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Abstract

Two simple examples are given to show that transforming a context-free
grammar into Chomsky form necessarily increases the size, in at least some
cases: The language of nondecreasing pairs, L, = {ij|1<i<j <n}, has a
context-free grammar of size ®(n), yet the smallest Chomsky normal form
grarmar hasg ‘size B(n log log n). The related language
M, ={iji | 1=i<j<n] has a context-free grammar of size ®@(n), while the

smallest Chomsky grammar has size @(n log n).



1. Introduction

This note investigates the problem of how an arbitrary context-free gram-
mar expands when it is placed in Chomsky normal form. Chomsky form plays a
fundamental role in the analysis of context-free grammars (e.g., in the deriva-
tions of Greibach normal form [H, p.713], the pumping lemma and Ogden's
lemma [HU, pp. 1£5-130]). The question of expansion is relevant to the
efliciency of at least two general context-free parsing algorithms--the Cocke-
Kasami-Younger algofithm LH, pp. 430-441], and Valiant's algorithm [H, pp. 442-
470], the latter being the asymptotically best parser known. In both algorithms
the given grammar is first transformed into Chomsky form. Clearly the

efficiency of the parser depends on the efficiency of the transformation process,

In transforming a grammar to Chomsky form, each step but one expands
the grammar size by only a linear factor [H, pp. 98-106]. The nonlinear step is
eliminating chain rules. The obvious algorithm can expand a ®(n)-size grammar
to @(n?) [H, pp. 101-108]. No better algorithm is known. Blum [B1] has shown
that a language L, having an 0(n) grammar has Chomsky grammars only of size

(n log log n). Hence there can be no linear transformation to Chomsky form.!
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Blum has also improved the bound to O(n? ) [BZ].

This note gives simple proofs of lower bounds of (O(n log logn) and
(M{n log n) for conversion to Chomsky form. The bounds are not as strong as
[B2] but the proofs are simple, and we hope the technique of "priming the
purnp” will find other applications.

The specific results are as follows. I, the language of nondecreasing pairs
ij,i<J, has an O(n) grammar (involving chain rules); any grammar for I,

without chain rules has size O(n log log n). M,, the related language i 7 1,4 < 7,

'A passing cleim for a tight, Q(n""), lower bound is made in [P], but this appears to be
unproved [eréﬁ.



has an O(n) grammar; any grammar without chain rules has size ({n log n).

(The proof of the second, tighter bound is actually much easier.)

The two proofs are organized as follows. We start with a minimum size
grammar and show that it has a certain structure. The structure gives a recur-

sive equation for the size of the grammar, which implies the lower bound.

The hard part of the proof is to deduce the structure of the minimum gram-
mar. For L, we failed in our attempts to start with an arbitrary minimum gram-
mar and deduce the requisite structure. However a simple device leads to suc-
cess: We wossume part of the desired structure, and deduce the rest. This
enables us to deduce a recursive equation that implies the lower bound. We call

this approach "priming the pump”. (See also the cover of [ H]).

Before presenting the results we review some basic facts. (Complete
developments can be found in [H] or [HU]). We specify a context-free grammar
by giving its productions, where each production has the form 4 - a. (Capital
letters A, B... are variables; S is the start symbol; lower case letters a, b... are
terminals.) A production A -+ « is an Arule. A grammar is in Chomsky normal
Sform if every production has the form A » BC or A » a. A chain rule is a pro-
duction of the form A -» B, and of course is not allowed in Chomsky form. A
grammar G has size |G|, the number of productions. Although this is not the
standard definition of size ([H, p. 94]), all grammars considered in this paper
(e.g., Chomsky grammars) have productions of bounded length. For these gram-
mars it is easy to see that our definition differs from the usual one by only a con-

stant factor. Since our results are asymptotic this presents no problem.

As a final convention we use interval notation to denote sets of integers.
Thus (a, ] = {i |4 is an integer, a <4 =< b}, and similarly for the other types of

intervals.



2. Ann log log nbound

This section discusses the language I, that has log log n expansion. To
define this language fix an integer n > 1, Let %, ={i,1 | 1 <4 < n}, an alphabet
of 2n distinct symbols. Then Z, is the language of nondecreasing pairs of sym-
bols®, i.e.,

Ln=0dj|1gisj=zn]

L, has the following context-free grammar with chain rules: S -» A4;;
A » Ay and By » By for 1<i<n; 4 »iB, and B; »1 for 1<i=<n. This
grammar has size 8(n ).

Now we show that any Chomsky grammar for I, has size Q(n log log n).

First we give a simple normalization.

Lemmma 2.1. Let G be a Chomsky grammar for L,. There is a Chomsky grammar
G' tor 1, such that |G'| £ |G|, G' has variables S and 4;, B; for 1 £i < n; every
production of G'is of the form S » 4B;, 4, » k or By » [, for l <4 <n, the vari-

ables 4; and F; satisfyi € {k | 4 »k}c[li]andic{l | B, » i c[i,n]

FProof. Without loss of generality assume that G is reduced. Aside from the start
symbol 5 there are two types of variables in G: those that derive only unbarred
terminals £ and those that derive only barred terminals I. For if S » AB then A

derives only unbarred terminals k and B derives only barred terminals {.

Now consider a word %1 € [,, with a derivation § » AF - iB »i 1. Vari-
able A derives only terminals k € [1,4] and B derives only terminals I where
! €[i,m]. (Otherwise a word not in I, can be derived.) Let A and B be 4 and 5;

respectively of the Lernma.

21n [ Y], Ly, is suggested as a candidate for a lower bound on Chomsky form. However the con-
jecture of @ n)ﬁ:»g 7 ) as the size of 8 minimum Chomsky grammar is incorrect.



It the 4; and B; exhaust the variables of G then it is easy to see we are
done. So assume that A is a variable that derives only unbarred symbols and is
not among the 4. Let i = max{k | A » k}. Change all occurrences of A4 in pro-
ductions to 4;. It is easy to see that the grammar remains valid for L, and the

size does not increase.

A similar modification can be done for variables F that derive only barred

symbols. The resulting grammar has the desired properties of G'. =

Now we formalize the idea of "priming the pump". A "primed grammar" is
one that has some of the desired structure, from which the rest of the structure
is easily deduced. To give the exact definition, first let oy, 0 <1 ={v/n|, be a
sequence of numbers such that oy =0, oy — o4 € {Vr], VMnr], Vn]+1] for
1=4=<|Vn], and o/ =n. Soif n is a perfect square, o; =ivn. It is easy to

see that a sequence a; exists for any n, since [Vaf < n = ((Vn]+1)?

A Chomsky grammar for L, is primed if for all i in 0 =<1 <|[Vr], the set of

terminals (o, 4, ] is included in both (k | 4, . =k} and {{ | Bg,+1 ~ I3, This is

Af+g

fllustrated in Figure 1. (Note that the variables Ay, and Baiﬂ may generate

1

terminals other than those shown in Figure 1.)

Now we deduce the structure of primed grammars.

Lemma 2.2, Let G be a primed grammar of minimum size. Let 1 be any index,

0=i=<|Vnl

(a) There is a terminal g; € (a;,04,) that is only generated by variables A

Wlthj’ < Bl

(b) There is a terminal b;, where b; € (@, a; 4], that is only generated by

variables B; with j = a; +1.

Proof. (a) If the Lernma is false then each terminal k in {(o;, o;,,] is generated



by a variable 4; with j > o;4;. Such a variable can only be used to derive words
k1 with L=7 >0, So replace the producitions
$4; >k |k € (oy, 0441), 7 > 0g41) by §S = Aagq Bayin | .7 =i+1}. The resulting
grammar generates I, and is primed. Its size is less than |G|, since Vn| or
mare productions are replaced by [Vn|—1 or less productions. This contradie-

tion proves the Lemma.

(b) The proof is analogous, ®

Lemmu, 2.3. Let G be a primed grammar of minimum size., For all indices 1, J
0<i<j<[Vn], G has a production S - A, 5, where k (o4, 234,], and
L€ (o, 0]

Proof. Consider the terminals g, 5] given by Lemma 2.2 aié;j € [, since
bj > a; = a;. A derivation of a;b; begins with a production S - 4B, of the
desired form, by Lemma 2.2, ®

Now consider the triangles on the diagonal of Figure 2.1. More precisely for

0=1 <|Vr| define the triangle
Ty =thl [ k=Tandk, € (og+1, ozl

Also define a gramrnar Gy =S »AHF | S ZT.ATBS and

7,8 € (ogtl, )i UtA 2k | 4 gk and 7, k € (oy+1, 04 ) UBs > L | By at

and s, l € ((Xi+1, (Xj_+1)§,
Lemmo. 2.4, Gy, is a Chomsky grammer for T, ,.
FProof. Gy only generates words of Iy in {0y +1, cx,;ﬂ)g, 80 L{Giyy) € Tyer.

To show the opposite inclusion consider a word kI € Ti+1. It has a derivation in

Gn



S ¢ 4B, ‘éws ok

r<£5s since 4B, ‘rs k<r and s <! by definition of 4. and B, Bince

»
o+l <k and I <oy we deduce 7,5 € (o+1, Qi+1). So the above derivation
holds in G;,, also. =

Now define these quantities:

s(n) = the minimum size of a Chomsky grammar for I, ;

P(n) = the minimum size of a primed grammar for L.
Lemma 2.5. s(n)is an increasing function of n.

Proof. Consider a minimum Chomsky grammar for Lnv1. Deleting every
occurrence of the symbols 7 +1 and n +1 from the grammar gives a grammar for

L,. Thuss{n+1) > s(n). =
Lemma 2.6. s(n) = O(n log log n).

Froof. First consider a primed grammar & for L,. We count three types of pro-

ductions in G: (i) the productions A%u »k and Bajr r required by the

definition of primed grammar; (ii) the productions § - A B, given by Lemma
2.3; (ili) the productions in G, given by Lemma 2.4. It is easy to see that these

three types are mutually exclusive. There are 2n productions of type (i) and

[vr] (1\2’51*1)

productions of type (ii). For type (iii) notice that Tiv1 18 iso-

morphic to the language L. where r = Q41— —R = |Vn|-2. This gives the follow-

ing relation:

p('n):":Zﬂ, + m%@&;.l

3

s(vVr|-2).

=2n + —g——+ Vuls(Va|-2), for n = 186,



Now consider a minimum Chormnsky grammar for L,. It can be primed by

adding at most 2n productions of the form A -k and 1?3",%H -+ 1. Thus

Xtg

s{n) + 2n = p(n). So the above inequality implies the following relations;
s(n)= %—ﬂxﬁ?j s (Vr| —2), tor n = 16

s(n) = 1 otherwise.

Lett(n) = -B—ls—éﬂL. Hence

by = 1+ MUERIZR), oy o)

> 1+ (1‘—-%?_);5([-\/51-2) forn = 16

t{n)= %_ otherwise.

It is easy to verify by induction that for some constant C, £ (n) = C log log n.
Hence s(n) = Q{n log logn). =

Now we show that the bound on s is tight.
Lemmu 2.7. s{n) = 0{n log log n).

Prosof. For any n = 2 construct a grammar G for I, as follows. Define integers
o;, 0<4 <[Vn|, as above. There are three types of productions. The following
productions generate terminals:

A -k fori<i=|Vn]andk € (-3, o]

By ~» [ forli =1 = !"\/‘?-"LAJ and k € {(Xi, Oii+1]‘

(By convention Opy+r = T Also note that 4 and B; differ from the same sym-
bols used in the lower bound proof.) The following productions generate words

of L, not in the diagonal triangles:



S - A B; forlgisjs[\fﬁj

Finally to generate the diagonal triangles {(a;_;, o;)2N\L,), for 1 =14 < Vn)let G
be a minimum size Chomsky grammar for (kI | k <{ and k, I (g, az4q)}, with
start symbol S; (and all variables distinct from those of other grammars).

Replace S; by S and add all productions of G; to G.

It is easy to verify that G generates I,. This implies the following

recurrence for s(n):
s(n)<4n + [Vals(Vn)), forn = 2
s(1) =3
As Iin Lemma 2.6 it is easy to verify that s(n) = 0(n log logn), ®

Now we summarize the results.

Theorem 2.1. L is a context-free language with a grammar of size ®(n), and

smallest Chomsky form grammar of size ®(n loglogn). =

Several languages related to 1, have the same log log n increase in size.
For instance, fix an integer k > 2, and consider the languages of nondecreasing

k-sequences. More specifically the language is

Hld) - (kd) | 14, 4, =n),

Here the symbols (j,1;) are the terminal of the languages. So for k = 2 the -
language is [,. Fach of these languages has a 8(n) grammar with chain rules,

but the smallest Chomsky grammar is 8(n log log n).

d. Ann log nbound

This section discusses the language M, that has log n expansion. To define

My fix an integer n = 1, with £, as in Section 2. Then M, is a variant of L,:
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M,=435i]|1<i<j=n]i

My, has this context-free grammar with chain rules:
S A A » Ay and By » By, for1l<i<n; A »iBiand B, »iforl<i<n.

This grammar has size 0(n).

We analyze Chomsky grammars for M, in two steps. First we show that a
Chomsky grammar for M, is essentially a regular grammar for I,. Then we

analyze regular grammars for L, and show they have size Q{n log n).

Lemma 3.1. Let G be a Chomsky grammar for M,. Then there is a regular

grammar ' for L, with |G'| = | G|,

Proof. Without loss of generality assume that G is reduced. Say that C is an i-
variable if there is only one C-rule, C »i. Define the regular grammar &' to
contain these productions: (1) any production of G of the form D - 7; (2) a pro-
duction S =4 ) if G has arule A » CD where 4 # § and C is an i-variable; (3) a

production § » i Cif G hasarule B » CD where B # S and D is an i-variable,
First note I, C(G'). For ifi 7 € [, then ij i € M,, so G has a derivation

S+AB ¥iji. Either A *i7or B *7i. In the first case it is easy to see

that every A-rule has the form 4 » CD where C is an i-variable (otherwise a word

not in M,, can be generated). In particular there is a rule 4 » CD where C is an
i~variable and D » j. Soin G', S *1i j by productions of type(2) and (1) above.
A similar argument applies applies to the second case.

Next note L(G') ¢ L,. For suppose G’ has a type(2) production S -4 D
corresponding to the G rule 4 » CD, C an i-variable. It is easy to see (from the
above paragraph) that G has a production S - AB. So a derivation in G,
8 +4 D17, gives a derivation in G, 5§ > AB > A4 » CDi » Cji » 4§ i. Thus

1= 4§ as desired.
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We conclude L(G) = 1, ®

To ana.ljze regular grammears for L, we prime the pump, as follows. In a
regular grammar for I,, a variable A # S is an 4;wariable it 7 = minfk | 4 - k.

A regular grammar for L,, n = 2, is primed if there is an A4, -variable A where

[F2

i | Ak} = [[%} n]. Without loss of generality this variable is unique, and we

refer to it as Alf”-i'
2

Lemma 8.2 There is a primed grammar of minimum size where for all 1,

1=2i=|™ S+4i4,.
2 Ay

-~ Proof. Let G be a primed grammar of minimum size. Not every 7, j = {g’?}

is generated by an A -variable, 1 é[—g—} For suppose olherwise. Productions

A »gois]

JE

< j, can only be used to derive words kj, k <4. So replace all
such productions by S - i Ai“—!' 14 < [%} The resulting grammar generates L,
2

i

2

and is primed. Its size is less than |G|, since at least n —|=f + 1 = f%} + 1 pro-
ductions are replaced by [g—} productions. This contradiction shows that there is

some J,j = [g—}, not generated by any 4;-variable, i < ['gi},

So for any i S[g’-}, the word ij is generated from a production S -1 4,

k> [g—} We can replace this production by § » 14 Al as desired, ®

Myt
2!
Now define these quantities:

§(n) = the minimum size of a regular grammar for [, :
g
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p(n) = the minimum size of a primed grammar for L,.

Lemma 3.3 s(n) = O(n log n).

Proof. Consider a primed grammar of minimum size for L,. There are [g—} + 1
productions Al—gri -7, and {%} productions using Alg* from Lemma 3.2. The

remaining productions partition into a grammar for L and a grammar on the

1242

numbers [[—g’—} +1,n] that is isomorphic to L Thus

2
m o
pr)=n + 1 + S(I_'é‘j“'l) + s(f;d—}), forn = 2.
Now consider a minimurm regular grammar for 7,. It can be primed by
adding at most T-'g} rules Al“ﬂ »7. Sos(n)+ f%} =p(n), and the above inequality
] 2 ~
shows
s(n)a% +1+ s([g} ~-1) +s(f%}), forn = 2.
s(1) =1,

It is easy to verify by induction that for some constant C, s(n) > Cn log n,

asg degired, »

Now we show that the bound on s is tight.

Lemma 3.4. s(n) = 0(n log n).

Proof. For any n = 2 construct a grammar G for L, as follows. First introduce

production for a "primed” variable A:

A7, for[%}ﬁj =n:
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. . T
S - 14, forlézs{?‘.

Let &, be a minimum size regular grammar for I, +let Go be a minimum size
1 g g 2

1541
regular grammar for the analogous language over [{g—} + 1, n]. Let G have start

symbol S;, 7 = 1, 2, and all variables distinct from those of the other grammar.

Replace S; by S and add all productions of G, to G.

Clearly L(G) = L,,. This gives the following recurrence:
n n .
s(n)sn +1+ s({-g—}—l) + s(f—é—}). forn = 2;
s(1) =2
It is easy to verify that s(n) = O0(n logn). ®
Lemmas 3.1 and 3.4 imply the main result.

Theorem 3.1. M, is a context-free language with a grammar of size ®(n), and

smallest Chomsky form grammar of size ®(n log n). =
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Figure 1.

A primed grammar.
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