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ABSTRACT

We present here conditions on active set strategies for linearly constrained
optimization which guarantee global convergence and non-zigzagging. The
conditions amount to requiring that no constraint be dropped immediately
after a new constraint has been hit, and if a constraint has a negative multi-
plier at a stationary point, that a constraint be dropped if the iterate is close
enough. It is shown that a number of practical algorithms, some very close
to those used in practice, satisty these conditions. For global convergence,
the only conditions on the problem are continuity of first derivatives and
non-degeneracy. In addition we give a partial extension of a global conver-
gence result of Fletcher regarding a constraint dropping strategy recently

proposed by him.



1. Infreduction

Many widely used algorithms for minimization of a nonlinear objective
function subject to linear constraints make use of active set strategies. That
is, a certain set of the constraints are treated as equality constraints and the
resulting subproblem can be handled by a reduced version of any iterative
unconstrained minimization algorithm on the resulting subspace. Such algo~
rithms require that at times a constraint is added to the active set of con-
straints and at times is removed from the active set. This paper is concerned

with rules for making these decisions.

There have been a large number of criteria proposed for deciding when
to drop a constraint. They range from requiring exact minimization on a sub-
space to dropping a constraint whenever its Lagrange rnultiplier has the
wrong sign. There would seem to be some advantage to allowing constraints
to be dropped before a subspace minimum has been found since steps taken
toward the minimum on the wrong subspace are probably not making pro-
gress toward the solution. Computational experiments by Lenard[7] on a
number of such strategies ranging between these two extremes seem to indi-
cate that strategies which are freer to drop constraints tend to require fewer

iterations.

It is well known, however, that an algorithm which can drop constraints
en every step is open to the possibility of zigzagging, that is, oscillation
among several active sets without settling down on the correct one. This is
itustrated in an example due to Wolfe[12] where such an algorithm zigzags
and converges to a point which does not satisfy the Kuhn-Tucker conditions.
This means, of course, that it is impossible to prove global convergence for
an algorithm with such a strategy. It also suggests that even if this kind of

false convergence did not occur much effort might be wasted in switching



subspaces before the right one is found. Even in the neighborhood of a
minimizer zigzagging can slow convergence, as demonstrated in an example

of Zoutendijk[13].

In part motivated by this situation, a number of strategies lying between
the two extremes have been proposed. A reasonable ad hoc rule is to esti-
mate the decrease in the quadratic model of the objective which would result
without dropping and with dropping, and to drop if the extra decrease due to
dropping is sufficient. This is suggested by a number of researchers
[6,10,11] and is a natural criterion, but it gives no guarantee of global con-
vergence. Zoutendijk[13] suggests that a constraint be dropped at first if a
multiplier estimate has the wrong sign, but if the constraint is added again it
should not be dropped until a subspace minimum is reached, This guaran-
tees global convergence, but is very restrictive and may result in solving
many equality constrained problems, A number of other strategies are dis-
cussed in a survey by Fletcher[1]. One may also weaken the tolerance for
convergence on a subspace, making it easier to drop constraints, but again
at the loss of any guarantees of proper convergence on the whole problem. A
dropping rule recently proposed by Fletcher[2] could be regarded as a sub-
space stopping rule designed to avoid zigzagging. He proves a global conver-
gence result for it in the case of a strictly convex objective function. It is
probably one of the least restrictive dropping rules proposed that has any
theoretical guarantees. lLater in this paper we will give a partial extension of
his result to the non-convex case.

It should be made clear that the active set strategies we are discussing
here work by considering an equality constrained subproblem at each itera-
tion. There are other strategies which take into consideration constraints
which are not currently active in determining the next step. One could, for

example, minimize a quadratic model of the objective subject to all the
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constraints of the whole problem, just as is done for nonlinearly constrained
problems. An algorithm along these lines was proposed by Garcia-
Palomares[3] and proved globally convergent; this is also a special case of
the algorithm analyzed by Han[8] for general constraints, and shown to beﬁ
globally convergent. The bending technique of McCormick(8,9] also falls into
this general category since the step can be partly determined by the inactive
inequality constraints. Indeed, in some cases it can even solve the same sub-
problem as the successive quadratic programming technique. Global conver-
gence has also been proved by McCormick for his technique, In this paper,
however, we will be concerned with methods that consider only the active

conslraints in determining the step direction.

The main objective of this paper is to suggest a new condition on drop-
ping rules which is unrestrictive and can be shown to guarantee global con-
vergence for any continuously differentiable objective function. The essen-
tial condition is that no constraint be dropped from an active set if the previ-
ous step involved adding a constraint. The global convergence result is valid
for any dropping rule satisfying this condition. The advantage of the condi-
tion is that it is easy to modify an ad hoc rule to make it globally convergent
without changing its essential character, Although zigzagging is not a great
problem in practice, we believe that theory should to some extent account
for that fact, and that the lack of provably globally convergent algorithms for

linearly constrained optimization is a hindrance to advancement in this area.

In Section ® we describe the condition and carry out the convergence

analysis, and in Section 3 we discuss the relation of our rule with other rules.

2. APractical Class of Constraint Dropping Rules

In this section we will describe a class of practical rules for dropping

constraints which result in a globally convergent algorithm. To do this we



give a general framework for an active set strategy algorithm to solve the

problem

min f (). >R
ATz=b

where 4 is an n by m constraint matrix.
Call 4 the matrix of columns of A that are to be kept active at z, , and let

7y be a matrix whose columns are an orthonormal basis for the null gpace of

A

Algorithm 1.
0) Given z,, pick 4, to be a matrix whose columns are a linearly
independent subset of the constraints satisfied with equality at z,.
Set k=1,
1) Compute 7, and dy, & range (Z,).
2) Compute Lagrange multiplier estimate A,. If the dropping rule
so indicates, then drop a constraint a; with >\,§1‘><0 and update Z,
and d, asin 1),
3) Do a backtracking linesearch using di to get a scalar oy, and
augment A4, if a constraint is hit by the step wpdi. Set
Ty Ty O Gy
4) If the stopping conditions are met, then stop.

5) Set k=k+1, and go to 1).

Assumptions:

1. For a fixed pu>0, Vf (2 ) dp<~u || 2,7V (z) 1] || ds |

2. For any subsequence Tk Z;fjgijO if and only if dkj-ao.

3. The multipliers A, are chosen so that if Tg, T with
Vilze) s r(m*zge(/&kj) for all 7, then Ak, 2 A, where constraints which

are not active at a point are assumed to have zero multipliers.



4. For a fixed >0, whenever a constraint is dropped, the ratio of
its multiplier to the most negative multiplier must be greater than
7.

5. The scalar o, is the first scalar in the sequence f;>fz=" -

satisfying
I ()= F (e + B i )>78; 9 (z) 7 e,

where §,=1 and each f;,,2pf; for a fixed p>0, and v£(0,1).

When we refer to Algorithm 1 the listed assumptions will be considered

as holding, but the dropping rule is left unspecified at this point.

The above algorithm is intended to be a general framework and to allow
for various implementations. In many specific algorithm implementations

the direction d; will be the solution to

;fﬁ@%’wTﬂkw +Vf () Tw (2.1)

which has the form —Zg(Z{He 2.) ' 2TV f (), if 20 Hy, 7, is positive definite.
¥ ZIH,7Z, and its inverse are uniformly bounded in norm, then this dg

satisfies assumptions 1 and 2.
A good value of X is given by the solution to
f"fk dfg +Vf (xk)‘{"Ak A=0,

which is the exact Lagrange multiplier for problem (2.1). This methed for
computing the multipliers satisfies the conditions of the algorithm. It also
guarantees that if di is always generated by a quadratic model as described
above and if a constraint is dropped, then the modified direction is feasible
with respect to the dropped constraint as is shown by Gill and Murray[4].
Given that A, is not non-negative, and that the dropping rule is satisfied, a

constraint with negative multiplier must be picked to be dropped, satislying



assumption 4 of Algorithm 1. One choice would be to pick the most negative
¥, Another would be to drop the constraint which would yield the greatest
reduction of the quadratic model if it were dropped and no constraint were
hit. This would also satisfy assumption 4 as long as || &, || remains bounded

for all k.

The linesearch procedure specified in assumption 5 covers the case of
backtracking by a constant factor or backtracking by interpolation as long
as the ratio of successive linesearch iterates is bounded. Our analysis could
also apply to other linesearches such as the first local minimizer or
Goldstein-Armijo conditions if they are modified so that ¢ is bounded uni-

formly.

We now consider the issue of deciding when to drop a constraint at all.
By "dropping rule” in step 2) of the algorithm, we mean a test which, if
satisfied and if the multipliers are not all nonnegative, indicates that a con-
straint be dropped. We give here a condition on the constraint dropping rule
which guarantees global convergence, but which allows much latitude in the

precise nature of the rule.

Full Step Dropping Rule Condition
The dropping rule must be such that a constraint is dropped only if
there is a negative multiplier and no constraint was added on the
last step. and such that a constraint is always dropped if the above
holds with z, sufficiently close to a stationary point with a negative

Lagrange multiplier.

Many possible dropping rules satisfy this condition. For example a relatively
unconstrained rule would result if a constraint were dropped whenever the
"only if" part of the condition is satisfled. One might also want to impose

some subsidiary conditions as long as they are not stronger than the "if"" part



of the condition. Sceme such rules are discussed in Section 3.

An advantage of our basic condition, in addition to the convergence pro-
perties to be demonstrated, is that the need for using Lagrange multiplier
estimates based on the same quadratic model used in generating the direc-
tion is less crilical. If, based on some other multiplier estimates, a direction
infeasible with respect to the dropped constraint is generated, that con-
straint may be immediately readded and a null step taken, possibly causing
cycling. The condition of not dropping immediately after an add would

prevent this particular form of cycling.

Some global convergence results about Algorithm 1, with various drop-
ping rules, will now be proved. The following definition and lernmas help to

clarify the proofs of the theorems to come,

Definition When discussing a cluster point z. of a sequence generated by
Algorithm 1, we will call a set of constraints and a corresponding matrix A

deficient if there is no solution A to Vf (z.)+AA=0.

Note that deficiency of a constraint set implies that Z7Vf (z.)#0, where Z is

a null space matrix for 4.

Lemma 1 Suppose z. is a cluster point of Algorithm 1. Then for any £>0
there is an 7>0 and an integer K such that if k>K and ||z, —z. ||<r then
Howdy || <e.
Proof. For ||z —z. || sufficiently small, if 4, is non-deficient then Z T9f ()
is arbitrarily small, and thus by assumption 2 of Algorithm 1, ||d, || is arbi-
trarily small. Since ap<1, the result holds for non-deficient 4.

Since there are only finitely many 7, and Vf is continuous, there is a

6>0 and an r>0 such that for all k with 4 deficient and ||z ~x.|l<r,



2,7V (z,.) |26, So, for all k with ||z, —z. || <7 and 4, deficient,

F (@)= f (me + o dig )= —yo VF () dy,

2"V (@) |y |1=76 | logede ]

=yoy, |

Hence, with K such that f, —f, < % for k=K, the result follows,

Lemma 2 Suppose z. is a cluster point of Algorithm 1. Then there is an r>0
and an integer K such that if k>K, ||z —z.||<r, and A4, is deficient, then a
new constraint must be added at z, .

ZTV e
-I»Lmzm: Z corresponds to a deficient constraint set

Proof. Call é=min} 5

Aj. Since there are only finitely many constraint sets, §>0, and for any
close enough to z., with 4, deficient, ||Z.TVf (z;) ||>6, by the continuity of
Vrf.

Now, note that there can not be infinitely many z, with 4, deficient and

o, =1, by assumption 2 of Algorithm 1, since ||Z,TVf (z) ||>6, but by Lemma

1, o dp =1d, becomes arbitrarily small.

Thus, beyond some index, if the step to z,,, does not hit a new con-

straint, by assumption 5 of Algorithm 1,
S @)~ (2 + e di )=~y VS () de
where o, =§, p for fixed p>0. Then for some B, (0,£,),
F (@) =F (2t de )= € VF (2 +Pidi) " d

Bo, subtracting Vf ()" de from both sides of the above inequality and using

assumption 1 of Algorithm 1,

(Vf (2 +Bede ) =VS (ze ) die=(y—1)VS (2 ) T dp 2 (1) || Z TVF () |1 1]

Hence for all z; close enough to z» with deficient active set,
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VS (2p +Bidie ) =S () | == || 2 TVF () |21 —y)ud >0

But ﬁkégksgpﬁ«, so by Lemma 1 ||opdi ||, and hence ||fidy ||, becomes arbi-

trarily small; the above inequality contradicts the continuity of V7,

The main global convergence result now follows easily from the above

lemmas and the full step dropping rule condition.

Theorem 1 Suppose f:F'-R, feCY{R"), and z. is a cluster point of the
iterates generated by Algorithm 1 using a dropping rule satisfying the full
step dropping rule condition. Then if the active set at z., is linearly indepen-
dent, z. is a Kuhn-Tucker point.

Proof. First, suppoese to the contrary that 4. is deficient. Let Ay be an active
set occurring arbitrarily close to z. with the largest number of constraints
arnong such sets. When we say that Ay occurs at z;, we mean that Ay is the
set of constraints to be held active upon taking the step from x,. Now con-
sider an iterate z,, with active set Ay, close enough to z. and with & large
enough that Lemma 2 applies. If 4. is deficient, all active sets at iterates
close enough to z. will also be deficient. So, by Lemma 2, the step from z,
must add a new constraint, and by the dropping rule condition no constraint
may be dropped upon leaving zx.,, so the active set at z,,, is larger than Ay,
This contradicts the choice of Ay, since iterates with the properties of x;

occur arbitrarily close to z.. Thus, there is a A+ such that Vf (z.)+4.2.=0,

Next we will prove that A.=0. Suppose rather that for at least one
i, Af<0. Consider Ay as defined above. By Lemma 1, let k be large enough
and z; close enough to z.» that each of zy, z, 1y, x4z, and Ze .3 is close enough
to z. that Lemma 2 applies. Also, pick z, so that 4, =Ay. Now, by the choice
of Ay there are clearly infinitely many such z, for which no constraint is

added on the step from z; to zy,, thus we may pick z, with A=Ay, ini-
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tiaily., Further, note that by Lemma 2, 4y must be non-deficient, since no
constraint was added. So, for z; close enough to z», by assumption 3 of Algo-
rithm 1, M* will be less than zero for some i, thus by the dropping condition
a constraint will be dropped. The active set with which the step from z, ., is
taken will therefore have one less censtraint than Ay, and will consequently,
by the linear independence of A+ and assurnption 4 of Algorithm 1, be
deficient. So, by Lemma 2, a constraint must be added at z;,,. Note that
the constraint which is added can not be the one which was just dropped,
unless the step di ., was not feasible with respect to the constraint dropped.

But for z; close enough to z. that is impossible, since

={yf + / r__ Tk :d};j;»lvf(x’) o (@) a0y
0=(Vf (z,)+A0,) Tar ] e S TERE
T
< || B Vf () |] + AR 0%
Heeo ]

and since the first quantity in the last inequalily is bounded below zero for
deficient constraint sets, and A{9<0, df ;<0 But, finally, since the original
constraint dropped is still not in the active set al z, 5 that active set is still
deficient, and so again by Lemma 2, another constraint must be added at
Ty s, and by the dropping condition, no constraint may be dropped. Thisis a
contradiction, since we have shown that infinitely many iterates arbitrarily
close to z. have active sets larger than Ay. Thus, A.>0, and z. is a Kuhn-

Tucker point, as was to have been shown.

Note that Theorem 1 only assumes continuily of the derivative of f as
opposed to Lipschitz continuity. This degree of generality is worth noting
since the well known example of convergence to a non-stationary point due
to Wolfe[ 12] involves an objective function which is not Lipschitz continuous.
Although this is somewhat pathological, we feel the example is significant in

that a method that exhibited false convergence for an objective function with
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an unbounded Hessian might get temporarily bogged down on a similar prob-

lemn with a Hessian that became very large and ill-conditioned.

False convergence is not the only difficulty associated with zigzagging.
When the algorithm is converging to a Kuhn-Tucker point it is also desirable
to have it settle down on a single active set instead of constantly switching.
To guarantee this it is necessary to additionally assume that the point
satisfles strict complementarity and the sufficient conditions for a strict

local minirmum.

Theorem 2 Suppose that the point z. is a cluster point of a segquence gen-
erated by Algorithm 1, and that z. is a Kuhn-Tucker point such that
VS (x:)+A4-Ae=0 with A. of full rank, A.>0, all other constraints are strictly
satisfied, and d7V2f (z.)d >0 for all d#0 such that A7d=0. Then the sequence
converges to z.» and the aclive set remains constant for all & sufficiently
large.

Proof. The hypotheses imply thal z. is the only Kuhn-Tucker point within
some distance r of z., and thus the only cluster point within that neighbor-
hood. Therefore, for any ' <r there are only finitely many iterates such that
7 & ||z —zs || <r. But by Lemma 1, for z; close to z. and k large enough,
o, dy is arbitrarily small and so ||zp.—2z+ || <r. Thus the entire sequence
must converge to z.. Now for & sufficiently large the sequence is close
enough to z, thal no constraints cutside of 4. are satisfied with equality, and
Lemma 2 applies. Then the active set at an iterate z, is a subset of 4., and if
it is a proper subset it is deficient and so a constraint must be added at the
next step. So within m steps 4 =4, and by assuwmption 3 and strict com-
plementarity, A.>0, so no conslraints are dropped and the active set

remains fixed, as was to be shown.
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A result of this type is very important because once the iteration settles
on one subspace, then one can rely on local convergence properties for
equality constrained problems. If the active set is constantly changing such

guarantees of convergence rate do not apply.

3. Relation to Other Constraint Dropping Rules

We now want to compare our dropping condition with various proposed
dropping rules and indicate how the condition might lead us to modify these

rules.

The "least constrained' dropping rule which satisfies our condition is to
drop a constraint whenever there is a negative multiplier and no constraint
was hit on the previous step, This rule seemns to allow dropping of constraints
quite freely but still guarantees global convergence and non-zigzagging

under the assumptions of Theorems 1 and 2.

In spite of this guarantee it may be more efficient to make more effort
on the current subspace rather than drop a constraint. One common sugges-
tion is to irnpose some degree of accuracy on the subspace minimization and
only drop when, say, the projected gradient has norm less than some toler-
ance, Our theory indicates that if in addition to the subspace minimization
tolerance it is required that no constraint was hit on the previous step, the
resulting algorithm is globally convergent. This immediately follows from
Theorem 1 since the first part of our condition is imposed directly, and near
a stationary point the tolerance is eventually satisfied, as required in the

second part.

An additional condition, suggested by Gill and Murray[4], is that the first
and second order multiplier estimates agree fairly closely. This will happen
when sufficiently close to a nondegenerate stationary point, and as in the

preceding paragraph global convergence is assured.
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An alternative suggested by a nurnber of researchers[5,10,11] is to com-
pute the decrease in the quadratic model of the objective which would result
from a slep on the current aclive set and the additional decrease which

would result from dropping a given constraint. These quantities are given by

VI () Ze (2T He 7)) 20 T F () (3.1)
and
(102
(M) (5.2)

ol )y
respectively. If the quantity (3.2) is sufficiently large relative to (3.1) then
the constraint may be dropped. This is intuitively a very reasonable condi-
tion but no convergence results have been been proved for it. However, if we
add the condition that no constraint was hit on the last step, the global con-
vergence and non-zigzagging results of Section 2 follow. This follows since as
we approach a stalionary point on a subspace, the quantity (3.1) goes to
zero, but if there is a negative multiplier at the stationary point, (3.2) stays
significantly negative,

A rule which has some similarity to our condition has recently been pro-

posed by Fletcher[2]. We consider it here,
Fletcher’'s Dropping Rule
Drop a constraint if there is a negative multiplier and

D <J (2ye)) =S (23), (3.3)

where
A=WV T ()" 2, (2, T H 2,) 2 2, TV ()
and (k) is the last index where a constraint was dropped.

For this rule Fletcher proves in the case of a uniformly convex objective

function that cluster points are Kuhn-Tucker points. Using techniques
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similar to those in section 2 we can prove the following partial extension of

Fletcher's global convergence results,

Theorem 3 Suppose [ H"-»R, feCY(R") and that {z] is a sequence of
iterates generated by Algorithm 1 using the Fletcher dropping rule. Then
any cluster point can be guaranteed to satisfy all the Kuhn-Tucker conditions
except A=0.

If we assumne further that the level set { z : ATz<b | f (2)<f (x,) | is bounded
and that the active set at any cluster point is of full rank, then the sequence
has al least one cluster point which satisfies all the Kuhn-Tucker conditions.
Proof. Call the sel of constraints held active at a point before any constraint
is dropped lhe preliminary active set, and, as usual, call the set of con-

straints with which the step is computed the active set.

Note that Lemmas 1 and 2 of course still hold, since they are indepen-
dent of the dropping rule. Also, the Fletcher dropping rule clearly implies
that if z; is an iterate close enough to a cluster point z., with k large enough
and preliminary active set 4, deficient, then a constraint may not be
dropped at z;, since A, will be bounded away from 0, while Jiw)—fr becomes

arbitrarily small,

First, suppose that z. is a cluster point of the sequence but A. is
deficient. Then all active sets near z. are deficient, and we can not drop a
constraint near x.. Lel Ay be an active set of maximum cardinality occur-
ring arbitrarily close to z.. Then for x;, with active set Ay close enough to .
with k& large enough, Lemma 2 will apply at z; and by Lemma 1 2., will also
be close to z.. Hence, by Lemma 2 the preliminary active set at z,; will
have one more constraint than Ay has, and since z,, is close to ., no con-
straint may be dropped, thus the active set at #;,,; will have one more con-

straint than Ay has. But this contradicts the choice of Ay, so in fact there
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must be a A. such that Vf (z.)+A4.A.=0.

Next, note thalt there are either infinitely many iterates where a con-
straint is dropped, or else eventually the active set is constant. I beyond
some point no constraints are dropped, then fi)—fr is bounded away from
zero for all k. But then, if z. is a cluster point, say with L, >, then Akj—bO.
so we must have A.=0, or else by the Fletcher dropping rule, a constraint
would be dropped. Thus, if constraints are dropped only finitely many times,

then every cluster point satisfies all the Kuhn-Tucker conditions.

Otherwise, suppose that infinitely many constraints are dropped, that
the level set is bounded, and that the active set al every cluster point is of
full rank. Let Ay be the largest active set occcurring infinitely often at
iterates where a constraint is dropped. Since the level set is bounded, we
can find a point z. which is a cluster point of ilerates where a constraint is
dropped with active sel Ay. By the first part of the theorem, there is a As
with Vf (z.)+AA+=0. To show that this z. satisfies all the Kuhn-Tucker condi-
tions, suppose to the contrary that for some 7, A<D, Consider an iterate
z; where a constraint is dropped close enough to x. with active set Ay and &
large enough that by Lemma 1, z, and zp,; are close enough to z. that
Lermma 2 applies, and that a constraint can not be dropped if the preliminary
active set is deficient. For z, close enough, since A. has full rank, by
assumption 4 Ay must be deficient, since a constraint was just dropped, 50
by Lermnma 2 the preliminary active set at z;,, will have one more constraint
than Ay has. Now, for 2 close enough, since A.<0, as in the proof of
Theorem 1 we see that the step from z, to zp . will be feasible with respect
to the constraint dropped from the preliminary active set at z;, and so that
constraint can nol be the one which is added at zp,,. Thus the preliminary

active set al xpy, is slill deficient. Hence, by the earlier comments, no con-
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straint can be dropped at z,,,, that is, the active set at z,,, will have one
more constraint than Ay. Since the active set at up,; is clearly deficient,
again by Lemma 2 we have that the preliminary active set at zi,5 will have
two more constraints than Ay. Thus, for each iterate after z,,,, up to and
including the first of these at which a constraint is dropped, the preliminary
active set will have at least two more constraints than Ay has. So, at the
iterate where the next constraint is dropped, the active set will have at least
one more constraint than Ay has, which contradicts the choice of Ay as the
largest active sel occurring infinitely often at iterates where a constraint is
dropped. Therefore, A,=0, and z, satisfies all the Kuhn-Tucker conditions as

was to be proved.

Note that this theorem extends Fletcher's result in that no convexity is
required and the first derivative is only required to be continuous. However it
is not as strong as Theorem 1 in that we can only guarantee that at least one

of the cluster points is a Kuhn-Tucker point, rather than all of them.

If, in addition to the conditions of Theorem 3, we assume that the objec-
tive is strictly convex, then the cluster point which is a Kuhn-Tucker point is
the unique minimizer and, by monotonicity of the sequence, is the only clus-

ter point. This is a slightly more general version of Fletcher’'s result.

Fletcher also proposes a variation of his rule which differs only in that
t(k) is the decrease in the objective function since the active set last
changed. This modified rule clearly satisfies the "only if" part of our drop-
ping rule condition, since if a constraint was added in reaching z, then
t(k)=k so (3.3) cannot be satisfied. It can also be shown to satisfy the whole
condition in the case of a uniformly convex objective function.

In summary, we have seen that with a slight modification a variety of

active set strategies can be made globally convergent and non-zigzagging. It
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seemns likely that the requirement of taking a full step with the current
active set before dropping would not afifect the performance of the algorithm
in most cases. Indeed, the fact that so little work is required on each sub-

space may be an indication of why zigzagging is seldom observed in practice.
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