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ABSTRACT

A word is called m-free (m = 2) if it does not contain a
subword of the form x" where x is a nonempty word. A language is
called m-free if it consists of m-free words only. The subword
complexity of a language K, denoted T is a function of positive
integers which to each positive integer n assigns the number of
different subwords of length n occurring in words of K. It is known
that if a DOL Tanguage K is m-free for some m > 2, then, for all n,
WK(n) < gnlog,n for some positive integer q. We demonstrate that
there exists a 3-free DOL Tanguage K on three letters such that, for
all n = Ng> WK(n) z rnlog,n for some positive real r and a positive
integer Ny We also demonstrate that if m = 3 and K is a m-free DOL lang-

uage on two letters, then, for all n, WK(H) < pn for some positive integer p.
INTRODUCTION

The investigation of subwords of (words in a) formal language
constitutes an important aspect of the investigation of the combina-
torial structure of formal languages. Such an investigation may
concern more structural aspects (as initiated in [T], see also [B]
and [S]) or more numerical aspects (see, e.g., [L] and [ER1]) of
this topic.

Recently these two trends were combined togehter in the frame-
work of DOL languages (see, e.g., [ER2], [ER3] and [R]). It was
demonstrated that the subword complexity of a DOL language (which
was designed as a "numerical measure") is very sensitive to various
structural restrictions, in particular to Thue-type restrictions on

the repetition of subwords in words of a language.



This note is concerned with the influence of the size of the
alphabet of a so-called m-free DOL language on its subword complexity.
In particular we prove that the transition from the two-letter alphabet
to the three-letter alphabet corresponds to the transition from order n
to order n ]ogzn subword complexity of m-free lanquages DOL where m > 3.
Since the boundary for such a transition is already known in the case
of 2-free (square free) DOL languages, this node rounds off this partic-

ular aspect of research concerning the structure of subwords in DOL Tanguages.
PRELIMINARIES

We assume the reader to be familiar with the basic theory of DOL
systems (see, e.g., [RS]). We will use the standard notation and termi-
nology concerning DOL systems (as used in [RS]).

Perhaps recalling the following notation and terminology will facilitate
the reading of this note.

N* denotes the set of positive integers. For a set A, #A denotes its
cardinality.

For a word x, |x| denotes its length and alph(x) denotes the set of
letters occurring in x.

For words x, Yy, X is a subword of y, written x sub y, ify = Y1 X Yo

for some words y;, ¥o3 sub(y) denotes the set of subwords of y and, for
n=0, subn(y) denotes the set of subwords of Tlength n occurring in y.
(Subwords are sometimes referred to as segments or factors). For a word
yand m e N+, m > 2, we say that y is m-free if for each nonempty word
X, XM ¢ sub(y). 2-free words are referred to also as square free

and 3-free words are referred toalso as cube free.

For a language K, alph(K) = \\,) alph(x), sub(K) = \\) sub(x) and, for
xeK X e X

each n > 0, subn(K) = \Q) subn(x). For m = 2, a language K is said to be
XeX



m-free 1f it consists of m-free words only.

The subword complexity of a language K, denoted Tes is a

function of N' such that, for each n ¢ N+, ﬂK(n) = #subn(K).

We close this section by recalling the following result from [T]

(see also [S]); it will be useful in the pkoof of our main result.

Proposition 1. Let Gj = ({a,b}, 99e a) where go(a) = ab and
go(b) = ba. Then L(GO) is cube free. [

RESULTS

Let H = ({a,b,c}, h, ¢) be the DOL system where h(a) = ab,
h(b) = ba and h(c) = cacbc.

Lemma 1. L(H) is cube free.
Proof.

A word v e sub(L(H)) is called a block if y = cxc for some
X € {a,b}*. For a block y its age, denoted age(y), is defined by
age(y) = 1092(|y[ -2). If Y1s ¥, are blocks such that
age(yl) > age(yz) then we say that ¥y is older than y,.

Note that it follows directly from the definition of h that
each block is of Tength at least 3 and the age of each block is a

nonnegative integer.

A block y is called an a-block if y = cay, for some Y13 other-
wise y is called a b-block. If Yy» ¥, are blocks such that either
both ¥q and y, are a-bTocks or both Y1 and yo are b-blocks, then

Y1» Yo are similar (blocks).



Claim 1. If Uy, vy, ze L(G) where Yy ¥p are similar blocks
such that age(yl) = age(yz), then v contains a block older than
Y1 (and yz). .

Proof of Claim 1.

Consider E(G) = Wy sty e and let e be such that Wy = UYVY,2Z.
An occurrence of ¢ 1in Wy s for some 0 < k < e, is called the real
ancestor of the given occurrence of ¥y (y2 respectively) if
(1) this occurrence of ¢ contributes the given occurrence of Y1
(y2 respectively) and moreover
(2) if an occurrence of ¢ in w,, for some 0 < j < e, contributes the

J
given occurrence of Y1 (y2 respectively), then j < k.

Since Y1 Yo are similar blocks of the same age, from the
definition of h it follows that, for some 1 < ¢ < e, Wy contains
two different occurrences of e such that one of them is the real
ancestor of the given occurrence of Y1 and the other one 1is the real
ancestor of the given occurrence of y,. Since [h(a)| = [h(b)]| = 2,

this implies that v contains a block older than ¥q (and yz).
Thus Claim 1 holds. [J

Now we continue the proof of Lemma 1 as follows. Assume that
for some i =1 and some X ¢ {a,b,c}+, XXX subwi. There are two
possibilities.

(1) ¢ ¢ alph(x). Since this directly contradicts Proposition 1,
this case is impossible.
(i11) c e alph(x). Clearly, in this case xxx must contain at Tleast

3 occurrences of ¢ and consequently xxx must contain a block. Let



y = cyc for some y ¢ {a,b}+ be a block contaihed in xxx such that no
other block of xxx is older than y.

Thus xxx = uyz for some u, z ¢ {a,b,c}*. Clearly, it cannot be that
x sub y (as otherwise ¢ & alph(x)). Thus y sub xx and consequently
xxx contains two different (disjoint) occurrences of y. Hence by

Claim 1, xxx contains a block older than y; a contradiction.
Thus all words of L(H) are cube-free and Lemma 1 holds. 0

Theorem 1. There exists a cube-free DOL Tanguage such that
alph(K) = 3 and there exists a positive real g and a r « N* such that

WK(D) > qnlog,n for all positive integers n = r.
Proof.

Let G = ({a,b,c}, g, cac) be the DOL system where g(a) = ab,

1

g(b)

(1) K is cube free. This follows directly from Lemma 1.

ba and g(c) = cacbc. Let K = L(G). Obviously alph(K) = 3.

(2) ﬂK(n) > q111og2r1 for all positive integers n = r for some r ¢ N
To prove this we proceed as follows.

Let for a word z « {a,b,c}

mawa,b(z) = max{|u| : u e sub(z) n {a,b}+} ,

MAXa,b(Z) = fu : u e sub(z) n {a,b}" and |u] = maxa,t)(z)} and let

maz, b(z) .................. if z contains precisely ome occurrence

L]

tag(z) = ; of precisely one subword from MAXaBb(Z)’
0 s otherwise.

Let E(G) = Pgs Pp> +++3 clearly, for each i = 1, tag(pi) =21,

k

Let for each n « N+, Q, = [k e N 2K %wand 3k 5 n} .

—

. +
Claim 2. For each n e N, #Qn > [1 - TBE;W§J 1og2n - 3.



Proof of Claim 2.

1ogzn

+
Let n ¢« N . For each k ¢ Qn’ k < 1092n - 1land k = Tsazé-. Hence

1092n 1
#Qn = (1092n - 1) - T-O'—g*z*é* -2 = [1 - W} 1092n - 3.
Thus Claim 2 holds. [J

Claim 3. For each n ¢ N and each k « Q,» sub,(K) contains at

Teast g-words z such that tag(z) = ok,

Proof of Claim 3.

Let n ¢ N+ and let k ¢ Qn' Consider Ok - Clearly

o, = (eI (a)nf(e). clearly h¥(b) > 3 and h¥(a) = 2K, Thus o,

contains at least g~subw0rds containing hk(a) as a subword.

Thus Claim 3 holds. [

From Claim 3 it follows that, for each n ¢ N+, wK(n) > g‘#Qn'

Thus by Claim 2 we get

n n 1
WK(H) > 5 #Q, = g‘[[l - 755531 Tog,n - 3]

It is easy to calculate that for s = 3 T
1- Tog,3
1 1
WK(H) = 7 [1 - TE@E?] n 10g2n

for all n = 225.

Hence the theorem holds. [J

Also over a two-letter alphabet one can have infinite DOL

languages that are n-free for any n = 3 (see [T] and [S]). We will



demonstrate now that these Tanguages have a "poorer" subword complexity

than their counterparts over a three-letter alphabet.

Let K be a Tanguage and Tet C ¢ NT. K has a C-distribution
if there exists an alphabet A such that aZph(x) = A for each x e subg(K).
If K has a C-distribution for some C ¢ N+ then we say that K has a

constant distribution,.
The following result is given in [ER3].

Proposition 2. I1f a DOL language K has a constant distribution,

then there exists a q ¢ N+ such that wK(n) < gn for every n ¢ N+. 0
Using the above result we can prove the following theorem.

Theorem 2. Let m = 3 and let K be a m-free DOL Tanguage such
that alph(K) = 2. Then there exists a q « N* such that WK(n) < gn

for all n e N+.
Proof.

Since K is m-free, alph(x) = alph(K) for each x e subm(K). Thus

K has a m-distribution and so the theorem follows from Proposition 2. [J

Hence, theorems 1 and 2 provide the precise boundary between

order n and order nlogzn m-free DOL Tanguages.

To put these results in a proper perspective let us recall now
results establishing such a boundary in the case of square free DOL

languages. (The first result is from [ER3] and the second from [ER4]).

Proposition 3. Let K be a square free DOL Tanguage such that
alph(K) = 3. Then there exists a q « N such that WK(n) < gn for all
neN. O



Proposition 4. There exists a square free DOL Tanguage such
that aZph(K) = 4 and there exists a positive real g such that

WK(n) > qnlog,n foralln e N

Thus Theorem 1, Theorem 2, Proposition 1 and Proposition 2
provide a full picture of the influence of the size of an alphabet

on the subword complexity of m-free DOL languages for all m > 2.

Finally let us recall (see [ER2]) that n Tog, n constitutes an

upper bound (on the subword complexity) for all m-free DOL Tanguages.

Proposition 5. Let m= 2 and let K be a m-free DOL language.
There exists a positive integer g such that WK(H) < q n1092n for

all ne N, 1O
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