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Abstract
This paper considers conditions under which a context-free language is reg-
ular and conditions which imposed on (productions of) a rewriting system gen-

erating a context-free language will guarantee that the generated language is

regular. In particular:

(1) necessary and sufficient conditions on productions of a unitary grammar
are given that guarantee the generated language to be regular (a unitary
grammar is a semi-Thue system in which the left-hand of each production is

the empty word) and
(2) it is proved that commutativity of a linear language implies its regularity.

To obtain the former resull, we give a generalization of the Myhill-Nerode
characterization of the regular languages in terms of well quasi orders, along
with a generalization of Higman's well quasi order resull concerning the subse-
quence embedding relation on £* In obtaining the latter results, we introduce
the class of perioéic languages, and demonstrate how they can be used to

characterize the commutative regular languages. Here we also utilize the theory

of well quasi orders.



1. Introduction

The most extensively investigated language classes within formal language
tﬁeory are undoubtably the class of regular languages (L{REG)) and the more
general class of contéxt—free languages (L(CF)) (see, e.g., [14] and [24]). In
order to understand the strict inclusion between these language classes (that is
to understand the difference between "context-freeness” and "regularity’) one

can proceed in (at least) two different ways.

(1) Investigate conditions under which a context-free grammar, or any other
type of a grammar generating context-free languages, generates a regular
language; "right-linearity” and 'non-self-emmbedding” of context-free gram-
mars are classical examples of conditions of this type (see, e.g., [14] and

[24]).

&

(R) Investigate conditions which imposed on (the interrelationship of words in)

a context-free language will guarantee that the language is regular.

Several conditions of this latter kind are known (see, e.g., [2] and [ 3]), although

it seems that this line of research has yielded fewer results than the former.

In this paper we present results of both types. That is we present (in Sec-
tion 4) a condition which imposed on certain types of grammars will imply that
the generated languages are regular and we present (in Section 8) a condition
which impoesed on the interrelationship of words in a special type of a context-
free language will guarantee that the language is regular. Underlying both of
these results are specific instances (given in Sections 3 and 5) of the application
of the theory of well quasi orders (see, e.g., [17]) to the study of regularity in
language theory. This unifying technical theme is discussed in more detail in

Section 7.



At this point, let us discuss the precise nature of our results in more detail,

beginning with these of the first type.

In one of the earliest papers in the area of formal language theory, Axel
Thue [25] defines and investigates the power of a simple class of rewriting sys-
tems (grammars) now known as 7hue systems. In a Thue system, the rewriting
operation is always taken to be a symmetric operation, that is, if it is specified
that a word » may be rewritten by a word v then it is understood that v may be
rewritten by u as well. Later, Emil Post [23] investigated a more general type of

rewriting system known as a semi-Thue system.
Formally, we have the following.

Definition. A semi-Thue system (over the alphabet ¥) is a finite set of pairs
of words T = {<uy, v;>, ..., <up, Y >} where u;, v; ¢ 2* for i:1<i=<k, For

xz,y & L* we say that z directly derives y (in T) if z = zux, and y = zwz,

*
where z,;, xg ¢ Z* and <u, v> & 7. In this case we write z :T> Y. =T> denotes the

-

EY
reflexive, transitive closure of the relation :T> il z :T>y then we say that x
derivesy (in T). »

From our perspective, a Thue system is a special type of semi-Thue system

in which it is required that <v, w> & T whenever <u, v> ¢ T. When this condition
- . . * . i
of symmetry is imposed, the relation :7? becomes an equivalence relation on

the moneid £*. In the general case however, we can say only that this derivation
relation is reflexive and transitive. A relation of this type is called a quasi order.
It is clear that the notion of a quasi order generalizes the notion of a partial
order (by not demanding anti-symmetry) as well as the notion of an equivalence
relation (by not demanding symmetry). A quasi order does not necessarily par-

tition L* into disjoint classes, but is does induce a structure on 2* in the follow-



ing sense.

Definition. For any quasi order < on a set A4 and any subset B of A, the
upward closure of B (with respect to <) is given by cl(F) ={x g4 :y <z for
some y & B}, B is =—closed (or simply closed) if cl(B) =B (ie if z ¢ B and
z <y implies that y ¢ B). =

it is clear that the notion of a =-closed set generalizes the notion of an
equivalence class in that for any equivalence relation = on a set 4, the

equivalence class of an element z of 4 is cl(z).

We will be primarily concerned with a special kind of semi-Thue system
which induces a partial order on the monoid ¥* Here we borrow some of the

terminology from the theory of (full) Thue systems (see e.g.[6]).

Definition. Given a finite set J C X*, the semi-Thue system induced by | is

defined by S(/) = {<A\, w>: w ¢ I}, where A is the null word. A semi-Thue sys-
tem 7 is unitary if 7 = S(/) for some finite / ¢ L*, =

&
For brevity, we will let <; denote the quasi order 5:(?) .

We can think about the derivation relation <; in terms of the unrestricted,
repeated insertion of words from the set /. Thus it is apparent that for z, y ¢ £*
and/ cTt, z=;y ifandonlyifz =a, o and y = u 8 Usly * * * UpOpUyy fOr
some @y, .., @ £L and Uy, .., Uy & clg(N). In the special case that /=3I,
cl$l(>\) = &* and this relation reduces to the subsequence embedding relation on
I* studied in [7/6] and [13]. On the other hand, if we let D, = {ad : a £ ] and
Ds =t{a@, @e : a & £} (where ¥ is a "shadow” alphabet in one-to-one correspon-

dence with %), then clg, (A) is the restricted Dyck language with parenthesis of
1
type a, & (see e.g. [14]) and clg (A) is the full Dyck language over the alphabet
2

%, i.e. the set of all words which represent A in the free group generated by Z,

where @ represents a”! (see e.g. [1]). Thus the class of languages of the form




clﬁi(w) for a finite set /7 ¢ Z* and a word w & £* in some sense constitutes a

class of ""generalized Dyck languages”. Cochet and Nivat [ 7] investigate a similar
class of generalized Dyck languages, which they define as the set of all
equivalence classes generated by unitary (full) Thue systerns which are "per-
fect'. ("Perfect” Thue systems are also called (strict) Church-Fosser Thue sys-
tems, e.g. in [6]). Due to the special nature of perfect Thue systems, any

equivalence class in a unitary system of this type can be represented as clsl(w)

for some word w, where <; is the derivation relation of the corresponding uni-
tary semi-Thue system. Thus our notion of a "generalized Dyck language"

includes those languages of Cochet and Nivat,

Let us formalize these concepts by defining a class of grammars associated
with the derivation relations <;.

Fal

Definition. A wunitary grammar is a triple G = <%, /, w> where X is a finite,
nonempty alphabet, / ¢ Z* is a finite, nonempty set and w ¢ I* 7 is called the
insertion set of G d&nd w is called the axiom of . The language of G, denoted
L(G), is ci_.;l(w), If w = A then G is called a pure unitary grammar. A language
of the form L(G) for some unitary grammar G is called a unitary language or a
pure unitory language if G is pure. =

It is apparent that unitary languages are context-free; the construction of a
context-free grammar generating the language of a given unitary grammar is
obvious. Thus the classes of unitary languages and pure unitary languages form
natural generalizations of the class of Dyck languages within the class of
context-free languages. These classes are of course properly contained within
the class of context-free languages, because the unitary languages are always
infinite. Furthermore, using the Chomsky-Schutzenberger representation
theorem ([5]), any context-free language is the homomorphic image of the

intersection of a unitary language with a regular set. Since the regular sets are



closed under interéection and homomeorphism, this indicates that at least some
unitary languages capture part of the essential "non-regular” aspects of the
context-free languages. On the other hand, it is clear that if the insertion set /
is "too dense,” for example if X C /, then the unitary languages generated by [
will themselves be regular sets. We will investigate the conditions under which a
unitary grammar generates a regular language. Our results may be briefly out-

lined as follows.

In Section 3 we give a general condition on a semi-Thue system 7 which
&
enforces the regularity of any upward closed set with respect to =T> . This is

accomplished by generalizing the Myhill-Nerode characterization of the regular
sets, given in terms of equivalence relations of finite index, to the more general
class of well quasi orders. Relevant definitions are given in the first part of this
section. Following this, in Section 4 we explore the specific conditions“ which
ensure the regularity of unitary languages. By generalizing the theorem of Gra-
ham Higman ([ 16]) which shows that the subsequence embedding relation <g is a

well quasi order on 2* we are able to give necessary and sufficient conditions

under which a unitary grammar generates a regular set.

In Section 5 and Section 6 we turn to results of the second type discussed
above, that is we present results concerning conditions which imposed on a

context-free language will guarantee that the language is regular.

In an effort to learn more about such conditions one may investigate subce-
lasses of L(CF) which are "as small as possible” (and still contain L(EEG)). One
such class is the class of linear languages L(LIN). A linear grammar differs
from a right-linear grammar (which always generates a regular language) only
by the fact that the unique nonterminal in a sentential form may generate ter-
minal symbols both to the right and to the left of itself. Hence it looks quite

plausible that requiring commutativity of a linear language (that is requiring



that for every word each permutation of occurrences of letters in it will result in
a word also in the language) will force the language to be regular. This conjec-
ture was formulated in [ 78] where various properties of commutative context-
free languages are considered. In Section 6 we demonstrate that this conjecture
holds. Actually our result is more general in that it relates commutative linear
languages to periodic languages, which are introduced and investigated in Sec-
tion 5. In this investigation well quasi orders turn out to be an important techni-

cal tool as well.

2. Preliminaries

We assume the reader to be familiar with the basic theory of context-free
languages; in particular with the basic theory of regular and linear languages,
see, e.g., [24]. We use mostly standard language theoretic terminelogy and

notation. Perhaps the following points require an additional explanation.

-

We use N to denote the set of nonnegative integers and N* to denote the set
of positive integers. For n ¢ N*, N* denotes the n-fold cartesian product of N.
If v ¢ N* then, for 1 €1 <n, v(i) denotes the i-th component of v. If v,, v, ¢ N*

then v, < vy if and only if v (i) < vp(i) for each 1 <7 < n.

For a finite set Z, #Z denotes its cardinality. For sets Z,, Zs, Z,—Z»

denotes the set-theoretic difference of Z, and Z,.

For a word w, alph(w) denotes the set of all letters that occur in w and
[w | denotes the length of w. For a letter @ and a word w, #,(w) denotes the
number of occurrences of a inw. For ¥ = {a,, ..., ag}, ¥:L* > N? is the mapping
defined by ¥(w) = (#a,(w). ..., #4,(w)) for all w & £*; ¥ is referred Lo as the
Parikh  mopping and VY(w) as the Porikh wector of w. For K C¥*
V(K) = U ¥(w).

wekK



3. A Generalization of the Myhill-Nerode Characterization of the Regular Sets

The importance of certain equivalence relations of finite index in the theory

of regular sets was first observed by J. Myhill ([20]) and A. Nerode ([22]).

Definition. A binary relation ® on a finitely generated free monoid I* is
monotone if and only if z, Ky, and z, R y, implies that z,z, R y,y, for all

Zy.%2,Y1.Yz € ¥ A monotone equivalence relation is called a congruence . =
Proposition 3.1. (Myhill-Nerode Charecterization)

For any sel .S C¥* S is regular if and only if S is a union of equivalence

classes under some congruence on L* of finite index. »

In the terminology introduced in Section 1, this result states that a set S is
regular if and only if S’ is =-closed under some monotone equivalence releiti‘on =
of finite index. Our goal is to investigate the regularity of sets which are closed
under the derivation relations of semi-Thue systems. These are monotone rela-
tions, but in general they are only quasi orders, and not full equivalence rela-
tions. Thus to investigate the regularity of sets generated by such relations, we
would like to find some generalization the equivalence relations of finite index in
the class of quasi orders. This is the class of well quasi orders (see e.g. [17]). In

his seminal paper, Graham Higman ([16]) gives the following definitions and

proves them to be equivalent.

Definition. Given a set A and a quasi order < on 4, then < is a well quasi
order on A if and only if any of the following hold
i) = is well founded on A, ie. there exist no infinite descending sequences
a;>az> - such that a; # a;y, for any 7, and each set of pairwise incompar-
able elements in 4 is finite,
if) for each infinite sequence {x;] of elements in A, there exist i < j such that

x; = .’L'j,




iii) each infinite sequence of elements in A contains an infinite ascending subse-
gquence,
iv) A has the "finite basis property,” i.e., for each set € C A there exists a finite
B¢ € C such that for every ¢ & C there exists a b ¢ By suchthat b < ¢, and
v) Every sequence of <-closed subsets of A which is strictly ascending under
inclusion is finite. =

From definition (i), it is obvious that the class of equivalence relations of
finite index is exactly the class of symmetric we_ll quasi orders. Thus the class of
congruences of finite index is exactly the class of symmetric monotone well
quasi orders. We generalize the Myhill-Nerode Characterization to show that a
set is regular if any only if it is upward closed with respect to some arbitrary
monotone well quasi order. Our proof mirrors the basic technique used in [8] to
show that sets closed under the subsequence embedding relation are regular. It
is derived from the following alternate characterization of the regular sets, usu-

ally attributed to Nerode (see e.g. [ 14]).

Definition. Given L CX* and w ¢ £* Fj(w) = {z : wz ¢ L]. The equivalence
relation 7 on I* is defined by =z 7y if and only if Fy(z)= Fi(y). The
equivalence classes induced by ? are called the righi invarient equivalence
classes of L. =

Proposition 3.2. For any L C X% L is regular if and only if f partitions Z*
into a finite number of distinet equivalence classes, =

Theorem 3.1. (generalized Myhill-Nerode characterization)

For any S CX*, S isregular if and only if S is <-closed under some mono-
tone well quasi order < on *.
Proof. Since the "only if" part follows from Proposition 3.1, it suffices to

show that for any monotone well quasi order < on £* each <-closed set 5 in &* is
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regular. Let us assume to the contrary that we are given a monotone well quasi
order < on £* and a <-closed set S ¢ £* which is not regular. Since S is not reg-
ular, the number of distinect right invarient equivalence classes under E; must
be infinite by Proposition 3.2. Hence we can find an infinite sequence {w;} of
words in L* such that w; % w; fori#j. Since < is a well quasi order, there exists
an infinite subsequence of {w;} which is ascending with respect to <, using
definition (iii}. Hence, we may assume that {w;} itself is chosen as an ascending
seguernce.

Since = is monotone and fw;] is ascending, for any =z ¢ £* and i<j,
wyz<w;z. Hence since S is <-closed, wyx £ S implies that w;z ¢ §. Thus the
sequence {Fg(w;)] is ascending with respect to inclusion. Further, since
w; é wjy for i#j, {Fs(w;)] is strictly ascending. Now by the same reasoning as
above, for any 7 and any z<vy, if wyz £.5 thenw;y £ 5. Hence each Fs(w;) is <-
closed. Thus {Fs(w;)} forms an infinite strictly ascending sequence of <-closed
sets, contradicting the fact that < is a well quasi order, using definition (v). We

conclude that every <-closed set S is regular, =

*
Corollory 3.1. For any semi-Thue system T over an alphabet %, if =y? is a

well quasi order on Z* then ¢l , (S) is regular for every S C I*.
=5

#*
Proof. Bince =T> is monotone for any semi-Thue system T, this follows

directly from the above theorem. =

4. ACharacterization of Regularity in Unitary Grammars

It is clear from the corollary given in the previous section that a unitary

grammar G = <X, [, w> will generate a regular set whenever <; is a well quasi
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order on &* Under what conditions does this occur? It has been known for some
time that in the special case that J = X, <; defines a well quasi order on £* This
result was given in [ 16]. Conway [ 8] gives a very elegant proof of the result using

a technique originally due to Nash-Williams [21].

To be definite, let us suppose that ¥ = {a, b}, It is not hard to extend
Conway's method to show that if [/ = {ac, ab, ba, bbb} then <; is a well quasi
order on £* In fact we can show that this is the case when / = ¥* for any k& = 1.
The case I = {aa, ab, b} is somewhat more difficult to handle. (It also gen-
erates a well quasi order.) On the other hand, it is clear that if = {aa, bb} then
<; will not be a well quasi order on L* because all of the words in (ab)* are pair-
wise incomparable with respect to <; (see part (i) of the definition of a well quasi
order in Section 3). This is because none of these words contains a subword
which is in'/, and thus no word in this set can be derived from any other word by
any non-empty sequence of insertions from /. Let us generalize this example as

follows.

Definition. Aset ] ¢ LV is subword avoidable in £* if and only if there exists
an infinite subset of S of £* such that no w ¢ S has a subword which is in 7.
Otherwise [ is subword unavoidable in £* 1f I is subword unavoidable in Z*, the
smallest kg ¢ N such that all words longer than kg have a subword in [ is called

the subword avoidance boundfor [. =

By the above reasoning it is obvious that for <; to be a well quasi order on
£*, it is necessary that / be subword unaveidable in X*, because otherwise we
can find an infinite subset of ¥* whose elements are all pairwise incomparable.
We demonstrate that this condition is in fact both necessary and sufficient. We
begin by giving a few basic facts about well quasi orders. Our first two proposi-
tions are immediate consequences of Higman's definitions, given in the previous

sectlion.
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Proposition 4.1, If <, is a well quasi order on the set S and <, is an exten-

sion of <; which is also a quasi order, then <; is a well quasi order on S, =

Definition. Given sets S, and Sy and relations #, and K, on Sy and Sp
respectively, the relation Fyx/; on S1x5; is defined by <a,b> R xRz <c.d> if

andonlyite Fyc andb R,d. =

Proposition 4.2, Given sets S, S, and well quasi orders <, and =, on S, and
Sz respectively, the transitive closure of <;( J<; is a well quasi order on S;|JS,

and =;X<; is a well quasi order on § xS, =

One of the earliest results of the theory of well quasi orders is the following,
apparently discovered independently by Higman, Neumann and Erdos and Rado

around 1950. (See note at the end of [ 11]).

Definition. For any set .S, §<“ is the set of finite sequences of elements of
S. Given a set S and a quasi order < on S, the ordering <% on < is defined by
<8y, s> <=F <ty > if and only if there exists a subsequence

<y, -ty >of <ty - - 6> such that s; < tij for1<j<k. =

Proposition 4.3 1f < is a well quasi order on S then =¥ is a well quasi order

on 5<%,
See [ 19] for a very short proof of this result. =

From these fundamental results concerning well quasi orders in general, we
can derive a few basic results concerning the special case of monotone well

quasi orders on subsets of L*

Lemma 4.1. Given §,,57 € £* and a monotone quasi order < on ¥, if < is a

well quasi order on .5, and on S, then < is a well quasi order on S,S,.

Proof. let {z,y;} be an infinite sequence of words in S,S, where for all
i,z £S5, and y; £ Sp. By Proposition 4.2, £x< is a well quasi order on S;xS3.

Thus we can find i, such that i <j and <z; ;> X< <z; y;>, lLe., z; £ z; and

A\l
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Y; < y;. Since < is monotone, this implies that z;y; < z;y;. Thus < is a well quasi
order on S5, using part (ii) of the defintion of a well quasi order from Section 3.

»

Lemma 4.2. Given S C £* and a monotone quasi order < on £* where A<z
for allz £ S, if < is a well quasi order on S then < is a well quasi order on S*.
Proof. Let {u;; - u,} be an infinite sequence of words in S* where

Uiy £S5 foralli andalln, 1 €£n <k;. Since < is a well quasi order on S, <% is a

well quasi order on S<“ by Proposition 4.3. Thus we can find 1,7 such thati < j

and <u; g, Ay e, > <E <uyq, U x> Hence there exists a subsequence
LUjyg, ,uj,¢k$> of <uj,, - - Uj ey > such that u; , < Uy, for 1<n <k; Since
A=z for all z £ S, this implies that u; ;- - - Uiy SUj1 " Uy by monotonicity.

Hence < is a well quasi order on S* =

Note that since the subsequence embedding relation < r is monotone and
for all @ & 1, A =y a, the Higman result cited above can easily be derived from
the above lemma. The heart of the argument used in the general case follows in

the next two lemmmas.

Definition. For each finite 7 ¢ L* let
10 = /¥

and [, = U Inalyag - Lol Y.

@y a, £ TUN

Lemma 4.3 For any finite / ¢ £* and n = 0,
(i) ifuv & [, andw & [ then www & [ 4,
(ii) ifww ¢ I, where |u | <n, and w & [ then uww ¢ I, and

iii) <; is a well quasi orderon 7, .
i q n

Froof.



14

ad. (i). This is obvious.

ad. (ii). Here we use induction on n. If n = 0 then we need only consider
the case u. = A and the statement follows from the fact that /g = I'*. Now let us

assume that the statement holds for some n =0 If wvel,,; then

UV T W G Wby W Wy, Where wy e/, for 1=d<k+1 and o, a, & I*
Hence for some i, 1<isk+], U =Wy Wy Gy and
v o= agay o Wy Where wy', w" £ 2% and wi'wy" =uy., For any w e/,

wy'ww;'" € Ly by part (i), Thus if 4=1, then wwvel,,, because
@ Wg ' ' GpWryy & Iy and [y is closed under concatenation. On the other
hand, it is apparent that if 7 > 1 and » has at most n + 1 letters, w;' has at most
7 letters. Thus by the inductive hypothesis, for any w ¢ I, w;'ww;" ¢ [,,. But this
implies that wwv ¢ Iy, - - - Lo [, thus wwv ¢ [, Thus the statement holds

for n+1 and the result follows by induction. .

ad. (iii). Again we use induction onn. We will need to induct on the stronger
assertion that for every n, <; is a well quasi order on [, and A <; w for every
w g I,. First note that A <; w for all w & J and since 7 is a finite set, <; is a well
quasi order on /. Thus by Lemma 4.2, <; is a well quasi order on 7* Obviously
A <; w for every w £ I'*, thus the assertion holds for the case n = 0. Let us sup-

pose this assertion holds for some n = 0. Using Lemnma 4.1 we have that <; is a

well quasi order on ILa, - Lyoqf, for any a, - o £¢¥* Furthermore, if
g, o el (A then for any we Ia, - I,al,, N<;w. Also, since [ is
finite, <; is a well quasi crder on § = U Ina, - I,o,{, using Propoesi-

ey e UM
tion 4.2. Hence by Lemma 4.2 <; is a well quasi order on S* Furthermore,
A<z for all x £ S* Since S* = I, we have shown that the assertion holds for

n+1. The result follows by induction. =

Definition. Given a finite set / C £*, for eachn ¢ N

let R([,) = U Lyalyag - Iyagl,. ®
@, g £ 8, k=n
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Lemma 4.4. For any finite 7 C X7,

(i) = is a well quasi order on R(/,,) for all n,

i) {R(1,)} is an ascending sequence of sets such that &* = C) F(l,) and
n

n=1

(iii) If 7 is subword unavoidable in £* and kg is the subword avoidance bound for
I, thenX* = R([ ).

Proaf.

ad. (i). This follows from Lemma 4.3 part (iii) (using Lemma 4.1 and Propo-
sition 4.2 as above).

ad. (ii). This is obvious.

ad. (iii). Assume to the contrary that £* — R(L,) # ¢ Let z be among the
shortest words in £* — (/). Since R(/,) contains all words of length kg or

less, z must be longer than kg letters. Since kg is the subword avoidance bound
for [, we can find among the first kg+1 letters of = a subword in /. Thus

x = uwv where w k] and u has kg or fewer letters. Since z was of minimal

length, uv & R(J; ). Hence wv =w,a, - W W, where o, ¢ L for 1<i<k
and w; e/l for l=<i<k+l Find 4 such that w»=wa; - w'
vo=awey o weGpw,, and w;'w;" = w;. Since |w| <kg, |w;'| <kg Thus by

Lemma 4.3 part (ii) w;'ww;" & I, Hence z & R(ly;), contrary to hypothesis. =
Theorem 4.1. (generalized Higman theorem)

Given a finite set / C L%, <; is a well quasi order on L* if and only if / is sub-

word unavoidable in Z*.

Proof. 1f I is not subword unavoidable in £* then we can find an infinite set
of words in £* none of which contains a subword which is in /. It is obvious then
that none of these words can be properly derived from any other word by inser-

tions of words from / and thus all these words are pairwise incomparable with
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respect to =;. It follows from definition (i) from the previous subsection that <;
is not a well quasi order on 2* On the other hand, if [ is subword unavoidable in
Y* then I has some subword avoidance bound kg and thus by Lemma 4.4 parts (i)

and (iii), <; is a well quasi order on R (/) and R(/, ) = L*. =

From the generalized Myhill-Nerode and Higman theorems, it is clear that
the subword unavoidability of 7 is a sufficient condition to ensure that the
language generated by any unitary grammar with insertion set / will be regular.
Let us show that this is a necessary condition as well. We will use the following

elernentary fact concerning regular sets.

Definition. Given a language L ¢ X*, a suffiz bound for [ is a number B ¢ N
such that for all z & £* if zy ¢ L for some y £ £* then zy' ¢ L for some y'¢ Z*

where |y'| = B. &

FProposition 4.4. For any L C Z* if L is regular then L has a suffix bound.

Froof. From each right syntactic equivalence class of L, choose a represen-
tative w. Let T be the set of representatives chosen. Let B = max {lw|}. Since
£

w
T is finite by Proposition 3.2, B is finite. Obviously B has the required proper-
ties. =

Definition. Given a finite alphabet A, [ Cpy A* if and only if 7 ¢ A* and
I % ¥* for any ¥ properly contained in A. I Cryn AY denotes the fact that [ Cpyn A*
and A £ [, =

Definition. For any L C Z*, L is prefix complete for ¥ if and only if for every
w & L* there exists z ¢ L* such that wz ¢ L. »

Lemma 4.5, For any finite £ CA, { Cpin B and w £ A% if S = L(<A, I, w>)
is regular, then S is prefix complete for Z.

FProof. Clearly, it suffices to show that for each a £ I, there exists z ¢ L*

such that ax ¢ /. Let us assume to the contrary that there exists @ ¢ £ such
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#a(z)

|z |

that ox £ 7 for any z eZ* Let r,(z)= for any z & A'. Let
M= max {re (v)]. Since [ Cpyin £* M > 0. Using # we can obtain an upper bound
v E

on 7,(x) for z ¢ S. In the worst case we have w = a* for some k > 0, which

Mlz| —k)+k

implies that re(z) < z] for any resS. Since
M{|z| k) +k <M+ —E—,thisyields
|z | |z
(i) re(z)=M + .
|z |

foranyzx ¢ S.

Since [ is finite, it is apparent that 7,{vg) = M for some wge /. Find
b eX - {a}land z ¢ L* such that vy = bz. Since 7,(vg) > 0, we must have z # A.

Now let n and m be chosen such that m >n + k. Let z =b"2™w. Since

btzx Im~> 1, which implies

that 10217 oy ond thus re(z) = HAb2Im tk ok sz £ S by
|z .

m>n+k, |bzlm>|z|m +n+k =|x| Hence

| |z | EX
equation (i). On the other hand, it is obvious that 62w ¢ S for all n & N. It fol-
lows that for any n, m such that m >n +k, &™ § b™ which implies that S is

not regular by Proposition 3.2. The result follows, =

Definition. For any finite, nonempty / ¢ &% let l; = max flul] =
ve

Lemma 4.6, For any finite, nonempty 7 CZ" and weZ* if
uv e S = L(<Z, [, w>)and |u]| > ({; = 1)|v]| + |w]| then v has a subword in /.

Proof. We use induction on |v|. If |[v| =0 then v ¢S and |u]| > |w],
hence v has a subword in /. Now assume that the statement holds whenever
|v| <n. Given uv ¢ S such that |u| >{{; = 1)|v| + |w]| and |v| =n + 1, find
xy ¢ S and z & ] such that xzzy = uwv. (This is possible because |uv | > |w|.) If
w is not a proper prefix of zz, then obviously v has a subword in /. If w is a

proper prefix of zz but not of z, then |y|< |v| -1 and |u| < |z| + 1 ~ 1.
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Hence lzl + 4 — 1> —D|v] + |w], which implies that
lz| > = 1)(|lv| —1) + |w|, which implies that |z | > ({; — )|y | + |w]|. Thus
since |y | =n, by the inductive hypothesis, z has a subword in /. Since z is a
prefix of u, this implies that w has a subword in /. Finally, if © is a proper prefix
of z then find z' ¢ Z* such that z =uz'. Then |z'y| < |v|, 2y =ux'y ¢ S and
Ju| > =)v] + Jw|=({ —1)|z'y| + |w|. Hence w has a subword in / by
the inductive hypothesis. Thus the statement holds if |v| =n + 1. The result

follows by induction. =
Theorem 4.2. (regularily characterization)

For any finite & C A, [ Ty &7 and w £ A*, L(<A, I, w>) is regular if and only

if /7 is subword unavoidable in L*,

Proof. Let S = L(<A, I, w>). By Lemma 4.5 we know that if S is regular,
then S is prefix complete for ¥. Furthermore, there also exists some suffix
bound B for S5 by Proposition 4.4. Thus for any x ¢ &* there exists y & I*,
ly| = B, such that zy ¢ §. Let kg = B(l; — 1) + |w/|. Then for any z & £* such
that |z| >k, there  exists a ye&eL* such that zyeS and
[z|>(; —1)]y| + |]w/| Hence, by Lemma 4.6, every such z has a subword in /.
Thus I is subword unavoidable in £* with subword avoidance bound less than or
equal to kg This establishes the "only if'' part. In the other direction, it is clear

that by the generalized Myhill-Nerode and Higman theorems, R = Cls,(?\) is a

regular set if / is subword unavoeidable in ¥* Thus since S = Fo,fa, - - Fo, R,

where a;, ..., o e Aand w = a; - - g, S is regular. =

It should be noted that the above theorem gives an effective test for the
regularity of unitary languages. This follows from the fact that it is easily decid-
able whether or not a finite set is subword unavoidable. In fact, we have the fol-

lowing stronger result,
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Theorem 4.3. For any regular set ® ¢ £*, it is decidable whether or not &

is subword unavoidable in L*,

FPraof. For any set & C Z*, the set of all words which do not have subwords
in i is &* — X*¥RL* R is subword unavoidable if and only if this set is finite. This

is easily decidable for regular R (see, e.g., [14]). =

5. Well Quasi Orders and Periodic Languages

In this section we turn to the investigation of conditions which imposed on a
context-free language will imply its regularity. The main result of this investiga-
tion, proved in the next section, is that each commutative linear language is reg-

ular.

In order to obtain this result, we need to develop a few fundamental tools
for the investigation of regularity in commutative languages. These tools arise
from the investigation of the properties of the class of periodic languages, which
we will define shortly. Again, it is the theory of well quasi orders that is applied
to derive the fundamental properties of periodic languages used in our regular-

ity results,

To simplify the notation, here and in the following section, we adopt the fol-

lowing convention:

all languages we consider will be over an arbitrary but fized alphabet

Y=ta,, .., gy} where d > 2.

We begin by formally defining the commutative languages.

Definition. (i). Let w ¢Z* The commutetive closure of w, denoted
com(w), is defined by com(w) = {z & L*: ¥(z) = ¥(w)}. (). A language Kls
commautative if com(w) C K for each w ¢ K. (iii). Let X < ¥(2*). The language

of X, denoted L(X), is defined by L(X) = {w & £*: ¥(w) ¢ X{. ®
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The following result is a direct consequence of the above definition.

Lemmaua 5.1, (1) Let K, Ky be commutative languages. K, C K; if and only if
V(Ky) € V(Kp). (ii). Let X < ¥(2*). Then L{X) is uniquely defined. *

We turn now to the definition of the periodic languages.

Definition. Let p = vg, vy, ..., vy be a sequence of vectors from N¢. We say
that p is a base if and only if v;(j) = 0 for all 4, 7 = 1 such that i # j. We use
Jirst(p) to denote wy, The p-sef, denoted ®(p), is defined by
Op) = fv & (N®) : v = wgtlyu + - - - +lgvy for somely, .. Ly & N} ®

Note that the p-set is a linear set (see, e.g., [24]). It is easy to see that each
base is unique in the following sense.

Lemma 5.2. 1f p, p' are bases such that 0(p) = 0(p") thenp = p'. =

Definition. Let X < ¥(¥*). We say that X is periodic if and only if there
exists a base p such that X = 0{p). =

In view of Lemma 5.2, for each periodic X ¢ ¥(£*) there exists a unique base

p such that X = 8(p). In this case we say that p is the base of X and we write
p = base (X).

Definition. A language K is periodic if and only if K is commutative and
¥(K) is periodic. If K is periodic then the base of ¥(K) is referred to as the base
of K, denoted base(K). =

We have the following basic result for periodic languages.

Lemma 5.3. Every periodic language is regular.

Proof. Let K be a periodic language and let base(K) =wvg, vy, ..., Uy,
Clearly a word w & ¥£*is in K if and only if, for every i ¢ {1, ..., d},

(1) #o(w) = vo(i) and fg (w) = ve(i)(mod v(3)),
Here we follow the convention that n(mod 0) =n for anyn ¢ N.

Consequently K = K, - - - MKy where K; = fw £ £* (1) holds] for 1<i<d. It
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infinite sequence of languages (possibly with repetitions) from F. Since F is
bounded, there exist only finitely many types for languages in F, and thus we can
find an infinite subsequence {73} of {S;} such that type(T7;) = type (7;) for any
i,j ¢ N. Furthermore, within {7;} we can easily find an infinite subsequence §{U;}
such that first(base (U})) < first (base (U;)) for any i < j. This is accomplished
by first finding an infinite subsequence of {7} in which the first components of
the first vectors are increasing, and then choosing from this sequence one in
which the sécond components are increasing and so on. By Lemma 5.4, for any
i<j we have U; > U;. Since {S;} was chosen as an arbitrary sequence, 2 is a
well quasi order on F (see point (iii) of the definition of a well quasi order from

Section 3). =

The above theorem immediately yields a type of "compactness"” result for
sets covered by bounded families of periodic languages. .

Corollary 5.1. lLet F be any bounded family of periodic languages. Then

there exists a finite L < Fsuch that | K= U K.
KeF Kek

Proof. This follows directly from Theorem 5.1 (see point (iv) of the

definition of well quasi order from Section 3.) =

Since any finite set of periodic languages is a bounded family, the following
result generalizes our previous regularity result for periodic languages (Lemma

5.3).

Corollary 5.2. For any bounded family of periodic languages F, | JF is regu-

lar.

Proof. This follows directly from Corollary 5.1 and Lemima 5.3 (because the

union of any finite set of regular languages is regular). =

6. Commutative Linear Languages
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~ is easily seen that each K;, 1 =1 < d, is regular and so K is regular, =

Two paramelers of periodic languages, type and size, form a useful techni-
cal tool.

Definition. Let K be a periodic language where base (K) = vg, vy, ..., vq4.
(i). The type of K, denoted type(K), is the pair of vectors (u;, up) from N?
defined as follows;

uy = (o(1)(mod v (1)), ..., vo(i)(mod v (), ..., vo(d)(mod vy (d))) and

wg = (y(1), 5 (0), . vg(d)).

(ii). The size of K, denoted size(K), is defined by:

size(K) = 1«?1'&); d{maxiul(i). up(i)13 where type (K) = (u,, u,). =

Example. Let I = {a,, a3 a3, a4} and let K be the periodic language such
that base (K) = (1,6, 8, 0), (2,0, 0,0), (0,3, 0,0), (0,0, 0,0,), (0, 0, 0, 7). Then
type (K) = (u,,up) whereu, = (1, 0,8, 0) anduy, = (2, 3,0, 7);
size(K) = max{2 376 74 =8, =

Lemma 5.4 Let K; K; be periodic languages such that
type (K)) = type (Kp). If first(base (K,)) < first (base (K3)) then K, 2 Ka.

Praoof. This is obvious.

It turns out that well quasi orders are naturally associated with certain fam-

ilies of periodic languages.

Definition. A family F of periodic languages is bounded if there exists a

g ¢ Nsuch that size(K)<qg forall K e F. =

Theorem 6,1. The containment relation 2 is a well quasi order on any
bounded family of periodic languages,
Proof. 1t is obvious that > is a quasi order on any family of languages F.

Now assume that F is bounded family of periodic languages. Let {S;} be an
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In this section we prove that each commutative linear language is regular.
This is accomplished by providing a representation of commutative linear

languages in terms of periodic languages.

Lemma 6.1. For any commutative linear language K, there exists a g ¢ N*
such that for every w & K there exists a periodic language I, € K where w ¢ Ly,

and size (L,)<gq.

Proof. let K be a commutative linear language and let G = (), &, P, S) be
a linear grammar generating X where () is its total alphabet, % its terminal
alphabet, P its set of productions and S its axiom. Clearly we can assume that

each production of 7 is in one of the following three forms:

A-Ba, A»aB and A»a where A, B are nonterminals (4, B ¢ 0-%) and a is a

terminal (a & ¥).

Let m = #Q. We define the sequence {g;}; » ; of positive integers as follows:
g, =m+land g, =(g,+ - +g;+1)(m+1) fori=>1,
Then we set ¢ = Zq,,:.

Let w e K. Let p =wg, vy, ..., vg be the base defined as follows.

vg = ¥(w).

Ifi:1=<1<dijssuch that ve(i) < g thenwv(i) = 0.

If for every i e {1, ..., d} wo(i) = g then all components of p are defined and

we are done. Otherwise we proceed as follows.

Let {b,, ..., b5} be all the letters from alph(w) such that #bj(w) >q for
l=j=<s Nowletw' = b‘fl Coe bsq’ubf’ R b‘fl where u is a fixed word such that
bt plupd . b7 com(w). Since g =2q,,w' is well defined. For
1 =1 =15 we refer to the leftmost occurrence of biq”' inw' as the left i-block and

the rightmost occurrence as the right i-block; the left i-block together with the

right i-block form the i-block of w',



24

Consider a derivation tree D of w' in &; the path of D originating in its root
and ending on a leaf of D such that the direct ancestor of the last node (the leaf)
has one descendant only is called the spine of D and denoted 7. A sequence of
consecutive nodes of T is called a segment (of 7). The label of a node e of T is
denoted by I{e). If p=e, - epe.,; is a segment of T such that
k=1 ey ..., e are nodes of 7, 1(e,) = L(exs) and i(e;) # i(e,) for 2= j <k
then p is called a repeat (of 7); e, - - e is the front of p (denoted front(p)).
The contribution of a segment u of 7 are the occurrences in w' which are
"derived” from nodes of u (in other words those occurrences in w' which have

ancestors among the nodes of u).
The following technical result is very crucial to our proof of Lemma 6.1.

Claim 6.1. For every 1 =i <s there exists a repeat u on T such that the
contribution of front (u) is contained in the i-block of w'. ¢
FProof of Claim 6. 1,
The proof goes by inductiononi, 1 <14 < s.
Leti = 1.
Consider the segment of T consisting of its first (m +1) nodes. Since g, = m.+1,
it is clear that this segment contributes only to the first block of w'. On the

other hand, the length of this segment is {m +1) and so it must contain a repeat.

Hence the claim holds fori = 1.

Assume that the claim holds up to the (i —1)-block of w' where 2<1i <s. We

will demonstrate now that it holds for the i-block of w".

Let U be the rightmost occurrence of b;_, in the left (i —1)-block in w' and
let T be the leftmost occurrence of b;_, in the right (i —1)-block of w’'. Let Oy be

the ancestor of U on 7 and let Oy be the ancestor of T on 7.

Thus we have the situation diagramed in Figure 6.1. (We have assumed that

Oy is closer the the root than Op; clearly we can assume this without loss of




generality).

U

L

.
;

left (i-1) - block

----------

Teft i-block

Figure 8.1,

.

f

right i-block

right (i-1)-block
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Clearly all nodes above Oy contribute either to the left of U or to the right
of 7. Now let &,, ..., & be all the nodes strictly between Oy and Oy such that

they contribute to the right of T.
Since ]b‘f‘b%g b bfigzbfi]’ | =g+ +g;,, clearly we have
() l+l=gyt - tgi
Now let z;, ..., 2;, 2,4 be segments of T defined as follows:

z, consists of all the nodes strictly between Oy and &,

25 consists of all the nodes strictly between @, and &,

z, consists of all the nodes strictly between &,—; and &,

2,4, consists of all the nodes strictly between &), and Op.

We consider now two cases.

4

Case 1. At least one of the segments z,, ..., 2; consists of more than m
nodes.
Let ip be the smallest index j such that z; consists of more than m nodes. In ;)
we consider the segrnent y consisting of the first (m+1) nodes. Clearly, this seg-
ment contains a repeat; say p. Note that all the nodes from z,, 2z, ..., Zig-10 Y
contribute to the right of U (but to the left of T'). The number of occurrences
contributed to w' by all the nodes from 2z, ..., Zig-1. 7 is not greater than
(L+1)(m+1) and so by (2) it is not greater than (g;+ - - - +¢q;,+1)(m+1). Since
the length of the left and the right i-block equals g;, this means that all

occurrences contributed by nodes from z,, ..., Zi,-1, Y are within the i-block.

Thus in this case the claim holds for the i-th block.
Cuse 2. Each of the segments 2z, ..., 2,4, consists of no more than m nodes.

Clearly in this case the number of occurrences contributed to w' by all the

nodes from 2,, ..., 2;,; does not exceed ({+1)m and (because the length of the
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left and right i-block is g;) all of these occurrences are within the i-block.
Moreover, from (2) and from the definition of g; it follows that if we consider the
segment p of 7 consisting of (m +1) nodes immediately following Op then all the
nodes from p will contribute to the i-block of w'. But p must contain a repeat

and so also in this case the claim holds for the i-th block,
Hence we have completed the induction and the claim holds =
Now that the claim is proved we complete the definition of o as follows,

For eachi = {1, ..., s}, let k(b;) be the length of the front of the repeat u on
7 which satisfles the statement of Claim 8.1 and has the shortest length. If
b =ag; for 1<j<d, then we set v;(j) = k(b;). Thus p is now completely

defined; p = vq, vy, ..., v4.

We set L, = L(8(p)). In order to show that L, C K, it suffices to show that
B(p) € ¥(K) (see Lemma 5.1). Letw & 0(p), hence v = vo+lw+ - - +iyuy where
by lge N Ify(i) # Ofor 1 <i <d then in the derivation tree D of 1" (from
the proof of the above claim) we will "iterate" I; times a repeat of the length
k(@;) contributing to the i-block (and we do it for each i satisfying v; (i) # 0). In
this way we get the word w'(l}, ..., ;) such that Y(w'(ly, ..., 1)) =v. Thus
v & V(K).

Consequently 0(p) < ¥(K) and so L, C K. Clearly size (L) <g. Finally we
notice that w & Z,, (because w' & com (w)) and so if we set Ly = Ly, the lemma

holds, =

Theorem 6.1. A language is a commutative linear language if and only if it

Is a finite union of periodic languages.

Proof. Assume that K is a finite union of periodic languages. Then, by
Lemma 5.3, K is a commutative regular language and so a commutative linear
language. On the other hand, if X is a commutative linear language, then using

Lemma 6.1 we can find a bounded family ¥ of periodic languages such that
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K = \JF. Thus by Corollary 5.1, K is a finite union of periodic languages. =
The following corollary of Theorem 6.1 solves an open problem from [ 14].
Corollary 6.1. It K is a commutative linear language then K is regular.
Proof. Follows from Theorem 8.1 and Lemma 5.3, =

Furthermore, summarizing our results for commutative regular languages

we have the following characterization theorem.

Theorem 6.2. For any commutative language K, the following are

equivalant:
(i) K is regular
(ii) K is the union of a finite set of pericdic languages, and
(iii) K = \JF for some bounded family of periodic languages F.

Proof. From Corollary 5.1 we have that (iii) implies (ii) and from Lemma 5.3
we know that (ii) implies (i). Finally, the fact that (i) implies (iii) follows from

Theorem 8.1, since any regular language is linear, ®

7. Discussion

In our paper we have presented some conditions enforcing regularity of
context-free languages. Additional results in this direction are given in [10]’.
While the primary fruits of the present investigation lie in our two main results
(Theorems 4.2 and 6.1) we hope that the characterizations of regularity for com-
mutative languages (Theorem 6.2) and for languages in general (Theorem 3.1)

will also prove useful,

It should be noted that with each of the latter theorems we have two
equivalent characterizations of regularity. The first is a simpler, "finitisic" char-

acterization (i.e. finite unions of periodic languages in Theorem 6.2 and unions of
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equivalence classes from congruences of finite index in the Myhill-Nerode
result). The second is a generalized form of the first, achieved through the
application of well quasi order theory. (Thus we have the unions of bounded fam-
ilies of periodic languages in Theorem 8.2 and the closed sets induced by mono-
tone well quasi orders in the generalized Myhill-Nerode result.) While character-
izations of the first kind are useful as "normal form" results, the characteriza-
tions of the second kind, because of their greater generality, are more useful in
proving specific languages to be regular, This is especially the case when those
"finitistic" aspects of the language which make it regular are only found deeply

hidden in its structure.

The use of the theory of well quasi orders in this manner brings up the ques-
tion of effectiveness. Suppose we prove a language to be regular using a charac-
terization of the second kind, ie., using well quasi order theory. How large is
the smallest "normal form" representation of this language? This is a particu-
larly difficult problem for the generalized Myhill-Nerode Theorem. Let the syn-
tactic complexity of a regular set be the smallest index of any congruence which
represents it as a union of equivalence classes, Are there any parameters that
can be given for a monotone well quasi order which determine the syntactic
complexity of its closed sets? In particular, what is the syntactic complexity of
the pure unitary language ciﬁj(}\) when 7 is subword unavoidable, with subword

avoidance bound k,? At present we have no answers to this question.

It is also natural to ask whether these results can be used to explore the
issue of regularity in classes other than those we have investigated. In partigﬁ~
lar, for what other classes of languages does requiring commutativity imply
regularity? Can we use Theorem 6.2 here? Work on this question is in progress
and we hope to report on it soon. On the other hand, the derivation relation is a

monotone quasi order in many of the types of grarnmatically defined language
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classes that have been studied in the area of formal language theory. Included in
this category are the scattered context languages ([ 12]) and the languages gen-
erated by various forms of matrix grammars (see e.g. [24]), as well as the vari-
ous classes of languages generated by grammars based on normal semi-Thue
derivations. The significance of the generalized Myhill-Nerode theorem with
respect to the study of regularity in these language classes has yet to be

explored.

Furthermore, in applying this theorem, in each case we would like to know
under what conditions the given derivation relation is a well quasi order. Here we
would like to have a set of general results concerning monoctone well quasi ord-
ers on freely generated monoids. Our lemmas 4.1 and 4.2 are only very rudi-
mentary results in this direction. As a specific example, let us consider the
derivation relation implicit in the context-free languages. This relation is
represented by a semi-Thue system 7 where <u,v> ¢ T implies that |u| = 1.
When does a systemn of this type generate a well quasi order? Suppose we also
allow |z | =0, i.e. w = A. Such a system is would be called a monadic semi-Thue
system (see [4]). Can we generalize the Higman theorem further to give a char-
acterization monadic semi-Thue systems which generate well quasi orders? Or

perhaps even arbitrary semi-Thue systems?

Finally, one can also consider some of the standard language theoretic
questions for the class of unitary languages. One such problem, that of the emp-
tiness of intersection, is solved for this class in [ 75]. There it is shown that it is
undecidable whether or not two pure unitary languages have a non-A intersec-
tion (i.e. an intersection other than {A}). This is shown even in the special case
in which S(7) is Church-Rosser for each insertion set (see e.g. [6]). However,
anocther basic question remains open. Is it decidable whether or not two unitary
languages are equivalent? We might note here that using the techniques from

[9]; this can be construed as a subproblem of the equivalence problem for DOS
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languages.
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