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Abstract

We describe a new package, UNCMIN for finding a local minimizer of a real
valued function of more than one variable. The novel feature of UNCMIN is that it is
a modular system of algorithms, containing three different step selection strategies
(line search, dogleg, and optimal step) that may be combined with either analytic or
finite difference gradient evaluation, and either analytic, finite difference, or BFGS
Hessian approximation. We present the results of a comparison of the three step selec-
tion strategies on the problems in More’, Garbow, and Hillstrom in two separate cases:
using finite difference gradients and Hessians, and using finite difference gradients with
BFGS Hessian approximations. We also describe a second package, REVMIN, that
uses optimization algorithms identical to UNCMIN but obtains values of user supplied

functions by reverse communication.






1. Introduction

This paper describes UNCMIN, a modular system of FORTRAN subroutines for

the solution of the unconstrained minimization problem

min f(z): R"=R. (1.1)
z€R"

They are intended for the case when f is at least twice continuously differentiable,
although the derivatives do not have to be available analytically. The algorithms may
sometimes solve problems where [ is only once continuously differentiable. No restric-
tion is made on the number of variables n, but since the algorithms store one nXn
matrix and solve a system of n linear equations in n unknowns at each iteration, they
are intended mainly for problems of small to moderate size, with n for example
between 2 and 100. UNCMIN will successfully solve problems with n=1, although

perhaps not as efficiently as algorithms intended specifically for this case.

There are a number of other FORTRAN routines available for solving the uncon-
strained minimization problem, including algorithms in the Harwell, IMSL, MIN-
PACK, and NAG libraries (see reference section), and the packages by Shanno and
Phua [1980] and Gay [1983]. This paper emphasizes the ways in which ours is distinc-
tive. Books that describe unconstrained minimization algorithms include Fletcher

[1980], Gill, Murray, and Wright [1982], and Dennis and Schnabel [1983].

The distinguishing feature of UNCMIN 1is that it is a modular system of subrou-
tines. This means that the user can build a variety of minimization algorithms with
UNCMIN, by selecting from among several options for the step selection process, and
for the evaluation or approximation of Vf and ng. The possibility of selecting among
alternative strategies for derivative evaluation, namely user-supplied analytical com-
putation, finite differences, or BFGS updates, is found in several other packages. The

provision of alternative step selection strategies that can be used interchangeably with



the remainder of the routine, namely a line search, double dogleg, and a locally con-
strained optimal step (hereafter referred to as "hookstep"), is rare; in fact we know of
no code that provides both line search and trust region alternatives., The combination
of all these options i1s believed to be unique. In our experience, these options have
proved useful to users who wish to find conveniently the best method to use on a par-
ticular class of problems. The modular structure also makes the system very useful as
a testing and research tool, because alternative strategies can be compared in a con-
trolled environment, and new approaches for various parts of the minimization algo-
rithim can be tested readily by substituting one or more new modules for the
corresponding existing modules. Section 2 discusses the modular structure of our sys-

tem in more detail.

The FORTRAN subroutines in UNCMIN correspond closely, though not always
exactly, to the pseudo-code in Appendix A of Dennis and Schnabel [1983], and were
designed initially as a companion to this book. The methods used for solving the
unconstrained minimization problem were not intended to be new, but rather a selec-
tion of the best existing algorithms. Inevitably, various original features were intro-
duced, some of which are discussed in Section 3. We also paid careful attention to
several mundane aspects of the algorithms that usually are important to users only
when they malfunction, namely stopping criteria, selection of finite difference step-
sizes, and treatment of badly scaled problems. These topics also are included in Sec-

tion 3.

We tried to pay careful attention to the user interface with our package. An
important feature is the provision of a choice between an easy-to-use calling sequence,
in which the user provides only n, f, and the initial estimate z, and all tolerances and
algorithms options are automatically selected, and a more complicated call in which

the user nonetheless needs to set only those options desired. Also provided are checl-



ing of user-supplied derivatives, and a variety of output options. These features are
discussed briefly in Section 4, and more fully in Weiss [1980] and in a forthcoming
paper. In Section 5 we discuss briefly the portability and storage requirements of the

code, as well as suggestions for adapting it to small computers.

We have also developed a reverse communication version of our code, REVMIN.
This version 1s algorithmically identical to UNCMIN; the difference is that whenever a
function or analytic derivative evaluation is required, the reverse communication ver-
sion returns to a dummy driver REVDRV inserted between the calling program and
REVMIN, evaluates the function or derivative, and then re-calls REVMIN, which
resumes the optimization algorithm at the proper place. This capability is required
whenever the evaluation of f(z) requires additional data from the calling program, and
it is inconvenient to pass this information through FORTRAN COMMON. For exam-
ple, this is the situation in the three time series codes in the National Bureau of Stan-
dards statistical library STARPAC that use REVMIN. The need for reverse communi-

cation and the conversion of UNCMIN to REVMIN is discussed in Section 8.

Finally, in section 7 we present the results of a comprehensive set of tests using
the algorithms in UNCMIN on the test problems in Moré, Garbow, and Hillstrom
[1981]. In particular, we compare the three step selection strategies, line search,
dogleg, and hookstep, in the case when V/ and VQf both are approximated by finite
differences and again when ng is approximated instead using BFGS updates. To our
knowledge, these are the first such comprehensive and controlled comparative tests of
these global strategies for unconstrained minimization to be reported. Gay [1983]

compares two different BFGS codes, one using a line search and the other a dogleg.



2. Modular Structure

The advantages of modular design to the organization, development and testing
of any large computer software system are well known. The modular organization of
UNCMIN has another important advantage that we discuss in this section. This
advantage is that we can organize the unconstrained minimization algorithm into sec-
tions that are functionally independent, such as derivative calculation, step selection,
and checking stopping criteria. We may then supply alternative modules for each of
these sections, so long as they have the same input and output parameters and per-
form the same function. We take advantage of this directly by supplying alternative
step selection and derivative calculation modules in UNCMIN. Different combinations
of these then provide the user with a variety of possible algorithms, which is advanta-
geous since no one algorithm seems to be best for all problem classes. This structure
permits a user to compare the effectiveness of the alternative strategies for particular
sections of the algorithm, and determine which 1s best suited for a particular class of
problems. In addition, an algorithm developer may develop and test a new version of
any module by substituting it for the existing module and comparing the performance

of the code using the new and old modules.

To illustrate this design, consider the basic structure of an iteration of our algo-

rithm. In very general terms, it is:

Given z, ERn, the best current estimate of the minimizer;
g, = Vf(z,) or a finite difference approximation to it;

H= sz(zc) or a finite difference or BFGS approximation to it:

—1 . . . ..
1. Calculate the Newton step p = —H ¢, or a variation if H is not positive
definite.

2. Using p, determine the next iterate z,. ("Step selection strategy”)



3. Evaluate g, = Vf(z,) or an approximation to it.
4. Decide whether to stop. If not:

2 . . .
5. Evaluate H = V f(z_) or an approximation to it.

6. Set z, =z, g, -~ g, and return to step 1.

In UNCMIN, these steps are carried out by the modules listed in Figure 2.1.

There are eighteen possible algorithmic combinations that a user may select: the
cross product of any one of the three step selection strategies (line search, dogleg, or
hookstep) with any one of the two gradient calculation methods (analytic or finite
difference) and with any one of the three Hessian calculation methods (analytic or
finite difference or BFGS update). Some of the other choices shown in Fig. 2.1 are con-
trolled wholly by the software. When using finite difference gradients, the routine
starts using forward difference approximations, and switches to central differences only
if forward differences seem to have become too inaccurate at some iteration because
very small steps are being taken in an uphill direction. When finite difference Hessian
approximation is requested, the approximation is made from analytic gradients if they
are available, from function values otherwise. When BFGS approximations to the Hes-
sian are used, the factored form of the update (see e.g. Goldfarb [1976]) is used if the
step selection strategy is the line search or dogleg; this causes each iteration to require
only O(ng) operations. The factored form does not interface well with the hookstep

strategy, so an unfactored update is used with this step selection method.

Of the eighteen user-controlled algorithmic possibilities, three probably are
unrealistic, the combinations involving analytic Hessians and finite difference gra-
dients. Any of the other fifteen combinations might be used in practice. The default
choice (see Section 5) is the line search with finite difference gradients and BFGS

approximation to the Hessian, but our users have used many other combinations. A
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computational comparison of the three step selection strategies is given in Section 7.

The modular structure of UNCMIN also has been helpful in our development and
testing of new strategies for uncounstrained minimization, because we can often form
the desired new algorithm by replacing just one module in UNCMIN. Then we can
compare the performance of the two codes which are identical in all other respects.
We have used the modular system to test new secant updates (replacing the BFGS
module in step 5), to test new step selection strategies (inserting a new option in step
2), and to test strategies for handling indefinite Hessians (replacing the first part of
step 1). Using modular replacement also significantly decreases the time required to

construct test codes.

Another advantage of our modular design is that several of the modules can also
be used in a similar system of algorithms for solving simultaneous systems of nonlinear
equations. Most importantly, all the step selection algorithms of step 2 can be used
without change. This would significantly reduce the time to construct additional
software for solving systems of nonlinear equations. The pseudo-code in the appendix
of Dennis and Schnabel [1983], which is intended for both unconstrained minimization

and nonlinear equations, also shares modules in this fashion.

Figure 2.1 does not list all the modules in UNCMIN; in particular, modules
involved in the initialization phase of the algorithm and several service modules have
been omitted. UNCMIN contains a total of 38 subroutines; a pared down version is

described in Section 4.



3. Interesting Algorithmic Features

The methods implemented in UNCMIN are described in detail in Dennis and
Schnabel [1983]. Our intention in this book was to collect the best existing algorithms
rather than to propose new ones. Inevitably, some new features were introduced. In
this section, we mention briefly the algorithms available in UNCMIN, and some of our
innovations. We assume that the reader of this section is familiar with modern algo-
rithms for unconstrained minimization; some comprehensive references are Fletcher

[1980], Gill, Murray, and Wright [1981], and Dennis and Schnabel [1983].

Three step selection strategies, a line search, a dogleg, and a hookstep (locally
constrained optimal step), are used. The line search is a backtracking line search
using safeguarded quadratic interpolation for the first backtrack and safeguarded
cubic interpolation for any subsequent backtracks at each iteration. It terminates
when the condition

Je,) = f(z) + 107 V(2)" (2, = 1) (3.1)

is satisfied for the first time. A second common line search condition

Vi(ey) (2, = 2)2 B V() (z, = 1,), BE(107"1) (3.2)
is not enforced explicitly by the code. Our practical experience is that (3.2) is virtually
always satisfied by the first step to satisfy (3.1), and that when it is not, continuing
the line search to enforce (3.2) (with, say, B = 0.9) makes virtually no difference in the
ultimate efficiency of the algorithm. Also, our line search algorithm is globally conver-
gent without requiring (3.2) due to the safeguards in the backtracking strategy (see

Shultz, Schnabel, and Byrd [1985]), except in the BFGS case where no general global

convergence result for a line search algorithm exists.

The dogleg strategy implemented is the double dogleg of Dennis and Mei [1979].
The hookstep algorithm is a minor modification of the Levenberg-Marquardt algorithm

of Moré [1978] for nonlinear least squares. Both the dogleg and the hookstep



algorithms can assume that the model Hessian matrix is positive definite for reasons
indicated below. The trust region updating strategy is fairly closely related to Moré’s,
and is documented in Dennis and Schnabel [1983]. Both trust region algorithms satisfy

the conditions of Shultz, Schnabel, and Byrd [1985] for global convergence.

The formulas for finite difference derivative approximations are the standard
ones. Stepsizes are calculated automatically according to the following rules. For for-
ward difference approximations to the gradient (or Hessian approximation using ana-
lytic gradients), the stepsize used to perturb the z'th component z; of the current vector
z, 18
~ NDIGITS/2

h; = sign(z;)* 10

L]

max{|z|, typz;} (3.3)
where NDIGITS is the number of accurate digits in the objective function f(z) and

typz, 1s a typical magnitude of the ith component of z. If the user does not supply
values for NDIGITS and typs,, the default values NDIGITS = —log,(mackeps) --
corresponding to full accuracy in f(z) -- and typz, = 1 are used. For justification of
(3.3), see for example Dennis and Schnabel [1983]. For central difference approximation
of the gradient, or for Hessian approximation from function values, the stepsize is (3.3)
with NDIGITS/2 replaced by NDIGITS/3. In our experience, these stepsizes are quite
satisfactory unless the user assumes the default value for NDIGITS when in fact far
fewer digits of f(z) are accurate. In this case, entirely inaccurate derivative approxi-
mations may result. If the user does not know the approximate value of NDIGITS, it
may be estimated easily and accurately by the routine of Hamming [1971] given in
Gill, Murray, and Wright [1981].

When finite difference gradient approximation is selected, our software starts with
forward difference approximation, and switches to central differences if at some itera-
tion the steplength or trust region becomes so small that llz, ~ 2 Il is within the stop-

ping tolerance, even though f(z,) does not satisfy (3.1). In this case, the iteration is
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restarted using a central difference gradient, and central difference gradients are used
thereafter. In our experience, this switch is invoked occasionally at the final iterations
of the algorithm, especially if the stopping tolerance for the gradient is so stringent

that it cannot be satisfied using forward difference gradient approximations.

When BFGS Hessian approximations are requested, the initial approximant is a
scaled version of the identity matrix. (Scaling is discussed shortly.) All the approxi-
mants are positive definite; in the rare case that

(2, — xc)T (Vi(z,)—V[(z,)) = (machine epsilon)y2 Hz, =z - UVfi(z )=V f(z )N
the update at that iteration is skipped. The possibility of skipping (or modifying)
updates is necessary because in a trust region BFGS code there is no guarantee that a
positive definite secant update will exist. (In spite of this potential drawback, the test
results of Section 7 seem to indicate that a trust region BFGS code is a useful addition
to a suite of unconstrained optimization algorithms.} In addition, the omission of con-
dition {3.2) can cause our line search BFGS code not to update the Hessian. While this
could cause our line search BFGS algorithm to reduce to steepest descent for several
iterations when started in an indefinite region, in our experience the skipping of
updates is a rare occurrence that has not caused difficulties on test or real-world prob-

lems.

A difficult problem in unconstrained minimization is what to do when analytic or
finite difference Hessians are used and the current value, say H, is not positive definite
at some iteration. Various strategies have been proposed, see for example Gill and
Murray [1974], Gay [1981], Sorensen [1982], Moré and Sorensen [1983], and Shultz,
Schnabel, and Byrd [1985]. Many of these were introduced after we developed our
code. In both our line search and trust region algorithms, therefore, we use a fairly
simple approach related to the approaches of Gill and Murray [1974] (see also Gill,

Murray, and Wright [1981], p.111) and to the hookstep algorithm. A Cholesky factori-
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zation of H is attempted; it results in the factorization
L' =H+D
where D is a non-negative diagonal matrix that is zero if H is positive definite. The
factorization algorithm is similar to Gill, Murray, and Wright’s. Then, if D#0, the
Cholesky factorization of
H = H + min{sdd, 1D }* T

is calculated, where sdd is that smallest positive number such that H+ sdd*f is
"safely" positive definite. Then /T replaces H for the remainder of the line search or
trust regioﬂ iteration. This approach is more expensive than Gill and Murray’s, but it
is well justified by its relation to the optimal step approach, and it assures global con-
vergence. It 1s possible that subsequently developed strategies which deal more directly
with indefinite Hessians, such as those in Moré and Sorensen [1983] and Shultz, Schna-

bel, and Byrd [1985], will perform better in the presence of indefiniteness.

We paid careful attention to two mundane but important aspects of minimization
algorithms, scaling and stopping criteria. The software package 1s coded so that if the
user inputs the typical magnitude typz; of each component of z, the performance of
the package is then equivalent to what would result from redefining the independent
variable in the user’s fuuction with

Viypz,

Tsealed =

Viypz,
and running the package without scaling. The default value for each typz, is 1. In our
experience, users can usually supply appropriate values for typz,, and most badly
scaled problems can be solved successfully using this approach. Strategies in which
the code estimates typz at each iteration are still not well established, but such a stra-
tegy could be incorporated into UNCMIN merely by adding a rescaling module called

once at the start of each iteration.
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There are five stopping criteria in UNCMIN: 1) Vf(z }=0; 2} z,=z; 3) the
package could not satisfy (3.1) at the last iteration; 4) iteration limit exceeded; and 5)
divergence suspected (f(z) unbounded below or f(z} approaches a finite value asymp-
totically from above). We attempted to make the first two tests as scale independent
as possible; see Dennis and Schnabel [1983] for details. In our experience, when the
code stops due to Vf(z, )=0, it is almost always near a local minimizer. When it stops
because 7, = z_ it is usually near a solution; however this tolerance should be set quite
small since these algorithms sometimes take very small steps while still far from the
solution. When the algorithm stops because the last iteration could not satisfy (3.1), it
is sometimes near a solution and unable to achieve additional accuracy due to finite
precision effects; this occurs most often when finite difference gradients are used, and
the accuracy requested is too high. Divergence is tested by imposing a very large max-
imum step size; if five consecutive steps are at least 99% of this size, divergence is

suspected.

4. User Oriented Features

We have attempted to make UNCMIN helpful and easy to use. This section
discusses three features of UNCMIN included for this reason : alternative calls to
UNCMIN, automatic checking of user-supplied analytic derivatives, and various levels

of printed output.

UNCMIN may be called either with a very simple calling sequence, or with a more
complex sequence in which the user still chooses the amount of information supplied
and relies upon defaults for the remaining variables. The simple calling sequence is

CALL OPTIFO (NE, N, X, FCN, XPLS, FPLS, GPLS, ITRMCD, A, WRK).
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The user supplies the problem dimension N, the matrix and vector work arrays A and
WRK, the row dimension NR of A, the starting value X, and the objective function
FCN. (The other four parameters are output parameters discussed below.) OPTIFO
then calls the subroutine DFAULT to assign default values to all algorithmic option
parameters (method of derivative approximation and step selection strategy), stopping
tolerances, scaling information, level of output, and several miscellanecus tolerances.
Using these defaults it calls subroutine OPTIF9 which does the minimization. To
obtain control of any or all of these parameters, the user instead writes a driver\that
first calls DFAULT to set all input parameters to their default values, then changes
only those parameters for which non-default values are desired, and finally calls
OPTIF9, using the calling sequence
CALL OTPIF9 (NR, N, X, FON, DIFCN, D2FCN, TYPX, TYPF, METHOD ,
IEXP, MSG, NDIGIT, [T.NL]M, IAGFLG, [AHFLG, IPR, DLT,
GRADTL, STEPMX, STEPTL, XPLS, FPLS, GPLS, ITRMCD, A,
WRK).
This allows the user to be concerned with only the minimum number of parameters

necessary. For further details, see Weiss [1980].

Automatic checking of derivatives is provided because in our experience,
incorrectly coded derivatives are a common cause of failure of optimization routines:
When an analytic gradient or Hessian is supplied, UNCMIN automatically compares
its value at the starting point to a finite difference approximation. If any component
of an analytic derivative differs by more than 1% from the corresponding finite
difference component (with safeguarding for near-zero values), UNCMIN returns with
an error termination code. The user may cause derivative checking to be skipped by

supplying an appropriate input parameter value.
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The package returns a termination code ITRMCD, its best approximation to the
minimizer XPLS, and the function and gradient values FPLS and GPLS at XPLS.
The default level of printed output consists of reporting the input parameters, a cause
of termination message, and parameter, function and gradient values at the initiai and
final iterations. By varying the input parameter MSG, the user may suppress printed
output entirely, or may cause the results after each intermediate iteration to be
printed. Even more detailed output useful mainly for algorithm development and test-

ing may be obtained by activating output statements that are imbedded as comments

in the code. For more details, see Weiss [1980].

5. Computer Environment Considerations

This section discusses the language, storage and floating point environment

requirements of UNCMIN.

The entire package is coded in ANSI 1966 standard FORTRAN, and elicits only
one objection from the PFORT verifier (Ryder [1974]). In the subroutine FSTOFD, a
formal parameter which is an n X m matrix is allowed to correspond in some calls to an
actual parameter which is an n-vector. This allows FSTOFD to be used in calculating
both finite difference gradients and Hessians. The exception is acceptable to virtually
all FORTRAN compilers and the violation was made deliberately on this basis. The
package also is acceptable to at least some FORTRAN 77 compilers, though it is not

standard due to the use of Hollerith constants.

The real variables in UNCMIN are all single precision, suitable for the equipment
of vendors like Cray or CDC whose single precision numbers have 14 or more base 10

places. However the single precision values of IBM or DEC machines, roughly 7 base
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10 places, sometimes are insufficient for unconstrained optimization problems. A dou-
ble precision version of UNCMIN will be available for such machines. The only
machine dependent constants used by the code are functions of the machine epsilon,
which is calculated by the code to be the smallest power of 2, 2 , for which

k
1+2 >1

The code contains approximately 3200 lines, 55% of which are comments. On
some small machines, the object code produced is too long and it 1s preferable to load
only those modules which are being used. For example, a subset consisting of only the
modules required for the default algorithmic options (finite difference gradients, secant
Hessian approximations, line search) has only 2200 lines. We have found that our

users easily counstruct such pared down versions from our package.

The code requires that the user supply one matrix of size at least nX n and 9 vec-
tors of size at least n for work space, where n is the problem dimension. The matrix
and one of the vectors are used to store one nXn symmetric matrix and one nXn
lower triangular matrix. It would be possible to implement a few of the methods avail-
able in the package using only n’ 12+ O(n) storage, but we have not done this since it

is incompatible with the modular structure of our code.

8. Reverse Communication

The term reverse communication has been used by several authors (Krogh [1969];
Gill, Murray, Picken, and Wright [1979]; Gay [1980, 1983]; Moré [1980, 1982]; Dennis,
Gay, and Welsch [1981]) to describe a program structure in which control is returned
to the top level of the package or to the calling program on every occasion that a new

function value is required. This capability was required to perform unconstrained
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minimizations within several time series codes in the National Bureau of Standard’s
STARPAC library. For this reason, we produced a reverse communication version of

UNCMIN calied REVMIN.

The concept and use of reverse communication are quite old. Two early uses of
which we are aware were in Subroutine VDO1 of the Harwell Subroutine Library (see
references), written in 1964 by M. J. D. Powell to minimize a nonlinear function of one
variable, and in a contour plotting subroutine written in 1965 by C. Lawson, N. Block,
and R. Garrett [1965] at Jet Propulsion Laboratory. Little has been written about the
reverse comimunication process, however, especially about the transformation of a
non-reverse communication package into a reverse communication package. There-
fore, this section discusses in some detail the need for REVMIN and the transforma-

tion of UNCMIN intc REVMIN.

In simplified terms, the time series applications have the following form. The user
calls a time series modeling routine, say TIME, passing into TIME a large amount of
data, say TDATA (see Fig. 6.1}. One task the time series package then performs is to
set up and solve a maximum likelihood probiem of the form

min TIMEFN (z, TDATA)

2€R"

where TIMEFN is a function that it constructs. The difficulty this presents to UNC-
MIN or any standard minimization routine is that TDATA must be available to
TIMEFN at each place where TIMEFN is called within UNCMIN. One way to accom-
plish this is to pass TDATA through UNCMIN to each subroutine that contains a call
to the objective function, by adding the parameter TDATA to each subroutine argu-
ment list along the path to each such calling routine. This is undesirable since it
would require a separate source and object code version of UNCMIN each time
TDATA changed form. (We had three different time series applications, each with a

different version of TDATA consisting of several large vectors and matrices.)
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A second solution is to pass TDATA directly from TIME to TIMEFN via a
labeled COMMON block. However since TDATA is a parameter to TIME, it cannot
be defined by TIME to lie in COMMON and would need to be copied into a work array
in COMMON instead. Since TDATA typically contains vectors with several thousand

data values in our applications, this doubling of storage is undesirable.

A third solution is to have the user’s program, which constructs TDATA, pass it
to both TIME and TIMEFN via labeled COMMON. This avoids the need to copy
TDATA and no extra storage is used. A disadvantage of this solution is that many
FORTRAN software packages try to avoid passing arguments through COMMON
because of potential for name conflicts between COMMONSs. In addition, the fact that
COMMON blocks may not contain dynamically dimensioned arrays severely limits the

applicability of this solution.

The reverse communication solution ié indicated in Figure 6.2. Each time a sub-
routine in UNCMIN needs a value of a TIMEFN (or an analytic derivative, if supplied
by the user) the package records its state, returns up through UNCMIN fo a dummy
driver, REVDRV, between UNCMIN and TIME, calls TIMEFN using TDATA (which
has been passed as a parameter to REVDRV]), and returns with the function value
down to the point in UNCMIN that requested it. To accomplish this, UNCMIN is con-
verted by the process described below into a reverse communication package REVMIN
that implements the identical optimization algorithm but obtains values of user-
supplied functions by reverse communication. If TDATA changes form, the only
changes required to REVDRYV are to change its formal parameter list, its declaration of
TDATA, and its call to TIMEFN; REVMIN is unaffected by the form of TDATA. We
emphasize that the normal and reverse communication versions of a numerical algo-
rithm perform identical calculations, and differ only in the method of obtaining values

of user-supplied functions.
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To accomplish the bubbling up and down through the package (the wiggly arrows
in Fig. 6.2), a RETURN statement is inserted in place of each call to a user-supplied
function, say the one in SUB2 in Fig. 6.1. In addition, a local variable (say SPOT) is
added to SUB2 to identify the location in SUB2 of a request for a function value; it
will be used to direct the flow of control to this statement at the end of the bubbling
down phase. Also, one new parameter (say REVPAR) is added to SUB2 to indicate to
the level above whether this is a normal return (REVPAR = 0) or a return to obtain a
function value (REVPAR > 0); if REVPAR is positive, its value indicates tob
REVDRV whether the function, gradient, or Hessian should be evaluated. Finally, the
preservation of the values of all local variables in SUB2 is ensured by placing them in a
labeled COMMON block that is shared with REVDRV. (In FORTRAN 77 this can be
accomplished by means of the SAVE statement instead.} While this may seem to con-
tradict the avoidance of COMMON mentioned above, the difference is that the user
does not use COMMON. (Another solution is to pass all the local variables to
REVDRYV through the parameter lists.) Then all subroutines and subroutine calls on
the path from REVDRV down to SUB2, in our example only SUBI1, are modified simi-
larly. The statement "IF (REVPAR .GT. 0) RETURN" is inserted following each sub-
routine call leading down the path, and the local variable SPOT is used to identify
this subroutine call, to which SUB1 will return control on the way back down. In
addition, all the local variables in SUB1 are saved, and REVPAR is added to the

parameter list so that it may be passed on up.

In this manner, the flow of control is returned to REVDRV. Here, REVPAR is
used by REVDRV to select the user-supplied function to evaluate, with the proper
parameters. After the function call, REVDRV calls REVMIN, which must return with
the function value to the statement in SUB2 following the point where the function
evaluation was requested. This is accomplished by a GO TO statement conditional on

the values of the parameter REVPAR and the local variable SPOT which 1s placed at
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the beginning of each subroutine on the wiggly path between REVDRV and SUB2. If
REVPAR > 0, meaning that the bubbling down phase of reverse communication is in
process, a computed GO TO, based on the value of SPOT, takes each subroutine
between REVDRV and SUB2 immediately to the subroutine call that will send it to
the next subroutine down along the wiggly path. A similar statement in SUBZ sends it
to the statement following the point where the function invocation occurred. If
REVPAR = 0, meaning reverse communication is not in process, the subroutine starts
with its original first statement. (The details of passing the normal function argu-

ments up and the function value down have been omitted here.)

The transformation from a normal system of subroutines to a reverse communica-
tion version may be accomplished manually; it 1s facilitated by using a tool such as
DAVE (Osterweil and Fosdick [1976]) to identify all the paths in the system to calls of
user-supplied functions. We believe it would also be possible to accomplish the
transformation by an automatic source to source transformation tool. A problem that
must be recognized, however, is the complications that can arise due to the aliasing of
function names when they are passed as parameters. This creates the problem that in
a statement like CALL FN (...) in SUB2 in Fig. 6.1, FN may refer to any one of the
user-supplied functions whose names were input by the user, depending perhaps on the
execution path taken to reach SUB2. For example, this occurs in UNCMIN where the
first order forward difference routine FSTOFD includes the input parameter FON and
several calls of ¥ON. Here F'ON may be the name of either the user-supplied objective
function or the user-supplied gradient function, depending, respectively, on whether
FSTOFD was called by the driver to compute a gradient or by the Hessian approxima-
tion algorithm to compute a Hessian. In a case like this, the transformation of UNC-
MIN into REVMIN must arrange for each function parameter to be replaced by an
integer parameter identifying the function. Additional complications arise from the

need to ensure that all arguments to which the optimizer might apply each function
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are accessible in REVDRV. Furthermore, each distinct set of arguments to which a
reverse communication function may be applied represents a distinct call required in
REVDRV. Thus, the three subroutine parameters passed to UNCMIN (the function
FCN, gradient D1FCN, and Hessian D2FCN) are replaced by seven distinct calls in
REVMIN, since the function is evaluated on two different sets of arguments, the gra-

dient on four, and the Hessian on one.

There also are minor technical problems in the transformation to a reverse com-
munication system. If the function call is inside a DO loop (this is common, for exam-
ple in finite difference routines}, the loop must be rewritten in the primitive way since
most versions of FORTRAN do not permit re-entry into the body of the loop. Analo-
gous problems may occur with other control structures, for example a call embedded in

a logical IF statement.

The additional costs of using a reverse communication version of a system of
numerical algorithms are a small amount of additional storage, a fairly small increase
in the size of the source and object code (in our case, the number of non-comment
source lines increased 15%, from 1670 to 1917}, and some addition to the cost of exe-
cuting the algorithm. Using the rough timing data available on our CYBER 170/750,
the increase in CPU time when running the same test problems using UNCMIN and
REVMIN averaged between 25% and 50% for problems where the function is inexpen-
sive to evaluate, although occasionally the change was outside this range. The addi-
tional cost was at the higher end of this range when both the gradient and Hessian
were approximated by finite differences, since this requires many function calls. It was
at the lower end when only the gradient was approximated by finite differences ana the
Hessian by secant updates, and would have been lower yet if analytic gradients had
been supplied. Our test problems had dimension between 2 and 20; when using finite

difference gradients, the additional cost of reverse communication increases with the
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dimension of the problem. Of course, if the objective function is at all expensive to
evaluate, as it is in many real-world problems such as our time series example, the

additional execution cost due to reverse communication quickly becomes negligible.

Finally, we mention that the module capability that has been proposed as a part
of FORTRAN 8X (see Wagener [1984]) may eliminate the need for reverse communica-
tion. This is because modules would allow the easy and convenient specification and
use of global data. In our example, TDATA would be defined in a global data module,
and TIMEFN would contain the statement USE /TDATA/. Then the non-reverse

communication version of the optimizer (Fig. 6.1) would suffice.

7. Comparative Testing

The provision of alternative modules for derivative evaluation and step selection
in UNCMIN aflords an excellent controlled environment for comparative testing. In
this section, we summarize the results of three comparative tests we conducted using

UNCMIN with the test problems from Moré, Garbow, and Hillstrom [1981].

The first test compared the performance of our algorithms using anaiyﬁic‘gra-
dients and Hessians to the performance of the same algorithms using finite difference
gradients and Hessians, on a small number of test problems. Table 7.1 shows that in
almost all cases, there is very little or no difference in the number of iterations or func-
tion evaluations required by a particular method on a particular problem (if the extra
function evaluations used in the finite difference approximations are excluded). This is
true whether the step selection strategy is the line search, dogleg, or hookstep. Occa-
sionally there is a substantial difference; ordinarily this is due to the sensitivity of the

test problems to small changes in the sequence of iterates. In two cases a larger
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difference occurred because the finite difference method switched to central difference
gradients. (The code switches to central difference gradients when it detects that a
step using a forward difference gradient is in an uphill direction. This decision usually
only occurs after 10 to 20 backtracks and evaluations of f(z) at omne iteration have
failed to decrease the current function value, thus causing large differences in Table

7.1.)

In our experience, the results of Table 7.1 are fairly typical; as long as the gra-
dient stopping tolerance is within the accuracy obtainable using finite differences gra-
dients, a routine will usually perform about the same using analytic or finite difference
derivatives. For this reason and because it is more indicative of how minimization
routines are used in practice, we used finite differences rather than analytic derivatives
in the subsequent tests. On rare occasions, we noticed that our results were impaired

because the automatic stepsizes provided by rules like (3.3) were unsatisfactory.

The other two tests compared the three step selection strategies, line search,
dogleg, and lLookstep, in an otherwise identical algorithm. The first test compared
these strategies when using finite difference gradients and Hessians, while the second
compared the same three strategies when using finite difference gradients and secant
(BFGS) approximations to the Hessian. In both cases, the test problem set was most

of the problems in Moré, Garbow, and Hillstrom [1981].

We present only a brief simple summary of our test results in this paper. The
reason for this is that we conclude from our tests that, while the number of iterations,
function, and derivative evaluations required by the line search, dogleg, or hookstep
methods to solve a particular problem using the same derivative information may
differ significantly, the behavior of the three step selection strategies averaged over all
the test functions is very close. This is true whether comparing the three strategies

using finite difference Hessians, or using secant approximation Hessians. Furthermore,
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each method is best, and each is worst, on some problems. A more comprehensive
reporting of our test results would merely reinforce this conclusion. Such a report can
be found in Weiss [1980]; these test results are from an earlier version of our code and

differ occasionally, but not significantly, from our final results.

Table 7.2 summarizes the comparison between line search, dogleg, and hookstep
when using finite difference gradients and Hessians. It compares the number of func-
tions evaluations required by each method to solve each test problem, including the
function evaluations required for the finite difference derivatives. (This statistic is
sometimes called "equivalent function evaluations".) If we compared instead the
number of iterations required, or separated derivative evaluations from function
evaluations, the results would appear very similar. (We comment on run times
separately below.) For each test problem, we assign a "1" to the method requiring the
smallest number of function evaluations (call this number probmin}; to the other two
methods we assign the number of function evaluations they required divided by prob-
min. If a method failed to solve the problem in 500 iterations or gave up, an I' (for
failure) is recorded. The final column contains probmin. For example, if the line
search, dogleg, and hookstep require 11, 10, and 12 function evaluations respectively,
the row of numbers would be 1.1, 1, 1.2, 10. The last column allows the table to show
absolute as well as relative data. The bottom three lines of Table 7.2 contain the
mean, variance, and standard deviation of the first three columns. Our method of
reporting results obscures the fact that occasionally one method finds the solution
more accurately than another, due to the variety of stopping conditions. Such
differences were rare and would not affect our conclusions; moreover, the difference in
final values of f(2) in such cases were never more than one order of magnitude, which

is small since the optimal objective function value is zero for all test problems.
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The main conclusion ’we draw from Table 7.2 was stated above: there is very little
~overall difference between the three step selection strategies. Each method solved
most but not all of the test problems; the difference in the number of failures probably
1s insignificant. The standard deviations of the three columns suggest that the
differences between the three means are statistically insignificant. Indeed, different

implementations of the three strategies might lead to a different ordering of the means.

Table 7.3 summarizes in identical fashion the comparison between line seérch,
dogleg, and hookstep using finite difference gradients and secant (BFGS) Hessian
approximations. The bottom lines again indicate no significant difference between the
three approaches. It may be significant that the line search method had no failures in
this case while the other two methods had several. There were several cases when one
method required more than the minimum number of function evaluations but got a
significantly more accurate answer {more than two orders of magnitude difference in
the final f(z) -- recall that the minimum objective function value is zero in all cases);
in these cases, this method also is given a score of 1 in Table 7.3, with the actual rat-

ing given in parentheses.

The set of test problems in Tables 7.2 and 7.3 is very similar to the set used by
Gay [1983]. We attempted to run each minimization problem in Moré, Garbow, and
Hillstrom [1981] from the standard starting point z,, from 10 z, and from 100 z,. In
some cases the latter runs are omitted. Most often this is because the function
overflowed at the starting point and occasionally because the problem was too expen-
sive to run or because no method could solve it. On some problems, erroneous finite
difference derivative calculations cause all our methods to fail; an example is Brown’s
badly scaled function, where the scales of the starting and optimal points differ by six
orders of magnitude. While the Moré, Garbow, and Hillstrom test set is widely used in

‘unconstrained optimization, it should be noted that all its test problems are zero resi-
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dual nonlinear least squares problems, i.e. the objective function is a sum of squares
and the minimum function value is zero. It is possible, therefore, that our conclusions

would differ 1t a test set with different structural characteristics were used.

Tables 7.2 and 7.3 do not indicate the CPU times required by the various
methods. This information is reported in Weiss [1980] and was accumulated for our
final tests as well. For the lower dimensional test problems, these times give a rough
indication of the overhead cost per iteration of each method. For the larger problems,
the times become dominated by the evaluations of the test function, since due to our

use of finite differences there are many function evaluations.

As might be expected, in general the line search method requires less time per
iteration than the dogleg, and the dogleg less than the hookstep. The differences, how-
ever, are not very large. The dogleg occasionally takes as much as 20-25% more time
per iteration than the line search, but usually the differenice is 10% or less. The
discrepancy probably is mainly due to the modular structure that causes the dogleg to
require more subroutine calls per iteration than the line search. The hookstep typi-
cally requires 20-30% more time per iteration than the line search. An additional cost
in the hookstep is the extra matrix factorizations that are sometimes required. On
most practical problems we have helped to solve, the objective function was
sufficiently expensive to evaluate that these differences in algorithmic overhead were

incidental.

The stopping tolerances used in the tests reported in Tables 7.2 and 7.3 are not
overly stringent. All the successful runs in Tables 7.2 and 7.3 stop because they

satisfy either

max
1=i=n

{ (Vf(2, )] * max{|(z,),], typa,}

} = gradiol (7.1)
max{|f(z, )], typf}

or



max

1=1=n

(z,),=(=.),]
{ } < steptl, (7.2)
max{|(z,),|, typz}

where the scaling parameters typz, and typf have the default value 1 in all cases. The
stopping tolerance values were gradtol = 10"° and sieptol = 1()&10, which are typical
of the tolerances we see used in practice. Gay [1983] in his tests used much tighter
tolerances. We also ran the problems in Tables 7.2 and 7.3 with gradtol = 10 "
Sinc.e we are using finite difference gradients, this tolerance often is near the limit of
the attainable accuracy, and significantly more iterations often were required. The
only noticeable difference in the comparative results, however, is that the performance
of the hookstep often deteriorated more than the performance of the other two
methods. This performance indicates that the methods were not (all) taking Newton
steps in their final iterations, due presumably to the inaccuracy in the finite difference

gradient; we coujecture that the hookstep method deteriorated most because it makes

the most use of the (inaccurate) gradient.

Finally, 1t is interesting to compare the finite difference Hessian method with the
secant approximation method when the same step selection strategy is utilized. In 78
of 102 cases (34 problems with 3 step selection strategies each}, the finite difference
Hessian method required fewer iterations than the secant method. This confirms the
conventional wisdom that second derivative methods are usually, but not always, less
expensive than secant methods if function evaluation is sufficiently inexpensive that
algorithmic overhead is the overriding cost. On the other hand, the secant method
required fewer total function evaluations (including the function evaluations used by
finite differences) in all but 16 of the 102 cases. The 16 include all 9 runs of the
Brown-Dennis problem and only 7 other cases. This again confirms the conventional
wisdom that secant methods usually are more efficient than finite difference Hessian
methods on problems where function evaluation is expensive and analytic Hesslans are

not available.
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Table 7.1 -- Comparison between performance of algorithms using
analytic vs. finite difference derivatives

Function

Rosen-

brock

Powell

Wood

*

Method of derivative
evaluations

Analytic gradient and Hessian
Finite diff. gradient and Hessian

BFGS, analytic gradient

BFGS, finite diff. gradient
Analytic gradient and Hessian
Finite diff. gradient and Hessian
BFGS, analytic gradient

BFGS. finite diff. gradient
Analytic gradient and Hessian

Finite diff. gradient and Hessian

BFGS, analytic gradient
BFGS, finite diff. gradient

switched to central difference gradients

Iterations / Function evaluations by

Line Search

24 / 33
23 / 30

23 / 30
23 / 30

Dogleg

21/ 25
91 / 25

44 [ 64
43 / 60

Hookstep

22 /27
21 / 25

40 / 60
41 / 63
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Table 7.2 -- Comparative test results using finite difference
gradients and Hessians

Function n Starting Multiple of minimum Minimum
point function evaluations function
evaluations
Line Search Dogleg Hookstep
Beale 2 z, 1 1.28 1.40 60
10z, F 1 F 222
Helical 3 z, 1.44 1 1.2 135
valley 10z, 1.48 1.45 1 187
100:1:0 1 1.02 1 186
Gaussian 3 z, 1 1.06 1 17
Box 3D 3 z, 1.64 F 1 192
Wood 4 z, 1.55 1 1.17 711
10z, 1.34 1 1.08 864
100z, 1 1.10 1.06 888
Brown - 4 z, 1 1.14 1.01 138
Dennis 10z, 1 1.08 1.08 252
100z, 1 1 1 366
Biggs Exp 6 x, F F F 17008
Watson 9 , F F 1 2384
Extended 10 z, 1.10 1 1 1610
Rosen- 10z, 1.49 1 1.09 3671
brock 100z, F 1.26 1 11672
Extend 8 z, 1 1 1 804
Powell 10z, 1 1 1 1069
Singular 100z, 1 1 1 1387
Penalty [ 10 z, 1.24 1.63 1 2294
10z, 1.16 1 1 2901
100z, 1.12 1 1.02 3280
Penalty II 10 z, 1.15 1 1.08 6708
10z, 1.10 1 1.05 7166
100z, 1.11 1 1.06 7623
Variable 10 z, 1 1 1 1151
Dimension 10z, 1 1 1 1379
100z, 1.08 1.04 1 1918
Trigono- 10 z, 1 1.88 1 695
metric 10z, 1.20 1 1.20 1880
100z, F 1.20 1 1075
Chebyquad 9 z, 1.06 1.06 1 2252
Failures 5 3 2
Successes 29 31 32
Mean of successes 1.147 1.103 1.047
Variance of successes 0.0368 0.0411 0.00738
Standard deviation of 0.195 0.206 0.0873
successes




Table 7.3 -- Comparative test results using finite difference
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gradients and BFGS Hessian approximations

Function 0 Starting Multiple of minimum Minimum
point function evaluations function
evaluations
Line Search Dogleg Hookstep
Beale 2 z, 1.04 1 1.02 51
10z, 1.10 1 1.10 136
Helical 3 %, 1(1.11) 1.04 1 117
valley 10z, 1.01 1 1.05 126
100z, 1 1.09 1.13 123
Gaussian 3 z, 1.20 1 1.45 20
Box 3D 3 z, 1.25 1 1.11 118
Wood 4 T, 1 1.34 1.85 172
10z, i 1(1.52) 1.43 302
100z, 1.16 1.09 1 511
Brown - 4 z, 1 1.03 1.03 169
Dennis 10z, 1 1.01 1.01 308
100z, 1 1 1 458
Biggs Exp 6 7, 1 1.14 1.07 309
Watson 9 N 1.08 1.01 1 1302
Extended 10 z, 1{1.30) 1.01 1 495
Rosen- 10z, 1(1.65) 1.34 1 680
brock 100z, 1(1.33) 1 1.16 1746
Extend 8 z, 1.22 1(1.08) 1 384
Powell 10z, 1(1.37) 1.01 1 828
Singular 100z, 1.01 1 1.50 1298
Penalty I 10 z, 1 F F 1756
10z, 1.18 1 1.12 1753
100z, 1 F F 2259
Penalty II 10 z, 1.08 1 1.03 271
10z, 1.76 2.12 1 2531
100z, 1.07 1 1.05 5293
Variabie 10 z, 1.13 1.06 1 171
Dimension 10z, 1.06 1(1.58) 1 544
100z, 1 (1] F 1708
Trigono- 10 T, 1.03 1 1.03 298
metric 10z, 1 1.18 1.18 965
100, 1.66 [1.07] 1 450
Chebyquad 9 EN 1.14 1 1 234
Failures 0 0 [+2] 3
Successes 34 32 [-2] 31
Mean of successes 1.094 1.082 1.101
Variance of successes 0.0293 0.0452 0.0281
Standard deviation of 0.174 0.216 0.170

successes




31

Number of times found
significantly lower
function value than
other method but
required more iterations

Means if parenthesized
values used
Variance
Standard deviation

1.145

0.0396
0.202

1.122

0.0576
0.244

1.101

0.0281
0.170

[--] -- Close to, but not at, solution
Excluded from summary statistics
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