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INTRODUCTION

The investigation of the combinatorial structure of languages forms an
important part of formal language theory. One of the most basic combinatorial
structures of languages is the repetition of subwords (in words of a language).
Roughly speaking, the investigation of repetitions of subwords can be divided

into two (certainly not disjoint!) directions.

(1) The investigation of languages where repetitions of subwords (in the words
of the language) are forbidden. This area was initiated by Thue ([T]) in 1906
and since then this area was a subject of active investigation in numerous
areas of mathematics and in formal language theory (see, e.g., [BEM], [C].

[MH], and [S1]).

() The investigation of languages where repetitions of subwords (must) occur.
The most classical example here is the class of context-free languages
where the celebrated "pumping lemma" forces arbitrary long repetitions to

be present in an infinite context-free language.

Recently one notices a revival of interest in area (1) ("Thue problems")
among formal language theorists (see, e.g., [B], [H], [K], [S2]). In particular it
was discovered that the'theory of nonrepetitive sequences of Thue [T] is strongly
related to the theory of DOL systems (see, e.g., [RS]). As a matter of fact it was

pointed out in [B] that most (if not all) examples of the so called square-free



sequences constructed in the literature are either DOL sequences or their cod-
ings. Thus by now quite a lot is known about DOL languages (sequences) not con-

taining repetitions of subwords (see also [ER3]).

On the other hand very little is known on DOL languages containing repeti-
tive structures. The pumping-like properties do not hold for DOL languages and

"detecting” repetitiveness in a DOL language becomes a challenging problem.

This paper is devoted to the study of repetitiveness in DOL languages. Let
us first make the notion of repetitiveness (of subwords in a language) more pre-
cise. We say that a language K C LT is 'repetitiv;e if for each = 1 there exists -
a word W € X% such that W™ is a subword of K. We say that K is strongly
repetitive if there exists a word w € L¥ such that w™ is a subword of a word of
K for each m = 1. It is easily seen that there exist repetitive languages that
are not strongly repetitive, while on the other hand each strongly repetitive
language is obviously repetitive. By the pumping lemma infinite context-free
languages are strongly repetitive.

We demonstrate that

(1) a DOLlanguage is repetitive if and only if it is strongly repetitive and

(?) it is decidable whether or not an arbitrary DOL system generates a repeti-

tive language.

This paper is not a full paper. It states all the main and technical results,
however the proof are mostly ommitted. The full version of this paper will be

published elsewhere,

1. PRELIMINARIES

We assume the reader to be familiar with the basic theory of DOL systems

(see, e.g., [RS]). We will use the standard notation and terminology concerning



DOL systerns (as used in [RS)).

Perhaps recalling the following notational matters will make the reading of

this paper easier.

N denotes the set of nonnegative integers and N*t denotes the set of posi-
tive integers. For a set A, #4 denotes its cardinality. A denotes the empty
word. For a nonempty word w, first(w) denotes its first letter and last (w)
denotes its last letter; for n € N, pref, (w) denotes the prefix of W of length--
7 and sub, (W) denotes the set of subwords (segments) of W of length m.
Then sub(w) denctes the set of all subwords of W and for a language K,

sub(K) = U sub(z). For a DOL system G = (¥, h, w), £(G) denotes its
z ek

sequence, L (@) its language and maxr (G) = max{|z| : h(a) = 2 for sormne
a € L. Aletter ¢ € I is called alive if h™(a) # A for all n € N*. We will
use T(G) to denote the (infinite) derivation tree corresponding to £(G). Fora
node z in T(G), lb(x) denotes its label, anc (z) its direct ancestor and
enc?®(z) the direct ancestor of anc (z). Let E(G) = wg, W1, . Fora
node Z on the level 7 = 0 of T(G) (counted top-down) and (an occurrence of) a
subword 2 of wg where § =7 we use conir,(z) to denote the contribution of
Z to 2, similarly if % is (an occurrence of) a subword in w, then we use

contr,(u) to denote the contribution of % to 2.

In order not to overburden the (already involued) notation
(1) we will often not distinguish notationally between a (sub)word and its
occurrence, and
(8) we will often not distinguish in our notation between nodes and their
labels;
as the precise meoning should be clear from the context, these conventions

should not lead o a confusion.



We will recall now two useful notions concerning DOL systems. Let

G = (I, h, w) be a DOL system.

Aletter @ € ¥ has rank 0 (in G) (see, e.g., [ERR]) if L{G,) is finite, where
G, = (L, h, o). Letfor? = 1,2@) =Y—{a € ¥ : a is of rank smaller than 1}
and let f(;) be the homomorphism of L" defined by : fla)=a for
a € Ly and f)(a) = A tor @ € L—=L). Then let h(;y be the homomor-
phism of E(:;) defined by h(é)(a) = f(.;)(h,(a)). If a letter @ € L) is such
that the language of the DOL system (X(;), A;), @) is finite then @ has rank 1
(in G). Fori = 0, we use Z; to denote the set of all letters from L ofrank%.

Let G= (L, h, ®) and G = (T, h, ©) be DOL systems. G is called a
simplification of G if #& < #X and there exist homomorphisms f ! DI I
[e] '3 > T suchthath =g f.h=f g and @ = f (w). If G does not have
a simplification if is called elementary. It is known ([ER1]) that if G is elemen-
tary then h is injective. If Gg, Gq, ..., Gy, M = 0, is the sequence of DOL sys-
tems such that Gg = G, G; is a simplification of Gy_; for 1 <1 =N and Gy, is

clementary, then G, is called an elementary version of G.

2. BASIC DEFINITIONS AND RESULTS

In this section we define some basic notions (and some basic results con-
cerning them) to be investigated in this paper. These include the main notion of
(strong) repetitiveness of a language as well as several more technical notions

which will be useful for proving the main results of this paper.
Definition. Let K be a language, K ¢ £°.

(1) K is repetitive if for each € N* there exists a word w € L7 such that
w” € sub(K).
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() K is strongly repetitive if there exists a word w. € L+ such that

w" € sub(K) for eachn € N*. =

Obviously, if K is strongly repetitive then X is repetitive, but there exist
repetitive languages, that are not strongly repetitive. Consider, e.g., the
language Ky € {a, b, ¢, di* defined by
Ko={{wd)* :n e N, weifa b, c}t |w| =n and forno

z,y€cla b, ci’zeia b, cit w =22yl
Clearly K is repetitive but not strongly repetitive language (notice that K is a
context-sensitive language).

Definition. A DOL system G is called (strongly) repetitive if L( G) is

(strongly) repetitive, =

The following special subclass of DOL systems will be useful in the con-

siderations of the next section.
Definition. A DOL system G = (I, h, ) is pushy it sub(L(G))nZ, is

infinite; otherwise G is not pushy. =

If a DOL system G is not pushy then ¢(G) denotes

max{|w]| : w € sub(L(G))nZyl.
Lemma 2.1,
(1) Itis decidable whether or not an arbitrary DOL system is pushy.
(2) If a DOL system G = (Z, h, ) isnot pushy then &; = ¢pforalli > 0.
(3) If a DOL system G is not pushy then g (G) is effectively computable, =
Our next notion is the fundamental technical notion of this paper. |

Definition. A DOL system G = (X, h, @) is called special, abbreviated a
SDOL system, if it satisfies the following conditions.
(0) G is reduced.



(1) Gis sliced meaning that

(1.1) for each @ € Z, and each n € NV, alph (h™(a)) = alph(h(a)).

(1.2) for each @ € L, the length sequence { |A™(a )| irn > o is either strictly
increasing or constant and

(1.3) w € X,

(2) G is strongly growing meaning that

(2.1) ( is propagating and

(2.2) no letter in G has a rank (including the zero rank).

(3) G iselementary. =

The next few results bind the notion of repetitiveness with several
subclasses of DOL systems as well as they indicate how this notion carries over

through some operations on languages and DOL systems.

Lemma 2.2, Let &G be a DOL systern.
(1) If G is pushy then G is strongly repetitive.
(2) It G is finite then G is not repetitive. ®

Definition. Let K be a language and let (K, ..., K,,), . = 1, be a n-tuple
of languages. Then K < (K3, ..., K,) it K C K K3...K, and K; C sub(K) for

each 1=1=<n. =

Lemma 2.3. Let K, Ky, ..., K,, n = 1, be languages.
n
(1) Let K = {_) K;. Then
i=1 ,
K is (strongly) repetitive if and only if there exists a 1 £ 2 < n such that K] is
(strongly) repetitive.
() Let K < (K4, ..., K;). Then
K is (strongly) repetitive if and only if there exists a 1 <1 < m such that Kj is

{strongly) repetitive. =
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Lemma 2.4. Let (G be a DOL system and let &' be its simplification. Then G

is (strongly) repetitive if and only if &' is (strongly repetitive). =

3. MAIN RESULTS

In this section we state two main resuits of this paper and indicate the stra-

tegy of their proofs.
The following two results are the main results of this paper.

Theorem 1. It is decidable whether or not an arbitrary DOL system ( is

repetitive. =
Theorem 2. Every repetitive DOL system is strongly repetitive, =

In order to prove these results we will prove the following two (more techni-
cal) theorems. They allow us to concentrate on SDOL systems (rather than von-

sider arbitrary DOL systems).

Thearem 3.
(1) It is decidable whether or not an arbitrary DOL system is repetitive if and
only if it is decidable whether or not an arbitrary SDOL system is repetitive.
(2) 1f every repetitive SDOL system is strongly repetitive, then every repetitive
DOL system is strongly repetitive. =

Theorem 4.
(1) Itis decidable whether or not an arbitrary SDOL system is repetitive.

(2) Every repetitive SDOL system is strongly repetitive. =

Clearly Theorem 3 and Theorem 4 together imply Theorem 1 and Theorem

2. Thus the rest of this paper is devoted to proofs of Theorem 3 and Theorem 4.



In the next section we prove Theorem 3. In Section 4 we consider closed
and strongly closed subalphabets of the alphabet of a SDOL system. Considera-
tions of this section form important technical tools for Section 5 where

Theorem 4 is proved.

4. PROOF OF THEOREM 3
In this section Theorem 3 is proved.

Theorem 3.
{i) It is decidable whether or not an arbitrary DOL system is repetitive if and
only if it is decidable whether or not an arbitrary SDOL system is repetitive.
(ii) If every repetitive SDOL system is strongly repetitive then every repetitive

DOL system is strongly repetitive, =

Proof. (i) Clearly it suffices to prove the if part of the statement only. To

this aim we proceed as follows.
Let G = (Z, h, w) be an arbitrary DOL system.

First we decide whether or not & is finite (it is well known that finiteness is
decidable for DOL systems). If G is finite then (see Lemma 2.2(2)) & is not
repetitive and we are done. If G is infinite then (see Lemm? "?.1(1)) we decide
whether or not & is pushy. If it is, then (by Lemma 2.2(1)) G is strongly repeti-
tive and we are done.

Thus let us assume that ( is not pushy.

Let G° be the "coded version of G" defined as follows. G¢ = (Z¢, h¢, w°)
where
2 ={(a 2z, B):x €L-Tg o € Lgand |a], |B] = q(G)}.

w® = (&g, Y1, ap)(g, Yo, &3)...(Ap—1, Yp~1, Ay ) where

W= Y 10GY 2Oy 1Y —10n, Y € =Yg and a; € Lg for 1<i<n—1



and 1< j =n,
for (o, , B) € Zc.
he (o, z, B)) = (h{a)ay, ¥y, a2)(@z, Yz 3) .. (Cn-1, Yn—1, %rR(B))
where
h(z) = 01y 102y 2. Cp—1Yn 180 Yy € T—Lgand o, € Eo'fo;L <i<=n-1
and1l=<j<n,
By Lemma 2.1 (¢ is effectively constructible.
Claim. 4.1,
(1) G° is (strongly) repetitive if and only if & is (strongly) repetitive.

(2) G°€ is strongly growing, ®

Claim 4.2. There exists an algorithm which given a strongly growing DOL
system H produces a finite set 4, ..., H;, £ = 1, of DOL systems such that
(1) H is (strongly) repetitive if and only if H; is (strongly) repetitive for some
1l=s1=<t¢,

() H; isspecialforeachl<i<t{, =

Now we complete the proof of Theorem 3.(i) as follows.

Let us consider the algorithm R given by the following diagram.



YE,S//

ANSWER:
Not
repetitive

ANSWER: CONSTRUCT
“*—lrepetitive CgC
Apply 4
construct
c o
G1, c e Gt
ANSWER: ANSWER:
<¢— repetitive Not
repetitive
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Clearly, if it is decidable whether or not an arbitrary SDOL system is repeti-
tive, then (from Claim 4.1 and Claim 4.2 it follows that) the algorithm R decides

whether or not an arbitrary DOL system is repetitive.
Hence (i) holds.

(i) To prove (ii) let us assume thai every repeti’ﬁi{;g SDOL system is
strongly repetitive. Let us analyze the algorithm R and in particular the cases
when it decides that a DOL system in question is repetitive. There are two such
cases,

(i) The answer "repetitive” given on the exit YES from the test "Is &G pushy?".
In this case, by Lemma 2.2(1), G is also strongly repetitive.

() The answer "repetitive’” given on the exit YES from the test "Is one of Gf
repetitive?’. In this case we know that (at least) one of the "component sys-
tems" Gf, ..., Gf is repetitive; since all these systems are special, our assump-
tion implies that (at least) one of the systems GY,..., Gf is strongly repetitive.

Then, by Lernma 2.3 and Lemma 2.4, G is strongly repetitive.
Hence, whenever (7 is repetitive it is also strongly repetitive and (ii) holds.

Consequently Theorem 1 holds, =

5. CLOSED AND STRONGLY CLOSED SUBSETS OF %

In this section we define and investigate closed and strongly closed subsets
of (the alphabet of) a DOL system. The results of this section form an important

tool in proving Theorem 4 in the next section.

Let G = (Z, h, S) be a DOL system and let ® be a nonempty subset of T,
We say that O is closed (with respect to G) it h(a) € O®" for eacha € @
and we say that @ is strongly closed (with respect to G) if alph(h(a)) = 0

for eacha € ®. Note that if © is strongly closed then it is also closed.
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Let w € sub(L(G)).1et @ C T andletu € B Wesaythatu isa
® -block (of w) if w = aqubf where @, b € T—0. A O-block u is mazimal

in w if no other ®-block in w is longer than %; then B ®('w) denotes the

number of different maximal ®-blocks in w. (B.g.,ifw = a3cac?a?cac and

0 = {a] then By(w) = 2),

Now let G = (T, h, w) be an arbitrary (but fixed) special DOL system with
F(G) = wg, wy. ... and let m = mazr(G). We will investigate several useful

properties of closed and strongly closed subsets of .

Lemma 5.5 B®(w) < #Tm* for each closed subset ® of L and each

w € sub(L(G)). =

Now we move to investigate strongly closed subsets of £. We start by noting

the following property.

Lemma 5.6 Let © be a strongly closed subset of £. For every . € N+ and
everya, b € O, |R™(b)| <= m-|h"(a)]. =

The relevance of strongly closed subsets of X to the investigation of repeti-

tive properties of G stems from the following result.

Lemma 5.7. If n > #2m4+4 then for each w # A holds: if
w™ € sub(L(G)) then alph (w) is strongly closed. =

We define now a concept important for our further considerations.

let z € L{G), ® be a strongly closed subset of L and let

u € sub(z )n®+. Thus we have the following situation.
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T(G):

/ first(u) last(u)
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where X is the first {(bottom-up) common ancestor of first(w) and last (u);

T, is a subtree of T{G) rooted at X with % being its frontier.

The cover of w, denoted covV (u) is the subgraph of 7,, spanned on all
nodes of 7, the contribution of which to w, is totally included in % (this
includes also nodes from %). The surface of cov (), denoted sur(u), con-
sists of all nodes of cov{w) such that their direct ancestor in T(G) is not in
cov (’u.) Let s €7 be the smallest integer such that some nodes of cov (u) »
are on the level s of T(G). All nodes from cov (%) on the level S form the level
D of cov(u) - their set is denoted by covg{u); all nodes from cov (%) which
are on level 5+1 of T(G) form level 1 of cov(u) - their set is denoted by
cov{u), and so on up to L = (S—7) where (S—7) is called the height of

cov (1) and denoted by ht ().

Lemma 5.8. The number of surface nodes on each level of cov(u) is

bounded by 2m?. =

contr, (b
Lemma 5.9 For eachnode b of covg(u), | : u(b)] > L
fw] 4m3
Lemma 5.10. Let O0=l<hi(u)—1 and let a € coy;(w) Then
|conir, (a)] 1
[u] 4m A+

6. PROOF OF THEOREM 4

In this section we provide a proof of Theorem 4. We start by introducing the

following useful notion.

Let O be a strongly closed subset of L; we assume some fixed order of ele-
ments of &. Let 7 be a cyclic permutation of . We say that A is (@, m)- cyclic

if the following two conditions are satisfied:
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(1) for each z € ®, it h(z) =2z, - - 2, where T, ..., Ty € ®, then

Ty 41 = T(x;) for each? €1 <= m—1,

(2) foreachz,y € O, it m(z) = y then n(last (h(z))) = first(h(y)).
Lemma 8.11. If h is (®, m)-cyclic, then for every x € © and everyn € N*

there exists a w € ©F such that jw | = #0 and w™ € sub(h™(z)). =

Iemma 6.12. There exists a p € N such that, for each w # A and each
n = p, it w" € sub(L(G)), then alph (w) is strongly closed and there exists
a permutation 77 of alph (w) such that A is (alph (w), m)-cyclic. =

Now Theorem 4 is proved as follows,

Claim 6.11. ( is repetitive if and only if there exists a strongly closed

® ¢ T and a permutation 7 of ® such that & is (@, m)-cyclic. =

Since (obviously) it is decidable whether or not there exists a strengly
closed ® C L and a permutation of 7T of ® such that h is (@, T)-closed, Claim

6.11 implies (@) of Theorem 2.
Part (b) of Theorem 4 is seen as follows.

By Lemma 6.12, if (7 is repetitive then there exist a strongly closed @cz
and a permutation 7T of ® such that A is (®, m)-cyclic. 'Ihén by Lemma 8.11, for
each @ € ® and each n € N* (an(a)m(a) - - - n#0-1(a)) € sub(L(G)).
Consequently (7 is strongly repetitive.

Thus Theorem 4 holds. =

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of NSF grant MSC 79-03838.
They are indebted to R. Verraedt for useful comments concerning the first draft

of this paper.



15

REFERENCES

[BEM] D. R Bean, A. Ehrenfeucht and G. F. McNulty, Avoidable patterns in

(B]

(€]

[ER1]

[ER2]

[ER3]

(H]

[K]

[MH]

(RS]

[s1]

strings of symbols, 1979, Pacific Journal of Mathematics, v. 85, no. 2,
261-293.

J. Berstel, Sur les mots sans carre definis par un morphisme, 1979,

Springer Lecture Notes in Compuler Science, v. 71, 16-25.

A. Cobham, Uniform tag sequences, Mathematical Sysiems Theory, 1972,
v. 8, n. 2, 164-191,

A. Ehrenfeucht and G. Rozenberg, Simplifications of homomeorphisms,
Information and Control, 1978, v. 38, n. 3, 298-309,

A Ehrenfeucht and G. Rozenberg, On the structure of polynomially
bounded DOL systems, Fundamente Informalicae, 1979, v. 2, 187-197.

A. Ehrenfeucht and G. Rozenberg, On the subword complexity of square-.

free DOL languages, 1981, Theoretical Computer Science, v. 16, 25-32.

M. Harrison, ntroduction to formal language theory, 1978, Addison-

Wesley, Reading, Massachusetts.

J. Karhumaki, On cubic-free w-words generated by binary morphisms,

Discrete Applied Mothemalics, to appear.

M. Morse and G. Hedlund, Unending chess, symbolic dynamics and a
problem of semigroups, 1944, Duke Mathematical Journal, v. 11, 1-7.

G. Rozenberg and A. Salomaa, The mathematical theory of L systems,

1980, Academic-Press, Londen, New York.

A. Salomaa, Morphisms on free monoids and language theory, in R. V.
Book, ed., Formal longuage theory, perspectives ond open problems,
1980, Academic Press, London, New York, 141-166.



16

[82] A. Salomaa, Jewels of formal language theory, 1981, Computer Science
Press.

[T] A. Thue, Uber undendliche Zeichenreihen, 1908, Norske Vid. Selsk. Skr., I
Mat. Nat. KI.., Christiania, v. 7, 1-22.



