PRIMING THE PUMP FOR LOWER BOUNDS ON CHOMSKY FORM by Harold N. Gabow Dept. of Computer Science University of Colorado Boulder, Colorado 80309 CU-CS-239-82 ## **Abstract** Two simple examples are given to show that transforming a context-free grammar into Chomsky form necessarily increases the size, in at least some cases: The language of nondecreasing pairs, $L_n = \{i\bar{j} \mid 1 \le i \le j \le n\}$, has a context-free grammar of size $\Theta(n)$, yet the smallest Chomsky normal form grammar has size $\Theta(n \log \log n)$. The related language $M_n = \{i\bar{j}i \mid 1 \le i \le j \le n\}$ has a context-free grammar of size $\Theta(n)$, while the smallest Chomsky grammar has size $\Theta(n \log n)$. #### 1. Introduction This note investigates the problem of how an arbitrary context-free grammar expands when it is placed in Chomsky normal form. Chomsky form plays a fundamental role in the analysis of context-free grammars (e.g., in the derivations of Greibach normal form [H, p.113], the pumping lemma and Ogden's lemma [HU, pp. 125-130]). The question of expansion is relevant to the efficiency of at least two general context-free parsing algorithms-the Cocke-Kasami-Younger algorithm [H, pp. 430-441], and Valiant's algorithm [H, pp. 442-470], the latter being the asymptotically best parser known. In both algorithms the given grammar is first transformed into Chomsky form. Clearly the efficiency of the parser depends on the efficiency of the transformation process. In transforming a grammar to Chomsky form, each step but one expands the grammar size by only a linear factor [H, pp. 98-106]. The nonlinear step is eliminating chain rules. The obvious algorithm can expand a $\Theta(n)$ -size grammar to $\Theta(n^2)$ [H, pp. 101-102]. No better algorithm is known. Blum [B1] has shown that a language L_n having an O(n) grammar has Chomsky grammars only of size $\Omega(n \log \log n)$. Hence there can be no linear transformation to Chomsky form. Blum has also improved the bound to $\Omega(n^{\frac{3}{2}-\epsilon})$ [B2]. This note gives simple proofs of lower bounds of $\Omega(n \log \log n)$ and $\Omega(n \log n)$ for conversion to Chomsky form. The bounds are not as strong as [B2] but the proofs are simple, and we hope the technique of "priming the pump" will find other applications. The specific results are as follows. L_n , the language of nondecreasing pairs $i\ \bar{j},\ i\leq j$, has an O(n) grammar (involving chain rules); any grammar for L_n without chain rules has size $\Omega(n\log\log n)$. M_n , the related language $i\ \bar{j}\ i,\ i\leq j$. ¹A passing claim for a tight, $\Omega(n^2)$, lower bound is made in [P], but this appears to be unproved [H2]. has an O(n) grammar; any grammar without chain rules has size $\Omega(n \log n)$. (The proof of the second, tighter bound is actually much easier.) The two proofs are organized as follows. We start with a minimum size grammar and show that it has a certain structure. The structure gives a recursive equation for the size of the grammar, which implies the lower bound. The hard part of the proof is to deduce the structure of the minimum grammar. For L_n we failed in our attempts to start with an arbitrary minimum grammar and deduce the requisite structure. However a simple device leads to success: We assume part of the desired structure, and deduce the rest. This enables us to deduce a recursive equation that implies the lower bound. We call this approach "priming the pump". (See also the cover of [H]). Before presenting the results we review some basic facts. (Complete developments can be found in [H] or [HU]). We specify a context-free grammar by giving its productions, where each production has the form $A \to \alpha$. (Capital letters A, B... are variables; S is the start symbol; lower case letters a, b... are terminals.) A production $A \to \alpha$ is an A-rule. A grammar is in Chomsky normal form if every production has the form $A \to BC$ or $A \to \alpha$. A chain rule is a production of the form $A \to B$, and of course is not allowed in Chomsky form. A grammar G has size |G|, the number of productions. Although this is not the standard definition of size ([H, p. 94]), all grammars considered in this paper (e.g., Chomsky grammars) have productions of bounded length. For these grammars it is easy to see that our definition differs from the usual one by only a constant factor. Since our results are asymptotic this presents no problem. As a final convention we use interval notation to denote sets of integers. Thus $(a, b] = \{i \mid i \text{ is an integer, } a < i \le b\}$, and similarly for the other types of intervals. # 2. An n log log n bound This section discusses the language L_n that has $\log \log n$ expansion. To define this language fix an integer $n \ge 1$. Let $\Sigma_n = \{i, \overline{i} \mid 1 \le i \le n\}$, an alphabet of 2n distinct symbols. Then L_n is the language of nondecreasing pairs of symbols², i.e., $$L_n = \{i \ \overline{j} \mid 1 \le i \le \overline{j} \le n\}.$$ L_n has the following context-free grammar with chain rules: $S \to A_1$; $A_i \to A_{i+1}$ and $B_i \to B_{i+1}$ for $1 \le i < n$; $A_i \to iB_i$ and $B_i \to \overline{i}$ for $1 \le i \le n$. This grammar has size $\Theta(n)$. Now we show that any Chomsky grammar for L_n has size $\Omega(n \log \log n)$. First we give a simple normalization. Lemma 2.1. Let G be a Chomsky grammar for L_n . There is a Chomsky grammar G' for L_n such that $|G'| \leq |G|$; G' has variables S and A_i , B_i for $1 \leq i \leq n$; every production of G' is of the form $S \to A_i B_j$, $A_i \to k$ or $B_j \to \overline{l}$; for $l \leq i \leq n$, the variables A_i and B_i satisfy $i \in \{k \mid A_i \to k\} \subseteq [1,i]$ and $i \in \{l \mid B_i \to \overline{l}\} \subseteq [i,n]$. *Proof.* Without loss of generality assume that G is reduced. Aside from the start symbol S there are two types of variables in G: those that derive only unbarred terminals k and those that derive only barred terminals \overline{l} . For if $S \to AB$ then A derives only unbarred terminals k and B derives only barred terminals \overline{l} . Now consider a word $i \ \overline{i} \in L_n$, with a derivation $S \to AB \to iB \to i \ \overline{i}$. Variable A derives only terminals $k \in [1,i]$ and B derives only terminals \overline{l} where $l \in [i,n]$. (Otherwise a word not in L_n can be derived.) Let A and B be A_i and B_i respectively of the Lemma. $^{^2}$ In [Y], L_n is suggested as a candidate for a lower bound on Chomsky form. However the conjecture of $\Theta(n \log n)$ as the size of a minimum Chomsky grammar is incorrect. If the A_i and B_i exhaust the variables of G then it is easy to see we are done. So assume that A is a variable that derives only unbarred symbols and is not among the A_i . Let $i = \max\{k \mid A \to k\}$. Change all occurrences of A in productions to A_i . It is easy to see that the grammar remains valid for L_n and the size does not increase. A similar modification can be done for variables B that derive only barred symbols. The resulting grammar has the desired properties of G'. Now we formalize the idea of "priming the pump". A "primed grammar" is one that has some of the desired structure, from which the rest of the structure is easily deduced. To give the exact definition, first let α_i , $0 \le i \le \lfloor \sqrt{n} \rfloor$, be a sequence of numbers such that $\alpha_0 = 0$, $\alpha_i - \alpha_{i-1} \in \{\lfloor \sqrt{n} \rfloor, \lceil \sqrt{n} \rceil, \lceil \sqrt{n} \rceil + 1\}$ for $1 \le i \le \lfloor \sqrt{n} \rfloor$, and $\alpha_{\lfloor \sqrt{n} \rfloor} = n$. So if n is a perfect square, $\alpha_i = i\sqrt{n}$. It is easy to see that a sequence α_i exists for any n, since $\lfloor \sqrt{n} \rfloor^2 \le n \le (\lfloor \sqrt{n} \rfloor + 1)^2$. A Chomsky grammar for L_n is *primed* if for all i in $0 \le i < \lfloor \sqrt{n} \rfloor$, the set of terminals $(\alpha_i, \alpha_{i+1}]$ is included in both $\{k \mid A_{\alpha_{i+1}} \to k\}$ and $\{l \mid B_{\alpha_i+1} \to \overline{l}\}$. This is illustrated in Figure 1. (Note that the variables $A_{\alpha_{i+1}}$ and B_{α_i+1} may generate terminals other than those shown in Figure 1.) Now we deduce the structure of primed grammars. Lemma 2.2. Let G be a primed grammar of minimum size. Let i be any index, $0 \le i \le \lfloor \sqrt{n} \rfloor$. - (a) There is a terminal $a_i \in (\alpha_i, \alpha_{i+1}]$ that is only generated by variables A_j with $j \leq \alpha_{i+1}$. - (b) There is a terminal $\bar{b_i}$, where $b_i \in (\alpha_i, \alpha_{i+1}]$, that is only generated by variables B_j with $j \geq \alpha_i + 1$. - *Proof.* (a) If the Lemma is false then each terminal k in $(\alpha_i, \alpha_{i+1}]$ is generated by a variable A_j with $j > \alpha_{i+1}$. Such a variable can only be used to derive words $k \ \bar{l}$ with $l \ge j > \alpha_{i+1}$. So replace the productions $\{A_j \to k \mid k \in (\alpha_i, \alpha_{i+1}], j > \alpha_{i+1}\}$ by $\{S \to A_{\alpha_{i+1}} B_{\alpha_j+1} \mid j \ge i+1\}$. The resulting grammar generates L_n and is primed. Its size is less than |G|, since $|\sqrt{n}|$ or more productions are replaced by $|\sqrt{n}|-1$ or less productions. This contradiction proves the Lemma. # (b) The proof is analogous. Lemma 2.3. Let G be a primed grammar of minimum size. For all indices i, j $0 \le i < j < [\sqrt{n}]$, G has a production $S \to A_k B_l$ where $k \in (\alpha_i, \alpha_{i+1}]$, and $l \in (\alpha_j, \alpha_{j+1}]$. *Proof.* Consider the terminals a_i , $\overline{b_j}$ given by Lemma 2.2. $a_i\overline{b_j}\in L_n$ since $b_j>\alpha_j\geq a_i$. A derivation of $a_i\overline{b_j}$ begins with a production $S\to A_kB_l$ of the desired form, by Lemma 2.2. Now consider the triangles on the diagonal of Figure 2.1. More precisely for $0 \le i < \lfloor \sqrt{n} \rfloor$ define the triangle $$T_{i+1} = \{k\overline{l} \mid k \leq \overline{l} \text{ and } k, l \in (\alpha_i+1, \alpha_{i+1})\}.$$ Also define a grammar $G_{i+1} = \{S \to A_r B_s \mid S \xrightarrow{G} A_r B_s \text{ and } r, s \in (\alpha_i + 1, \alpha_{i+1})\} \cup \{A_r \to k \mid A_r \xrightarrow{G} k \text{ and } r, k \in (\alpha_i + 1, \alpha_{i+1})\} \cup \{B_s \to \overline{l} \mid B_s \xrightarrow{G} \overline{l} \text{ and } s, l \in (\alpha_i + 1, \alpha_{i+1})\}.$ Lemma 2.4. G_{i+1} is a Chomsky grammer for T_{i+1} . *Proof.* G_{i+1} only generates words of L_n in $(\alpha_i+1, \alpha_{i+1})^2$, so $L(G_{i+1}) \subseteq T_{i+1}$. To show the opposite inclusion consider a word $k\overline{l} \in T_{i+1}$. It has a derivation in G, $$S \xrightarrow{G} A_r B_s \xrightarrow{G} k B_s \xrightarrow{G} k \overline{l}$$. $r \leq s$ since $A_r B_s \stackrel{\bullet}{\to} r \overline{s}$. $k \leq r$ and $s \leq l$ by definition of A_r and B_s . Since $\alpha_i + 1 < k$ and $l < \alpha_{i+1}$ we deduce $r, s \in (\alpha_i + 1, \alpha_{i+1})$. So the above derivation holds in G_{i+1} also. Now define these quantities: s(n) = the minimum size of a Chomsky grammar for L_n ; p(n) = the minimum size of a primed grammar for L_n . Lemma 2.5. s(n) is an increasing function of n. *Proof.* Consider a minimum Chomsky grammar for L_{n+1} . Deleting every occurrence of the symbols n+1 and n+1 from the grammar gives a grammar for L_n . Thus s(n+1) > s(n). Lemma 2.6. $s(n) = \Omega(n \log \log n)$. Proof. First consider a primed grammar G for L_n . We count three types of productions in G: (i) the productions $A_{\alpha_{i+1}} \to k$ and $B_{\alpha_i+1} \to \overline{l}$ required by the definition of primed grammar; (ii) the productions $S \to A_k B_l$ given by Lemma 2.3; (iii) the productions in G_{i+1} given by Lemma 2.4. It is easy to see that these three types are mutually exclusive. There are 2n productions of type (i) and $\frac{|\sqrt{n}|(|\sqrt{n}|-1)}{2}$ productions of type (ii). For type (iii) notice that T_{i+1} is isomorphic to the language L_r where $r = \alpha_{i+1} - \alpha_i - 2 \ge |\sqrt{n}| - 2$. This gives the following relation: $$p(n) \ge 2n + \frac{|\sqrt{n}|(|\sqrt{n}|-1)|}{2} + |\sqrt{n}|s(|\sqrt{n}|-2).$$ $$\ge 2n + \frac{n}{8} + |\sqrt{n}|s(|\sqrt{n}|-2), \text{ for } n \ge 16.$$ Now consider a minimum Chomsky grammar for L_n . It can be primed by adding at most 2n productions of the form $A_{\alpha_{i+1}} \to k$ and $B_{\alpha_i+1} \to \overline{l}$. Thus $s(n) + 2n \ge p(n)$. So the above inequality implies the following relations: $$s(n) \ge \frac{n}{8} + \lfloor \sqrt{n} \rfloor s(\lfloor \sqrt{n} \rfloor - 2), \text{ for } n \ge 16$$ $s(n) \ge 1$ otherwise. Let $$t(n) = \frac{8s(n)}{n}$$. Hence $$t(n) \ge 1 + \frac{|\sqrt{n}|(|\sqrt{n}|-2)}{n}t(|\sqrt{n}|-2)$$ $$\ge 1 + (1 - \frac{4}{\sqrt{n}})t(|\sqrt{n}|-2) \qquad \text{for } n \ge 16$$ $$t(n) \ge \frac{8}{15} \qquad \text{otherwise.}$$ It is easy to verify by induction that for some constant C, $t(n) \ge C \log \log n$. Hence $s(n) = \Omega(n \log \log n)$. Now we show that the bound on s is tight. Lemma 2.7. $s(n) = 0(n \log \log n)$. *Proof.* For any $n \ge 2$ construct a grammar G for L_n as follows. Define integers α_i , $0 \le i \le \lfloor \sqrt{n} \rfloor$, as above. There are three types of productions. The following productions generate terminals: $$A_i \to k$$ for $1 \le i \le \lfloor \sqrt{n} \rfloor$ and $k \in (\alpha_{i-1}, \alpha_i]$ $B_i \to \overline{l}$ for $l \le i \le \lfloor \sqrt{n} \rfloor$ and $k \in [\alpha_i, \alpha_{i+1}]$. (By convention $\alpha_{[\sqrt{n}]+1} = n$. Also note that A_i and B_i differ from the same symbols used in the lower bound proof.) The following productions generate words of L_n not in the diagonal triangles: $$S \to A_i B_j$$ for $1 \le i \le j \le |\sqrt{n}|$ Finally to generate the diagonal triangles $((\alpha_{i-1}, \alpha_i)^2 \cap L_n)$, for $1 \le i \le |\sqrt{n}|$ let G_i be a minimum size Chomsky grammar for $\{k\overline{l} \mid k \le l \text{ and } k, l \in (\alpha_i, \alpha_{i+1})\}$, with start symbol S_i (and all variables distinct from those of other grammars). Replace S_i by S and add all productions of G_i to G. It is easy to verify that G generates L_n . This implies the following recurrence for s(n): $$s(n) \le 4n + \lfloor \sqrt{n} \rfloor s(\lceil \sqrt{n} \rceil)$$, for $n \ge 2$; $$s(1)=3.$$ As in Lemma 2.6 it is easy to verify that $s(n) = 0(n \log \log n)$. Now we summarize the results. Theorem 2.1. L_n is a context-free language with a grammar of size $\Theta(n)$, and smallest Chomsky form grammar of size $\Theta(n)$ log log n). Several languages related to L_n have the same $\log \log n$ increase in size. For instance, fix an integer $k \ge 2$, and consider the languages of nondecreasing k-sequences. More specifically the language is $$\{(1, i_1) \cdots (k, i_k) \mid 1 \leq i_1 \cdots \leq i_k \leq n\}.$$ Here the symbols (j, i_j) are the terminal of the languages. So for k = 2 the language is L_n . Each of these languages has a $\Theta(n)$ grammar with chain rules, but the smallest Chomsky grammar is $\Theta(n \log \log n)$. # 3. An $n \log n$ bound This section discusses the language M_n that has $\log n$ expansion. To define M_n fix an integer $n \geq 1$, with Σ_n as in Section 2. Then M_n is a variant of L_n : $$M_n = \{i \ \overline{j} \ i \mid 1 \le i \le j \le n\}.$$ M_n has this context-free grammar with chain rules: $S \to A_1$; $A_i \to A_{i+1}$ and $B_i \to B_{i+1}$ for $1 \le i < n$; $A_i \to i$ B_i i and $B_i \to \overline{i}$ for $1 \le i \le n$. This grammar has size $\Theta(n)$. We analyze Chomsky grammars for M_n in two steps. First we show that a Chomsky grammar for M_n is essentially a regular grammar for L_n . Then we analyze regular grammars for L_n and show they have size $\Omega(n \log n)$. Lemma 3.1. Let G be a Chomsky grammar for M_n . Then there is a regular grammar G' for L_n with $|G'| \leq |G|$. *Proof.* Without loss of generality assume that G is reduced. Say that C is an *i-variable* if there is only one C-rule, $C \to i$. Define the regular grammar G' to contain these productions: (1) any production of G of the form $D \to \overline{j}$; (2) a production $S \to i$ D if G has a rule $A \to CD$ where $A \neq S$ and C is an i-variable; (3) a production $S \to i$ C if G has a rule $B \to CD$ where $B \neq S$ and D is an i-variable. First note $L_n \subseteq (G')$. For if $i \ \overline{j} \in L_n$ then $i \overline{j} \ i \in M_n$, so G has a derivation $S \to AB \stackrel{*}{\to} i \ \overline{j} \ i$. Either $A \stackrel{*}{\to} i \ \overline{j}$ or $B \stackrel{*}{\to} \overline{j} \ i$. In the first case it is easy to see that every A-rule has the form $A \to CD$ where C is an i-variable (otherwise a word not in M_n can be generated). In particular there is a rule $A \to CD$ where C is an i-variable and $D \to \overline{j}$. So in G', $S \stackrel{*}{\to} i \ \overline{j}$ by productions of type(2) and (1) above. A similar argument applies applies to the second case. Next note $L(G') \subseteq I_n$. For suppose G' has a type(2) production $S \to i D$ corresponding to the G rule $A \to CD$, C an i-variable. It is easy to see (from the above paragraph) that G has a production $S \to AB$. So a derivation in G', $S \to i D \to i \bar{j}$, gives a derivation in G, $S \to AB \to Ai \to CDi \to C\bar{j}i \to i \bar{j} i$. Thus $i \le j$ as desired. We conclude $L(G') = L_n$. To analyze regular grammars for L_n we prime the pump, as follows. In a regular grammar for L_n , a variable $A \neq S$ is an A_j -variable if $j = \min\{k \mid A \to \overline{k}\}$. A regular grammar for L_n , $n \geq 2$, is primed if there is an $A_{\lfloor \frac{n}{2} \rfloor}$ -variable A where $\{k \mid A \to \overline{k}\} = [\lfloor \frac{n}{2} \rfloor, n]$. Without loss of generality this variable is unique, and we refer to it as $A_{\lfloor \frac{n}{2} \rfloor}$. Lemma 3.2. There is a primed grammar of minimum size where for all i, $1 \le i \le \lfloor \frac{n_1}{2} \rfloor$, $S \to i$ $A_{\lfloor \frac{n}{2} \rfloor}$ Proof. Let G be a primed grammar of minimum size. Not every \overline{j} , $j \geq \lfloor \frac{n}{2} \rfloor$, is generated by an A_i -variable, $i \leq \lfloor \frac{n}{2} \rfloor$. For suppose otherwise. Productions $A_i \to \overline{j}$, $i \leq \lfloor \frac{n}{2} \rfloor \leq j$, can only be used to derive words $k\overline{j}$, $k \leq i$. So replace all such productions by $S \to i$ $A_{\lfloor \frac{n}{2} \rfloor}$, $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$. The resulting grammar generates L_n and is primed. Its size is less than |G|, since at least $n - \lfloor \frac{n}{2} \rfloor + 1 = \lceil \frac{n}{2} \rceil + 1$ productions are replaced by $\lfloor \frac{n}{2} \rfloor$ productions. This contradiction shows that there is some \overline{j} , $j \geq \lfloor \frac{n}{2} \rfloor$, not generated by any A_i -variable, $i \leq \lfloor \frac{n}{2} \rfloor$. So for any $i \leq \lfloor \frac{n}{2} \rfloor$, the word $i\bar{j}$ is generated from a production $S \to i$ A_k , $k > \lfloor \frac{n}{2} \rfloor$. We can replace this production by $S \to i$ $A_{\lfloor \frac{n}{2} \rfloor}$, as desired. Now define these quantities: s(n) = the minimum size of a regular grammar for L_n : p(n) = the minimum size of a primed grammar for L_n . Lemma 3.3. $s(n) = \Omega(n \log n)$. Proof. Consider a primed grammar of minimum size for L_n . There are $\lceil \frac{n}{2} \rceil + 1$ productions $A_{\lfloor \frac{n}{2} \rfloor} \to \overline{j}$, and $\lfloor \frac{n}{2} \rfloor$ productions using $A_{\lfloor \frac{n}{2} \rfloor}$ from Lemma 3.2. The remaining productions partition into a grammar for $L_{\lfloor \frac{n}{2} \rfloor - 1}$ and a grammar on the numbers $\lfloor \lfloor \frac{n}{2} \rfloor + 1, n \rfloor$ that is isomorphic to $L_{\lfloor \frac{n}{2} \rfloor}$. Thus $p(n) \ge n + 1 + s(\lfloor \frac{n}{2} \rfloor - 1) + s(\lfloor \frac{n}{2} \rfloor)$, for $n \ge 2$. Now consider a minimum regular grammar for L_n . It can be primed by adding at most $\lceil \frac{n}{2} \rceil$ rules $A_{\lfloor \frac{n}{2} \rfloor} \to \overline{j}$. So $s(n) + \lceil \frac{n}{2} \rceil \ge p(n)$, and the above inequality shows $$s(n) \ge \left\lfloor \frac{n}{2} \right\rfloor + 1 + s\left(\left\lfloor \frac{n}{2} \right\rfloor - 1\right) + s\left(\left\lfloor \frac{n}{2} \right\rfloor\right), \text{ for } n \ge 2.$$ $$s(1) \ge 1.$$ It is easy to verify by induction that for some constant C, $s(n) \ge C n \log n$, as desired. Now we show that the bound on s is tight. Lemma 3.4. $s(n) = 0(n \log n)$. *Proof.* For any $n \ge 2$ construct a grammar G for L_n as follows. First introduce production for a "primed" variable A: $$A \to \overline{j}$$, for $\lfloor \frac{n}{2} \rfloor \le j \le n$; $$S \to iA$$, for $1 \le i \le \lfloor \frac{n}{2} \rfloor$. Let G_1 be a minimum size regular grammar for $L_{\lfloor \frac{n_1}{2^l} - 1 \rfloor}$; let G_2 be a minimum size regular grammar for the analogous language over $[\lfloor \frac{n_1}{2^l} + 1, n \rfloor]$. Let G_i have start symbol S_i , i=1,2, and all variables distinct from those of the other grammar. Replace S_i by S and add all productions of G_i to G. Clearly $L\left(G\right) =L_{n}$. This gives the following recurrence: $$s(n) \le n + 1 + s(\lfloor \frac{n}{2} \rfloor - 1) + s(\lceil \frac{n}{2} \rceil), \text{ for } n \ge 2;$$ $$s(1) = 2.$$ It is easy to verify that $s(n) = 0(n \log n)$. Lemmas 3.1 and 3.4 imply the main result. Theorem 3.1. M_n is a context-free language with a grammar of size $\Theta(n)$, and smallest Chomsky form grammar of size $\Theta(n \log n)$. # Acknowledgement The author thanks Prof. Michael Harrison of the University of California at Berkeley for his active interest and encouragement of this work. ### References - [B1] N. Blum, "On the power of chain rules in contest free grammars", Acta Informatica 17, 1982, pp. 425-433. - [B2] N. Blum, "More on the power of chain rules in context-free grammars," preprint, June 1982. - [H] M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass. 1978. - [H2] M. A. Harrison, personal communication, Oct. 1981. - [HU] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979 - [P] Piricka-Kelemenova, A., "Greibach normal-form complexity", Mathematical Foundations of Computer Science 1975, J. Becvar, ed., Vol 32, "Lecture Notes in Computer Science", Springer-Verlag, Berlin, 1975, pp. 344-350. - [Y] A. Yehudai, "On the complexity of grammar and language problems", Ph.D. Dissertation, University of California at Berkeley. Figure 1. A primed grammar.