided by intelligent decision-
making.

To begin, then, a b-vector is writlen to a specified file; this vector, of
course, will remain fixed during computation. The user will then attempt to find
a 0-1 matrix A in the appropriate form having low residual 7 (b,4). To assist this
process there are (1) routines for defining A directly, that is, by setting entries
individually or by such operations as redefining specified rows or columns, (2) a
procedure for determining the least-squares vector z, given & and A, and (3)
heuristics which automatically modify or add columns to A or which suggest
other possible improvements. The software is extensively documented and
should be usable without difficulty. The various components will now be
described briefly. The documentation should be consulted for further details.

Malrix A must be written to a specified file so thal the least-squares vector
z and the residual r(b,4) can be determined. (Al present this file is fixed, as
are those for the b-vector and for other information that may be needed, though
this could easily be changed.) The matrix entries can be keyed in directly using
one of the system's editors. In addition there iz a "meodify" routine in which
instructions added to the matrix file are executed to change the entries. The
available instructions include "delete”, "replace"”, "insert”, "union”, and "comple-
ment"”, each of which performs the corresponding operation involving one or
more columns of the matrix. ("Union" replaces a specified column with the bit-
wise "or" of two or more columns, while "complement” takes the bitwise comple-
ment of one column.) In addition a row of the matrix can be replaced using the
"rerow’ instruction. Use of the modify routine can greatly reduce the labor (and
error) of making alterations in a matrix by hand.

When the b-vector and A-matrix have been set as desired, the routine
"solve' can be called to determine the least-squares fitting vector z. This is cal-
culated by a straightforward application of Cholesky decomposition using the
normal-equations matrix A74, thereby obtaining = = (A74)7147b [3]. The resi-
dual norm 7 (b,A4) is also derived. Although this method can lead to conditioning
problems it is relatively fast and is stable in the cases of interest to date, that is,
for nonsingular 0-1 matrices of fairly small dimensions. The solve routine also
notes linearly dependent columns for a singular matrix.

Currently there are five other routines that sclve the linear least-squares
problem, "asolve"”, "bsolve", "csolve”, "dscolve"”, and "nsolve”. These, however, are
used mmainly to find a better matrix 4 with a smaller residual r(b,4). asolve
applies the first heuristic of the previous section, adding a best column te 4.
bsolve, using the same heuristic, adds columns iteratively until r(b,4) falls
below a specified tolerance. csolve modifies the rows of 4 using the second
heuristic, printing the best solution and also alternate versions of rows that

achieved a particularly good fit. dsolve is a simplified version of csolve in that
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only two versions of each row are considered, namely, the original row and its
complement. However it prints results of least-squares solving for each row
when complemented individually. These results are sorted "best-first”, that is,
in the order of increasing residuals. In addition, all rows which, when comple-
mented individually gave a better fit, are complemented simultaneously and the
resulting solution and residual are printed. nsolve deletes columns of the
matrix individually, solves the least-squares problem for each resulting matrix,
and sorts the results best-first. In this manner columns which make relatively
little contribution to the fitting can be identified and deleted, giving a smaller
matrix with nearly the same residual.

The software package was coded in Franz LISP, under the UNIX operating
system, and is now running on a VAX 11/780 computer at the University of
Colorade Computer Science Department. LISP was found to be a convenient
language for coding, particularly for the modify routine and for such features as
dynamic allocation of arrays. It should be noted, however, that only small
matrices have been considered (typically about 17x5) so that execution
efficiency was not of primary concern. Typically about 30 sec. was required for
one run of the modify routine, with 3-10 min. being the rule for one of the solving
routines,

4. Application

In the one major application to date [1] a study was made of the retention
of information in the human memory. Subjects were shown an educational
movie, some being presented with both narration (or written text) and with the
visual portion, while in other cases the verbal or visual component was omitted.
Other subjects were given verbal information followed by visual presentation
without sound, or vice versa. The subjects then were tested for retention of
information, (1) immediately and (2) after a one-week delay. In this manner 17
test scores were obtained measuring the amount of information retained under
varying conditions of acquisition and testing delay.

The next step was to find a sensible explanation of these results, and it
seemed natural to interpret them in terms of features that were either
definitely present or definitely absent in each of the 17 subject categories. One
obvious feature of this type, for example, was the "visual" one that was present
in those categories in which the visual portion of the movie was shown, and
absent in the others.

By selecting the right set of features, then, it was hoped that every test
score would be accounted for by the features present or absent in each particu-
lar group. That is, it was assumed that each feature would contribute a specific
numerical amount to the test scores of all categories in which it was present,
with zero contribution if absent. Each feature, then, would be assigned a value,
positive or negative, by which it would affect a test score if present. Ideally,
then, the test score of a particular category would be exactly reproduced by
adding the values of the features that were present. This would require an apt
choice of features and a correct assignment of values as well. It was recognized,
however, that there should be some toleration of discrepancies, as for example,
if the actual and calculated scores did not differ by a statistically significant
amount.

In each case the values assigned for a particular choice of features were
those that achieved a least-squares fit to the test scores. The problem then was
to find a "reasonable” set of features that would give a reasonable least-squares
fit. Mathematically, then, the 17 test scores formed an m-vector b with m = 17
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while a set of n features comprised an mxn 0-1 matrix A, each feature contri-
buting one column. The values of the fealures were then contained in the n-
vector x obtained by least-squares fitting.

A reasonable solution of the problem would be a small number of physically
meaningful features that gave a good fit to the 17 scores. The software package
described in this report was used in searching for such a set of features, and
finally five features were chosen that satisfied all requirements. (One of these
was the "baseline” or constant column that figured in the previous section.) It is
impertant to note, however, that, since the features had te be "physically mean-
ingful" it was not sufficient to simply find a matrix with low residual. Instead
there were further constraints that were difficult to delineate mathernatically.
Thus the human operator was crucial, both in finding selutions and in rejecting
those that were unrealistic. At any rate, a satisfactory solution was eventually
obtained, and the paper’s conclusions could then be stated. Among these was
the interesting observation that "in a show and tell presentation, one should not
tell first and show second”.

The results, then, were obtained by a lenglhy interaction of person and
machine, both of which were indispensable.
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