ON FINITE SETS TESTING SQUARE FREE
PROPERTY FOR ALIL HOMOMORPHIMSMS
BETWEEN TWO GIVEN ALPHABETS
by
A. Ehrenfeucht*

and

G. Rozenberg**

CU-C5~230-82 September, 1982

*Department of Computer Science University of Colorado at
Boulder, Boulder, Colorado 84309

**Institute of Applied Mathematics and Computer Science,
University of Leiden, Leiden, The Netherlands

All correspondence to second author.

This research was supported by NSF grant MCS 79-¢3838.



ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS
PUBLICATION ARE THOSE OF THE AUTHOR AND
DO NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

THIS MATERIAL IS BASED UPON WORK SUPPORTED
IN PART BY THE NATIONAL SCIENCE FOUNDATION
UNDER GRANT NO. MCS 14 -0393%



ABSTRACT

A nonempty word w is called sqguare free if it cannot be written in the form
w,zxwy for words w,, z, wy; where z is nonemptly; the set of all square free
words over an alphabet X is denoted by SF(L*). A homomorphism h:X* - A" is
called square free if L(SF(Z*)) € SF(A*). Let I, A be finite alphabets. Then a
set X ¢ SF(Z*) is called a (X, A)—test set (of square freeness) if for each
homomorphism g:Z* » A* the following holds: g is square free if and only if
g (X) € SF(A*); the family of all (I, A)—test sets is denoted by TEST(Z, A). We
demonstrate that TEST(Z, A) contains a finite set if and only if either the cardi-

nality of  is not bigger than 3 or the cardinality of A is not bigger than 2.



INTRODUCTION

The topic of repetitions of subwords in words initiated by A. Thue in [T] has
turned out to be of interest in several areas of mathematics and in formal
~ language theory (see, e.g., [BEM], [C], [D], [MH], and [S1]. The paper [B] by J.
Berstel has pointed out quité deep connections between "Thue problems" and
modern formal language theory; since then this problem area became quite
active within formal language theory (see, e.g., [Br], [Cr], [K] and [S&]). In par-

ticular the topic of square free homomorphisms received a lot of new attention,

A nonempty word w is called square free if it cannot be written in the form
w,zzwy for words w,, z, w,; where x is nonempty; the set of all square free
words over an alphabet ¥ is denoted by SF(£*). A homomorphism h:EZ* - A* is
called square free if R (SF(Z*)) C SF(A*). A number of recent papers (see, e.g.,
[B], [Or]. [K] and [ER]) is concerned with the problem of testing the square free

property of a homomorphism.

Informally speaking a set X ¢ SF(L*) is a (square freeness) test set for a
homomorphism h:Z* - A‘; if : h is square free if and only if h(X) ¢ SF(A*). We
will say that a test set X for h is h—independent if X is a subset of SF(I*)
defined using the cardinalities of ¥ and A only; otherwise X is h-dependent. In the
literature both homomorphism dependent and homomorphism iridependent test

sets are investigated.

In particular it seems natural to ask about the existence of finiie test sets
which are homomorphism independent. This issue is settled in our paper. We
prove that (for all homorﬁorphisms from £° into A*) homomorphism independent
finite test sets exist if and only if either the cardinality of ¥ is not bigger than 3

or the cardinality of A is not bigger than 2.



PRELIMINARIES

We will use mostly standard language theoretic notation and terminology.
For a finite set A, #4 denotes its cardinality and for sets A, B, A—F denotes the
set theoretic difference of 4 and 5.
For a word z: |z | denotes its length, first(z) denotes the first letter of =z,
last(z) denotes the last letter of z, alph(z) denotes the set of all letter occur-
ring in z and, for a letter b, #, (z) denotes the number of occurrences of b inz.
A denotes the empty word. For an alphabet I, L' denotes the set of all
nonempty words over £ and L° = £*(J{A}. Given words z and y, we say that x is
a subword of y, written z suby, if y =y, = y;, for some words y,, ¥z. (Subwords
are sometimes referred to also as segments or factors).
For alphabets &, A, HOM(Z*, A*) denotes the family of all homomorphisms from
Z* into A%
A nonempty word y is called a square if y =y, £ = y; for some words y,, fqg. z
where = # A, otherwise y is éaﬁed square free; the set of all square free words
over I is denoted by SF(Z*).
A homomorphism h € HOM(E*, A*) is called square free if A (SF(Z")) C SF(AY).

For the considerations of this paper it is convenient to adopt the following

convention.

Let Z, = {a@,, 85 - -} be a fixed (ordered) countable alphabet. Then, for each

nx1letd, =t{a .., ani
Forn,l=1, Ty, = {w € SF(EF): |w| =1} and, for a homomorphism h of X,
T, = fw € SF(I}): there exista, b € Tandu € L, suchthatw =au b
and either h(u) sub h{a) or h(u) sub h (b} UZ,.
The following result was proved in [ER].

Proposition 1. Let h € HOM(Z}, &}) for some n, m = 1. Then h is square

free if and only if A (T, s\ UTh) € SF(Z4). ™
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Also the following result proved in [ BEM] will be useful in the sequel.

Proposition 2. Let n, m = 3. Then there exists an h € HOM(Z}, I1,) such

that h is square free. ®

In this paper we will be concerned with the problem of testing the square
freeness of a homomorphism. In particular we will consider the problem of the
existence of finife test sets which for given alphabets Z, and %, would "verify"
whether or not an arbitrary h € HOM (L5, L) is square free. The family of such

test sets is formally defined as follows.

Letn,m =1, Aset X ¢ SF(¥}) is a (n, m) test set (of square freeness) i
for each homomorphism h € HOM(Z;}, ) the following holds:
A is square free if and only if h(X) € SF(Zn).

We would like to conclude this section by the following remark.

In order to simplify the notation and avoid very cumbersome formulations
we will often not distinguish between subwords and their occurrences in words
(this is quite customary in formal language theory). This should not lead to a
confusion because the exact meaning should be always clear from the context.
Moreover to avoid misunderstanding we often provide figures that illustrate th’q_

sttuations considered.



THE THEOREM

In this section we provide necessary and sufficient conditions for
TEST(n, m) to contain finite sets. Those conditions are given by the following

result.

Theorem. For eachn, m € N*, TEST(n, m) contains a finite set if and only

if eithern <« 3orm <= 2.
Proof:
Since it is obvious that if either n = 1 or m = 1 then TEST(n, m) contains
a finite set, throughout the proof of this theorem we will assume that n, m = 2.
First we prove the "if" part of the theorem.
Lemma 1. If n < 2 then, for eachm =2, TEST(n, m) contains a finite set.
Proof of Lemma 1:
If n <2 then SF(Z}) is a finite set. Since SF(Z}) € TEST(n, m), Lemr,na 1

holds, =

Lemma 2. If n = 3 then, for each m = 2, TEST(n, m) contains a finite set.
\Proo f of Lemma 2:

Consider Tggs.

Let h € HOM(Zg Ly,) where m = 2. Letw € TgglTh.

If Jw| <3thenw € Tag.riviviivereiiiieenieeenenn, (1)

Assume then that |w| > 3, Hence by the definition of T), either w =a w b
or w=bua for some a,b€Zy and u € L such that h(uw)subh(a). If
- o €alph(u) then h(u) = h{a) and consequently a =u contradicting the fact
that w € SF(ZF); thus it must be that a £ alph(u). Consequently #alph(u) <2

and, since u € SF(Z3), |u| <3 and |w| = 5. Thus



ifJw] >3thenw € Tgg...oooviiviiiiiininiiiiens (2)
From (1) and (R) it follows that T33\J7, < T35 and consequently, by Propo-

sition 1, TEST(3, m) contains Ty 5 which is a finite set.

Thus Lemma 2 holds. =

Lemma 3. Ifn =3 and m = 2 then TEST(n, m) contains a finite set.
Proof of Lemma 3:

Consider X ={a,a;50350,} and an  arbitrary  homomorphism
h € HOM(Z,F, ©3). Since |h(a,;0zaza;)| =4, h(a; azasa,) £ SF(IF). Butitis
gasily seen that no homomorphism in HOM(Z; L7) is square free and conse-

quently X is an element of TEST(n, 2).

Thus Lemma 3 holds, =

Now the "if" part of the theorem follows from Lemma 1, Lemma 2 and

Lemma 3.
We turn now to the "only if" part of the theorem.

Lemmaua 4. If n =4 and m = 3 then TEST{n, m) does not contain a finite

set,
FPraof of Lemma 4:
This lemma is proved through a sequence of claims as follows.

Claim 4.1. Let n=4 m=3 and k=23 and let X& TEST(n,m). I

HOM(Z, L) contains a square free homomorphism, then X € TEST(n, k).
Proof of Qaim. 4.1
Let g be a square free homomorphism in HOM(Ef, Z,,).

Assume to the contrary that

X & TEST(T, K ) oerooeroeoeeeeeeeeveeen, (3)



That is there exists an h € HOM(Z) ) such that A(X) ¢ SF(Z}) and
h(w) £ SF(ZE) for some word w € SF(Z.). Consider such a word w and con-
sider g h(w). Since h(w) £ SF(ZF), g h(w) £ SF(E4). Moreover
gh(X) ¢ SF(Z}), because h{X) C SF(£¢) and g is square free. Hence on the one
hand gh is not square free while on the other hand gh(X) ¢ SF(Z,,); this con-
tradicts the fact that X € TEST(n, m).

Consequently (3) cannot hold and Claim 4.1 is proved. ®

Claim 4.2 Letn =4, m =3 and k = 3. Then TEST(n, m) = TEST(n k),
Proof of Claim 4.2:

This follows directly from Claim 4.1 and Proposition 2. ®

Claim 4.3. let m >4 and I = 1. Then there exists an h € HOM(Z,}!, £1,1)
such that
(i) h is not square free, and
(i) h(Tn,) C SF(E44).

Proaf of Claim 4. 3:

Let wg be a fixed word from T, -y, (since » = 4 such a wg exists). Let h be
the homomorphism of £, defined as follows: |
h(a;) =g for1<i<n-1and
h(an) = @y Qg 4y Wo Bnay.

We will demonstrate now that A satisfies conditions (i) and (ii) of the state-

ment of Claim 4.3.

ad(i). Consider the word u = a,wy Since a, £ alph(wp) and wq is square
free, w € SF(Z,;}). However h(w) = 0,041 Woln+1 Wy IS & square; thus A is not

square free and (i) holds.



ad(ii). Letg € HOM(Z}.Z},2) be the homomorphism defined by
glg;) =gy for1<i<n-1, and
g(an) = @y Opey Wo Oree

Claim 4.3.1. g is square free.

Proof of Qnim 4.3 1;

Claim 4.3.1.1. Let Y =SFENNEr-1228n-1USn-1). I weY, then
g{w) € SF(Zq4z).

FProof of Oaim 4. 3. 1" 1:

Obviously
ifw e SF(EF ), theng(w) =w € SF(E12). i (4)

Let us assume then that w € SF(EN)NZa_ 10,541, Say w = w,m,w, for
some w; WwWz;€ L, ;. Then from the definition of g it follows that
o, (g (w)) = 1, #a,,,(g (w)) =1 and #%w(g(w)) =1, Thus if g(w) = z, zz zy for
some I3, Zg€Ypiz and z € L7, then ap, Gn4y, Gnsz £ wlph(z). But

g(w) =g(w)) glo,) glwsz) =w, gap)we  Consequently  g(w) € SF(Zg+2).

Hence we get

it w € SFIED) NS -18nEm -1, then g (W) € SF(SF 1) cvvvoiiieioiirisoeiiesierien, (5)

Now Claim 4.3.1.1. follows from (4) and (5). =

Claim 4.3.1.2. 1w € (T, 5UT,) — Y. then g (w) € SF(E),,).

Proof of Claim 4.3.1.2:

Since w £ Y, fq (w) = 2 which implies (because w € SF (L)) that |lw]| =3
Thus we have two cases to consider. |
Cuse 1. w =a, o; 0, where 1 £i<n-1and

Case 2, w =a, u g, where u €%} and g(u)subg(s,). (Note that in this

case-see the reasoning following (1) - @, £ alph(u) and consequently it must be



that v € T}_)).
We will consider separately each of these two cases.

Case 1. w =a, o;a, where 1<i=<n-1. Then g(w)=g(a,)q; g(a,).
Assume that g(w) is a square, that is, for some z € Z},,, zx subg(w). It is
easily seen that neither zz sub g (a,)a; nor zz sub a;,9(a,). Hence a, € alph(z)
and @, .p € alph(z) which easily leads to the conclusion that z = g(a,); a con-
tradiction. '

Thus in this case we have g(w) € SF(EF 1) o) (8)
Case 2. w = g, u a, whereu € 5},

Again a reasoning similar to the one above leads one to the conclusion that

inthis case g(w) € SF(LFa) i (7)

Now Claim 4.3.1.2 follows from (8) and (7). =

Then Claim 4.3.1 follows from Claim 4.3.1.1, Claim 4.3.1.2 and Proposition 1.

Claim 4.3.2. Let w € SF(E}). If h(w) £ SF(Z,,,), then |w| > L,
Proof of Quaim 4.3.2:

Let us consider h(w) and g{w). Let f € HOM(Z 2% ,) be defined as fol-

lows: f(a;) =g for 1<i<n+land f(@nsz) = ap4y. Clearly fg = h.

Since |g(a;)| = |h(a;)| for each 1 <1i <n, there is one-to-one correspon-
dence between all occurrences of letter in g{w) and all occurrences of letters in
h(w); actually each (occurrence of a) letter in g(w) is mapped by f in the
corresponding (occurrence of a) letter in h{w). Since h(w) is a square,
h(w) = u, z; Z, u, for some u,;, Uy € Ty, and z, =z, = x € &;t,, (we have writ-
ten x, z; rather than z x so that we can easier talk about the first given

occurrence of z and the second given occurrence of z!). Let then v; be the
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(occurrence of the) subword in g(w) corresponding to (the occurrence of z
_given by) z, and let v, be the (occurrence of the) subword in g (w) correspond-"

ing to (the occurrence of z given by) z,.

The situation can be illustrated as follows:
Figure 1

where f(v)) =z;and f{Ug) = Taeeovvoriiiiniiiiiiiin (8)

‘Since by Claim 4.3.1 g is square-free, g (w) is not a square and consequently
(B) implies that
Onig € QPR{V L VL)oo (9)
Also'from (B) it follows that |v,| = |vg|. Hence we can pair together:
the first (occurrence of a) letter of v, with the first (occurrence of a) letter of
Vg, |
the second (occurrence of a) letter of v, with the second (occurrence of a)

letter of vy,

................................................................................

...............................................................................

‘the |v,|-th {occurrence of a) letter of v, with the |vg|-th (occurrence of a)

letter of v,
i.Let cor, be this set of pairs.

Similarly we can pair together:

- the first (occurrence of a) letter of z, with the first (occurrence of a) letter of
z,,

the second (occurrence of a) letter of z; with the second (occurrence of a)

letter of zp,
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...............................................................................

................................................................................

the |z |-th (occurrence of a) letter of z, with the |z |-th (occurrence of a) letter
of z3.
Let corp be' this set of pairs.
From (9) it follows that
either (@u1y, Gnsz) €€0T;  OF  {Gniz Cpey) €COTLvvrinniinininnns ....(10)
Claim 4.3.2.1. If (@41, Gnsz) € cory, then
(First (vy), first (vg)) = (@ns1s Cnsz)
Proof of Qlaim 4.3.2.1:

Assume to the contréry that

(first (v,), first (Vg)) # (Qns1s Onaz)ererionniioiiiinnieieens, (11)

Consider the pair (d;, d) where d, is an occurrence in v, immediately tt; the
left of a,,,; and d; is an occurrence in v, immediately to the left of a,,,. From
the definition of g it follows immediately that d; = a,, and dp = last (wp). Then,
by (8), corz must contain the pair (f (a,). f (last (wg))) = (an, last (wq)) where

last (wg) € £,.,; a contradiction (since (ay, last (wg)) € cory, it must be that
ay = last (wo)).

Consequently (11) cannot hold and Claim 4.3.2.1 is proved. ®

Similarly one proves the following result.
Claim 4.3.2.2. If (Gn42, Gnyy) € cory, then

(first(vy), first (vg)) = (onip. Gns1). ®

From (10), Claim 4.3.2.1 and Claim 4.3.2.2 it follows that we have two cases

to consider:
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Case 3. (first(v,), first(vy)) = (@n+a Tusy). and
Case 4. (first(vy), first(vg)) = (@n+1, Ane2).

We will consider separately each of these cases.

Cuse 3. (first(vy), first(vg)) = (Gn+2, Cns1)-

The situation can be illustrated as follows.

Figure 2.

Since (first{(v,), first (v3)) = (Cpiz, Bpyi), (8) implies that
(first (z,), first{z3)) = (Gp+1, Gn+1). By the definition of g, first(v,) is contri-
buted (via g) by an occurrence of g, in w; the same occurrence of @, must con-
tribute (via R) first(z,) in h(w). Also first(v,) must be contributed {via g) by
(a different from the above) occurrence of @, in w; by the definition of g this
occurrence of @, in w will contribute (via g) immediately to the left of first(vg)
an occurrence of a,. Thus last(v,) = a, and so, by (8), last(z,) = a,. Clearly
the same occurrence of @, in w contributes (via h) last(z,) and first(zz). Thus
from the definition of h it follows that immediately to the right of first(zy) we
have an occurrence of wy; since z; = Zz = z it must be that immediately to the
right of first(x;) there is an occurrence of wy Thus, by the definition of f,

immediately to the right of first(v,) there is an occurrence of wg.

Consequently |w| > |a,wp] =1+ >1 and so

Claim 4.3.2 holds in Case B......c.ccovevrvevererniierinie, (12)
Case 4. (first (vy).first (vg)) = (@ni1. Oniz).
We will consider separately two subcases.

Cuase 4.1. Both first(v,) and first(vg) are contributed (via g) by the same

occurrence of g, inw.
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Then the situation can be illustrated as follows:
Figure 3.

From the definition of g 1t follows that v, = a,,; wg. Thus from the definition of
J it follows that z; = a,4, wy. Consequently zs = a,,wp and so from the
definition of h it follows that in w immediately to the right of the given

oceurrence of a,, there is an occurrence of wy.
Hence lw| = |la,wg| =1+ >1 and so
Claim 4.3. 2 holds in Case 4.1.......ccoveevevrvirereriiininrreeeeennnn (13)

Case 4.2. first(v,) and first(vy) are contributed (via g) by different -

occurrences of a,, in w.

Then reasoning ambiguously to Case 3 we prove that

Claim 4.3.2 holds in Case 4.2.........ccocevvenivvrrnnnn) SO (14)

Now Claim 4.3.2 follows from (12), (13) and (14). =

Claim 4.3.2 implies that the property (ii) of the statement of Claim 4.3
holds.

Since we have also proved that the property (i) of this statement holds,

Claim 4.3 holds, =

Now we complete the proof of Lemma 4 as follows,

Let n=4 and let X € TEST(n,n +1). I X is finite then, for some
l=1 |z|=<l for each z €X. Then, by Claim 4.3, there exists a
h € HOM(Z4, Z4¢1) such that h is not square free but h(z) is square free for
each € X. Consequently we get a contradiction to the assumption that
X € TEST(n,n + 1). Thus X must be finite. Hence we have:
for eachn =>4, if X € TEST(n,n + 1) then X is infinite.............. (158)
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On the other hand Claim 4.2 implies that for each n =4, m =3,

TEST(n, n + 1) = TEST(R, M )eerioirioeneiiciinncensiinns {(16)

Lemma 4 follows from {15) and (16). ®

Since Lemma 4 implies the "only if" part of the theorem, the theorem holds.
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