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ABSTRACT

Any nonempty string of ﬁhe form zz is called a repelition. An O(n logn) algorithm
is presented to find all repetitions in a string of length . The algorithm is based on a
linear algorithm to find all the new repetitions formed when two strings are con-
catenated. This linear algorithm is possible because new repetitions of equal length
must occur in blocks with consecutive starting positions. The linear algorithm uses a
- variation of the Knuth-Morris-Pratt algorithm to find all partial occurrences of a pattern
within a text string. 1t is also shown that no algorithm based on comparisons of symbols

can improve O(n log n). Finally, some open problems and applications are suggested.

*This work was supported in part by National Science Foundation Grants MCS-7708486 and MCS -8003433.






1. INTRODUCTION

A repetition is an immediately repeated nonempty string, e.g., ca, abab,
awallawalla. Any string which contains a repetition as a substring is called repetition-
containing. A string which is not repelition-containing is repetition-free. In this paper
we address the problem of finding all substrings of a string which are repetitions. The
O(n log n) algorithm we give can also be used Lo find the longest repetition in a string,
or just to determine when a string is repetition-free.

The study of repetitions in strings dates back to the pioneering work of Axel Thue in
the first decade of this century [21,22]. Using homomorphisms which preserve
repetition-free strings, he construcled infinile repelilion-lree sequences on an alphabet
of three characters. Since then, others have presented this same result, applying it in
diverse fields [3,9,10,14,16,17]. Several applications of Thue's result to modern formal

language theory have appeared in the last decade [4,8,18,20].

The problem of determining when a string is repetition-free is similar to several
other pattern matching problems. Work by Seiferas and Galil [19] has provided algo-
rithrns to determine whether a string has a repetition conforming to specific length res-
trictions. Various patterns involving palindromes have also been the subject of recogni-
tion algorithms [7,15].

The algorithm we present finds all repetitions in a string in time O(n log n), where
7 is the string's length. The algorithm is based on a lincar procedure for finding all new
repetitions that are formed when two strings are concatenated. This linear procedure is
somewhat surprising, since there may be Q(|uv |?) new repetitions formed when the
strings u and v are concatenated* The linear time is oblained by taking advantage of
the fact that new repelitions of equal lenglh occur in blocks with consecutive starting

positions. By using a variation of the Knulh-Morris-Pralt patlern malching algorithm

A function f(n) is called (I(g(n)) when there is a constant ¢ such thal for any sufficiently large n,

J(n)=cgn).



[13] to precompute some information, all the blocks of new repetitions are found in
O(Juv |). This linear algorithm can be used to construct an O(n log ) algorithm to find
all repetitions. The O(n log n) algorithm is easily modified to find a maximal length ré-
petition or just to delermine whether a string is repetition-free. In fact, it can find all

repetitions of length %— or greater in time O(n log £). Tinally, O(n log n) is shown to be

a lower bound for any algorithm which uses symbol comparisons to determine whether a
string is repetition-free.

An alternate solution to the problem of finding all repetitions in a string has recent-
ly been given by Max Crochemore [5]. His O(n log n) algorithm is based on finding

equivalence relations of the positions of the string.

Our notation follows Aho, Hoperoft and Ullman [1]. The length of a string x is
denoted by [z|. A substring of x beginning at the i character and ending at the jtt

character is written as z; - - - z;.

o



2. FINDING ALL PARTIAL MATCHES OF A PATTERN

Let pattern and tezt be strings of length m and n, respectively. This section shows '
how to find all partial matches of tezt with the beginning of pattern in O(n) time. The
algorithm is a variation of the Knuth-Morris-Pratt pattern matching algorithm* [13].

Specifically, we can compute the following arrays:

lppattern: lppattern [1] is the length of the longest substring of pattern which begins
at position i and is a prefix of peltern (1<1 <m). This array may be com-
“puted in time O(m).
lptext Iptext[i] is the length of the longest substring of text which begins at posi-
tion and is a prefix of pattern (1<i =n). This array may be computed in

time O(n).

We begin with the computation of lppattern. The algorithm computes the array in
order of increasing subscripts, in such a way that no backtracking is done. Suppose we
have calculated lppattern[2] - - - lppattern [i~1] and now we want to find Ippattern[i].
Suppose also that we have remembered the value of & in the range 2<k <i which max-
Imizes the sum k + lppattern (k] If i <k + lppattern [k ]. then the value of
Ippattern[i—k +1] (which is already computed) gives some information on what
lppattern[i]is. The reason is this: When i is in this range, the substring
z = pattern; - - pattern, +lppattern[k] 1 1S identical to the substring
paltern; ., - - - pattern prezt [k} Hence, if ippattern[i—k +1] < |z |, then
lppattern[i] = lppattern[i—k + 1]. Onthe other hand, if lppattern[i—k +1]= |z |, then

Ip[i]is at least |z|. Algorithm 1 uses this idea to compute Ippattern.

*The variation of the KMP algorithm which we use to caleulate lppaitern was suggested by a referee. We
are grateful for this suggestion, which greatly simplifies the presentation of our algorithm in section 3.



Algorithm 1: Calculating lppattern.

Input: A string pattern of length m. It is assumed that pattern is padded with
an unmatchable character, so that an attempt to match pattern,,,, always
results in a mismatch.

Outpul: Ippaitern[Z]- - - lppattern[m], an array where ippattern[i] is the
length of the longest substring of patfern which begins at position 7 and is a
prefix of patiern.

/*First find lppattern[2]. */

je o

while (pattern ;. =pattern;,p) doj « j+1;
lppattern[ 2] « j;

ke« 2

for i « 3 tom do begin
/% caleulate lppattern(i] */

/*length is the length of pattern; - - - patterngppatternik]-1 */

length « k + lppattern [k | —1,

if (ippattern{i—k +1] < length)

then lppattern{i] « lppattern[i—k +1]

else begin
/* j is a provisional value of {ppattern[i] */
if (i>k +lppattern[k]) thenj < 0
else j « length,
while (pattern ;,, =pattern;,;) doj « j+1;
lppattern[i] « j;
k<1

end

end

The for loop of the lppattern algorithm requires at most O(m) time. This can be

- shown by analysis of the inner while loop. In each iteration of the while loop, the char-
acter pattern ;,; has not yet successfully been matched against another character of
pattern. Hence, there are at most m iterations of the while loop with a true test and

also at most m iterations with a false test.
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Once the Ippattern array has been computed, it is easy to modify algorithm 1 to

find Iptert. The required modification is shown in algorithm 2.

Algorithm 2: Calculating Iptext.

Input: A string patfern of length m and a string fext of length n. Also, the
lppattern array, computed by algorithm 1. It is assumed that patiern and fexi
have been padded with an unmatchable character, so that attempts to match
pattern,,, or texl, ., always result in a mismatch.
Output: lptext[1]: - lIptexzt[n] an array where Iptext[i] is the longest sub-
string of text which begins at position i and is a prefix of pattern.

/* First find {ptext[1]. */

jeo

while (pattern ;. =text;,,) doj « j+1;

lptext[1] « j;

k«1

fori« 2tondo begin'
/*calculate Iptext [i] */

7/*length is the length of the substring text; - - - tezty yiptezt[c]-1 */

tength « k +Iptext[k]—1;

if (lppattern|i—k+1] < length)

then Iptext[i] « lppattern|i—k+1]

else begin
/* jis a provisional value of Iptexi[i] */
if (i=k +Iptext[k]) thenj « 0
else j « length;
while (pattern ;. =text;,;) doj « j+1;
Iptext[i] « j;
ki

end

end

The Iptext algorithm is O(n) for the same reason that calculating lppdttem was O(m.).
With the precomputing of lppattern, the total time to find lptext is O(m +n) - although
in practice this will be O(n), since if m >n, then we need only compute the first n

values of lppattern.



Finally, note that the same idea used to compute Iptext can be used to calculate
the longest suflix of pattern that ends al each positioni in fext. The next section uses

longest suflix and longest prefix arrays to find repetitions.

3. DETECTING FORMATION OF REPETITION

For this section, » and v are any strings. We give an O(|uv |) algorithm to find all
the new repetitions that are formed when u is concatenated tov --i.e., those repeti-
tions in wv which begin in« and end in v. Considering that there could be Q(|uwv |?)
such repetitions, a linear algorithm is an unexpected result. The algorithm is possible
only because repetitions of equal length occur in blocks with consecutive starting posi-

tions.

The new repelitions in wwv are classified into two groups, according to where their
centers lie. A right repetition has its center at or to the right of the boundary between
w and v. Aleft repetition has its center at or to the left of this boundary. The impor-
tant observation for us is that every repetition inwwv is cilther right or left (or both).
Hence, to find all new repetitions in uv, we need only find all new right repetitions and

all new left repetitions.

The following describes a procedure newright (v ,v) which finds all new right repeti-
tions in time O(|v|). By symmetry, all the new left repetitions can be found in time
O(|w |). The procedure newright (v, v) makes use of the following information;
= Is[i](1=i=|v]) is the length of the longest suflix of w which occurs in v, ending at

position 1.

. Ipli] (R=i<]|v|[+1)is the length of the longest prefix of ¥ which occurs in v, begin-
ning at position i (lp[ |v|+1]=0).

As shown in the previous section, both these arrays can be computed in time O(|v |).



The newright procedure detects all of the new right repetitions of a fixed length at
once. In particular, it finds the positions in v at which these repetitions end. The first
observétion is that if a new right repetition of length 2n ends at position i in v, then |
n<i<2n. (If i is less than n, then it isn't a right repetition; if 1 is 2n or larger, then it
isn't a new repetition.) The following lemma tells us how to use the arrays ls and Ip to

determine which positions in this range are the ends of repetitions with length 2n.

Repetition Lemma. et n and i be integers with 1sn <{v| andn<i<2n. Thereisa

repetition of length 2n in wv ending af position i of v iff &n —1s [n]<isn+lpn+l]

Proof. Let n and i be integers in the given ranges. A repetition of length 2n in uv, that
ends at v;, must begin at % |y |-z +1+1- The beginning of its second half must be at

Vi —n+1. Thus, a necessary and sufficient condition for such a repetition to occur is that

the substring U y|—gn+i+1 " Uju|¥1 " Vi-p Matches vy ppy - Yy Equivalently:
(1) Ujyj-2n+i+l " Uy = Vien+1' " Vn, and
() vy Yi-n = Unsro v (This second condition is vacuous if i =n.)

The first condition is exactly the statement that the string vy n 41 - - v, of length
on —1 is a suffix of u, which is true iff Is[n]=2n —1i. This may be rewritten as

2n —Is[n]=<i. Similarly, the second condition reduces toi<n +lp[n+1]. ]

The repetition lemma is the basis of algorithm 3 to find all new right repetitions in

Uuv



Algorithm 3. Procedure to find all new right repetitions in string uv.
Input: Two strings w and v.
Output: The ending positions of all new right repetitions in uwv .
procedure newright (,v) begin

caleulate Is[1] - - Is[ v |]and ip[R] - ip[|v ]| +1].

for n « 1 to | do begin

/* first is the first position in v where a new right repetition may end */
first « 2n —ls[n];

/% last is the last position in v where a new right repetition may end */
last « minimum(Zn —1,n +{p[n+1]);

if (lost < first) then there are no new right repetitions of length 2n
else new right repetitions of length 2n end at Vpirst through vige
end
end.

The calculation of Is and ip requires time O(|v |), as shown in the previous section. The
for loop alse requires O(|v |), hence newright takes O(|v |) time to find all new right re-
petitions inuw. A symmetric algorithm newlefi(w,v) takes O( |u |) time to find all new

left repetitions in ww. The procedures newright and newleft can be cormbined to find all

new repetitions inuv in O{|uw |) time. In the next section, we call this linear algorithm
new(u,v), and use it to find all repetitions in a string.
4. FINDING ALL REPETITIONS IN A STRING

This section describes an algorithm to find all repetitions in a string of length n, in

time O(n log n). It uses the procedure new of the last seclion.
Let w be the string of lengthn. The repetitions inw are of these three sorts:

(1) The repetitions which end at or before the In/ 2] position of w.



() The repetitions which start after the In/2]% position of w.
(3) the repetitions which start at or before the In/ 2]* position of w, and end after it.

In algorithm 4, the procedure findreps (w) finds repetitions of the third kind with a
call to new(w, - * Wizl Why2le1* W), (Recall that new(w v) finds all repetitions
which span the border between w and v.) Repetitions of the first two sorts are found

with recursive calls findreps(w,, - - - Wy, 4) and findreps (Wh /o1y, © - 0 W

n )

Algorithm 4. Procedure to find all repetitions in a string.
Input: Any string w,
Output: The positions of all repetitions in w.

procedure findreps(w) begin
if (]w|=1)thenw is repetition-free

else begin
new (W) Whyel Whyaley ' Wy,
findreps (wl T Wy El)f
Jindreps (Wi g)4 + - - Wy

end

end.

Let T(n) be the time findreps takes on an input of length n. The function T'(n)
gives rise to the recurrence:
T(1)=d
T(n) =cn+27(n/R),
for some constants ¢ and d. The cn comes from the call to new, which takes linear
time. The 27(n/ R) arises from the two recursive calls to f’ind”reps“. The solution to this
recurrence is O(n log n) [1, theorem 2.1], hence on an input of length n, findreps

takes O(n log n) time. .
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The findreps algorithm is easily modified to find an instance of a maximal length

repetition, or to simply determine if a string in repetition-free. It can also find all re~

petitions of length %— or greater in time O(n log k).

If we know nothing about the size of the alphabet, then O{(n log n) is optimal for al-
gorithms based on comparisons of symbols. In fact, no algorithm can determine if a
string is repetition-free in less time*. To show this, consider a string w such that no two
symabols of w are equal. What information does a single comparison between two posi-
tions w; and w; provide? The only information it can provide is w; #w;. It cannot tell us
whether w; is equal to any other symbols of w, since inequality is not transitive. Hence,
the only repetitions eliminated by this comparison are those that require w; to equal
wj. If k is the absolute value of (1 —7), then there are k such repetitions, each having

length 2k.

Now, if ]w| =n, then there are n —2k + 1 possible different repetitions of length
gk, for 1=k =n/2. Hence, Lo eliminate all possible repetilions of length 2k we must
make at least (n —2k + 1)/ k comparisons. To determine that w is repetition-free re-
quires at least the following number of comparisons:

r§[32 (n-2k+1)/k

k=1

The dominating term is:

n/2
{kf: n/k} = nH,, o
=1

where H;,,z is the sum of the harmonic series ton/2. The value of H,,2is O(n log n.)

[12], hence the minimum number of comparisons required is O(n log n).

¢This optimality proof is an idea of David Benson and Karl Winklmann.
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5. CONCLUSION

Given a string w, of lengthn, the algorithm of the previous section finds all repeti-
tions in w in time O(n log n). If we know nothing about the size of the alphabet, then
this is optimal for algorithms based on comparisons of symbols. In fact, it is optimal for

any algorithm which determines if w is repetition-free.

A primary application of the algorithm is in string combinatorics research. For ex-
ample, Bean et al. [2] needed to show that a certain set of strings (each of which had
more than BOO characters) contained no repetition-containing strings. The algorithm
could also be useful in string compaction (i.e., replace a substring xz by a single copy of

x and a repeal instruction) and in DNA pattern recognition.

Several open problems remain. If we restrict the size of the alphabet, is there a
faster algorithm to determine when a string is repetition-free? In particular, for the
Arst nontrivial case, an alphabet of three characters, is there a faster recognition algo-

rithm?

A second open question involves the detection of permuted repetitions, or permuta-
tions. A permutationis a nonempty string of the form z %, where Z contains the same
characters as z, but possibly in a different order. A string which has a substring that is
a permutation is called permutation-containing. Otherwise it is permutation-free.
Evdokimov first constructed infinite permutation-free sequences using a 5-character
alphabet [6]. Pleasants reduced the alphabet size to 5 characters [17]. The question of
a 4-character alphabet is still open, although Justin has constructed permutation-free
strings of length 7500 on this alphabet [11]. How quickly can an algorithm determine
whether a string is permutation-free? How fast can all permutations be found? For both
questions, the fastest algorithm we know of is O(n?). A faster algorithm would be useful
in computer research toward constructing infinite pem1u.£ation—free sequences on 4

characters.
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