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ABSTRACT

A nonemnpty word z Bver an alphabet ¥ is called a square if z =z, Y Yy zp for
some z;, Z, €L’ and y € T+ otherwise z is called square free. SF(L') denote
the set of all square free words over X. A homomorphism A:Z* - A" is called
square free if h(SF(Z*)) C SF(A*). We prove the following structural characteri-
zation of square free homomorphisms:

a homomorphism h:Z* » A* is square free if and only if h(TEST) C SF(AY),

where

TEST, = {w € SF(Z*):|w]| <3} Ytlw € SF(Z*):]w| > 3 and there exist a, b € &
and u € L' such that w = aub and either h(u) is‘a subword of h(a) or
h(u) is a subword of A(b)].

Several consequences of this result are dicussed.



INTRODUCTION

Repetitions of subwords in words form the very basic combinatorial struc-
ture of formal languages. The investigation of this topic was initiated by A. Thue
in [7] and since then it was a subject of very active research in numerous areas
of mathematics and in formal language theory (see, e.g., [FEM], [C], [D]. [MH],
and [S1]). The recent revival of interest in this topic among formal language
theorists (see, e.g., [Br], [Or], [EE], [K], and [S2]) was initiated by [F] where
Berstel once again stresses the role of squar\'e free homomorphisms in the inves-

tigation of various properties of square free words.

In our paper we provide a structural characterization of square free
homomorphisms and indicate the use of our result in the research concerning

"Thue problems".



PRELIMINARIES

We assume the reader to be familiar with the basic terminology concerning
formal languages. Perhaps the following (mostly notational) matters require an
additional comment. ’

For a finite set Z, #2 denotes its cardiriality.

For a real n, | n | denotes the biggest integer smaller than or equaln and [n ]
denotes the least integer greater than or equal n,

For a word z, |z | denotes it length, alph(z) denotes the set of symbols appear-
ing in z, first(z) denotes the first letter of z and last(z) denotes the last letter
ofx., A denotés the empty word.

A word z is a subword of a word ¥ if ¥ = y,2y; for some words ¥,, ¥z we write
z sub y (sometimes the term segment rather than a subword is used). Ify, = A
then z is a prefiz of y written z pref y, if additionally y, # A then z is a strict
prefiz of y written z spref y. If y; = Athen z is a suffiz of y written z suf y; if
.additionally ¥, # A then z is a sitrict suffix of y written z ssuf y. If z pref y
then z\y denotes the word obtained frdm y by removing its prefix z, if  suf y
then ¥ /x denotes the word obtained from ¥ by removing its suffix y. If z # A
y = y,z and z = z2z, for some words ¥; and 2, then we say that z and y have o
common border, z is referred as a border of y and z.

If z # A and zz suby then y is called a square, otherwise y is called square
Sree; for an alphabet I, SF(Z*) denotes the set of all nonempty square free
words over I,

For a homomorphism h:Z* - A*, minr (h) = min{|h(a)|:a € T},

mazxr(h

mazxr (h) = max{|h(a)|:a € T} and rat(h) = minr(h)

If rat(h) = 1 then h is called uniform.

In order to simplify the notation and to avoid very cumbersome formula-

tions we will often not distinguiéh belween subwords and their occurrences iy//
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words (this is quite customary in formal language theory). This should not lead
to o confusion becouse the exact meaning should be always clear from the con-

text; moreover to avoid misunderstanding we often provide Jigures thot illus-

trate the situations considered.



1. THE HMAIN THEOREM

In this section we prove a theorem providing a structural characterization

of square free homomorphisms.

Theorem 1. Let h:E* » A* be a homomorphism, let
Tg={w € SF(Z*):|w| = 3} and let
Ty = jw € SF(Z*)}: thereexiste, b € L andu € £° such that w =a u b and
either h(u) sub h(a) or h(u) sub h (b} JZ.
Then h is square free if and only if A (T3 T) © SF(AY).
Proof.
The "if"" part of the statement of the theorem is obvious.

To prove the "only if" part of the statement of the theorem we proceed as

follows.
Let h:Z* » A* be a hémomorplﬂsm such that h(T3UT,) € SF(AY).
Lemma 1. If h is not square-free and h (T, ) C SF(AY), then h(Ts) ¢ SF(AY).
Fﬁof of Lemma 1:

Let us assume that:
h is not square free and A{T,) CSF(AY) oo (1)

The proof of the conclusion of Lemma 1 goes through a sequence of lemmas.
Lemma 1.1, Ifw € SF(Z*) and |w| <2, then h(w) € SF(AY).
Proof of Lemma 1.1:

All words satisfying the assumption of the statement of Lemma 1.1 are in

7. Hence Lemnma 1.1 follows from (1). =

Lemma 1.2. Ifa, b € T are such that 2{a) and h(b) have a common border,

thena =5,



Proof of Lemma 1.2:

If we assume that o # b, then h(ab) =z z 2z y is a square. This however

contradicts Lemma 1.1. Thus Lemma 1.2 holds, =

Let w = w, u wp and h{w) = 2, 2 z3 where w;, wpa € L*, uw € LY, 2, 2, € A®
and z € A" are such that
() hlw))pref h(z)).
(i) h(w,)suf h(zg),
(iii) z sub h(u), and
(iv) neither z sub h(first (w)\u) nor z sub h(u/last(u)).
Then (the depicted occurrence of) u is the contributor of (the depicted
occurrence of) 2 in h{w) and denoted by C,(w, z). To simplify the notation we
write Cy(w, 2) rather than Gy (w, 2z, 2,, z3); we can do so because in the sequel
of the paper whenever the notation C,{w, 2) is used 2, and 2, are clear from

the context.
Thus C,(w, 2) is the minimal {occurrence of a) subword in w that contri-

butes the given occurrence of z in h(w). The situation can be illustrated as fol-

lows:
Figure 1

Lemma 13 Leta €X. If h(z) =2 u 2 for some z € A* and w € A® then for

each b € ¥ neither h(b) pref uz nor h(b) suf zu.
Proof of Lemma 1.3:

Assume to the contrary that the conclusion of the statement of Lemma 1.3
is not true. That is there exists a letter b € ¥ such that
either (i) hA(b) pref uz
or (ii) h(b)suf zu.



Assume that (i) holds.

Consider the word w = aba; clearly w € T},. Then
h{w) = h{a) h(b) h(a)
mzuzh()zuz
=zuzh(b)z h(b)y
for some y € A”.
Consequently h(w) £ SF(A*). But obviously w € 7, and so we get a con-

tradiction to the assumption (1).

Similarly if we assume that (ii) holds we get a contradiction (to (1)).

Thus neither (i) nor (ii) can be true and consequently Lemma 1.3 holds. =

Lemma 1.4, Let w € SF{Z*) and let h(w) = 2z,x,Tg 2 Where z, =z # A
Then | G, (w, z,;)| > 1 and |G, (w, z5)] > 1.

Proof of Lemma 1.4:

Assume to }he contrary that
(D) [Chlw, z))| = 1.

By Lemma 1.1, |Cy(w, z,, z5)| >2 Thus G(w, z,x3) =a u b for some

o, b €X andu € Tt The situation can be illustrated as follows:

Figure 2

Thus h(u) sub z, while x; = z, and x, sub h(a). Hence h(w) sub h(a) and
consequently G(w,zzz) =au b € T,. Thus by (1), h(G,(w, z,x3)) is not a
square; a contradiction. Hence (i) cannot hold.

Analogously we show that the assumption
(i) |Glw.zz)| =1

leads to a contradiction.



Consequently | G, (w, z;)| > 1 and |G, (w, z3)| > 1 and Lemma 1.4 holds. =

Let w € SF(X*) be such that |w|=2 and let w € A*. Then w is an
h—parsing of u if h(w) = 2z, u 2y, for some z,, 2z € A", and Gy (w, u) = w.

The set of all h-parsings of u will be denoted by parse, (u).

Let w = w; z wy, for some w;, wp €I’ and z € T*, and let h(w) = u; u u,
for some u,, upz € A" and u € A*. Then D,(w, z, u) denotes this part of (the
given occurrence of) u that is "contributed by" (the given occurrence of) z.

Let w,, wp € purse,(u). We say that w,, w, are (h, w)-equivalent, written as
wl":;wg, ifw,=a; - a, wg=b; - b, for some k > 2 and

@y, ..., %, by, ..., by €, where Dy (w, gy, w) = Dp(w, by, u) forall 1<i<k.

The situation can be illustrated as follows:

Figure 3

Lemma 1.5, Let w;, wy € L* and u € A* be such that w,, wy € parse, (u).

Then either |w;| = |wy} =2 or w:: Wg.
'’

Proof of Lemma 1.5:

let w;=a,---a, and wy,=b, - b, for some k,m=2 and
ay, ..., G, by, ..., by € L.

To prove the lemma we will assume that

it is not true that w, ':" Wgeeivirerearivrreinnn, v —— ()
U

and then we will demonstrate that jw,{ = |wg| = 2.
Claim 1.5.1 Dp(w,, ay, u) # Dy(wg, by, u).

Proof of aim 1.5.1:



Assume to the contrary that

Then we demonstrate that, for each 1 =i < |w|
Dh(wy, ai, ) = Da(wa, by, Wi (4)
This is proved by induction on i as follows.
By (3), (4) holds fori = 1.
Assume that (4) holds for all 1 =1 < g for some g < |w,].
Then, by Lemma 1.2 it must be that Dy(wy, agsy, w) = Dy{wg, bgyy, ) and conse-

quently (4) holds.

But (4) implies that w, ':“ wg which contradicts (). Consequently (3) can-

not hold and Claim 1.5.1 is proved. ®

In view of Claim 1.5.1 either Dy (w,, a,, u) spref Dy {wg, by, 1)
or Dy (wg, by, u) spref Dy(wy, ay, u).
We will assume that I, (w,, a;, u) spref Dh(wg, b, u); the other situation can
be handled ahalogously.

Let last (Dy(wg, b, u)) = e.

Since |wg| =2, this e cannot be the last letter inu. Let d be a letter in u

which is immediately to the right of e and let 1<t < |w,| be such that

Dy {w,, a;, 2) includes e. Note that then Dy (w,, a;, ) also includes d as other-—

wise by Lernma 1.2 it must be that £ = 1; a contradiction.

Hence we have the following situation:

Figure 4

Consequently h(a;) and h(b;) have a common border (let 2 be the border
resulting from the overlapping of h(a;) and h(b,) in the situation considered)

and by Lemma 1.2 a@; and b; are occurrences of the same letter. Thus
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h(b,)=2z g z forsome g.
Claim 1.52. £ =2,
Proaf of Qaim 1.5.2:
Assume to the contrary that £ > 2,
Thent—1> 1 and h(a,_,) suf zg. This however contradicts directly Lemma

1.3.

Thus it must be that £ = 2 and Claim 1.5.2 holds. *

Claim 1.5.3. |w,| =2,

Proof of (laim 1.5.3:

Assume to the contrary that [Wy| > 2o.oeeovreereoreooooove. (5)

Let last (Dy(wy, ag, u)) =7,

Then (5) implies that this (occurrence of) r cannot be the last {occurrence
of a) letter inu. Lets be (an occurrence of a) letter in « which is immediately
to the right of 7 and let 1 < < |w,| be such that D, (w,, by, u) includes (the

given occurrence of) r.

Reasoning as above (see the argument following Claim 1.5.1) we prove that
Dy (we, by, w) must also include s and moreover a; and b; must be occurrences
of the same letter. Then analogously to the proof of Claim 1.5.2 we demonstrate

that f = 2.

Thus b, and @ are occurrences of the same letter and a; and b, are
occurrences of the same letter. Consequently b, and b, are occurrences of the

same letter which implies that w; is a square; a contradiction.

Thus (5) cannot hold and Claim 1.5.3 is proved. =
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Claim 1.5.4 |w,| =2,
Proof of Claim 1.5.4:
Assume to the contrary that |wg| > 2., (6)

Then in view of Claim 1.5.3 we have the following situation:

Figure 5

where 2z is the border resulting from the overlapping of h(ap) and h(b,);
hence h(b,) =2 g z for some g.
Hence h(by) pref gz which contradicts Lemma 1.3. Consequently (6) can-

not hold. Thus |w;| = 2 and Claim 1.5.4 is proved. =

Now Lemma 1.5 follows from Claim 1.5.3, Claim 1.5.4 and our
assumption (2). =

Using lemmas 1.1 through 1.5 we complete the proof of Lemma 1 as follr;ws.

Let y € SF(Z*) be such that h(y) £ SF(AY), say h(y) = zgx,z.xy where
z, =z € A*. (Since h is not square free such a word y exists). Consider now
Gu(y. z12p). Lemma 1.4 implies that the first (occurrence of a) letter of
G (y, z,z5) does not contribute the last (occurrence of a) letter of z,;, and the

last (occurrence of a) letter of C,(y, x,zs) does not contribute the first

(occurrence of a) letter of z5.
Thus we have two cases to consider.

Case 1. Gy(y, Z, Z2) =y Ya Where y, = Gy, zy) =a; - - - g

andye= Gy, z3) =b, - by forkmn=2anda; ..,0, by, .. b, €5

In this case we have the following situation:

Figure 6
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In this case ¥, ¥ € parse,(z) where z =z, =z, By Lemma 1.5 either
Y1, Yeor lyil = yel =2

-

Assume first that

Y ':\;yg .......................................... (7)

Then k =n, Dy(y, ey, 2) = Dy(ye b2) and Dy(yy, 0,.2) = Dy (Y b, 2).
Consequently h{a;) has a common border with A({b;) and h(e,) has a common
border with h(b,). Thus by Lemma 1.2 it must be that @, = b,, az = by and, for

each g €42, ..., k~1}, a; = b,.

But this implies that ¥, = ¥y, and so ¥ is a square; a contradiction.

Thus (7) cannot hold.

Assume then that
[yl = Jyel =R (8)

Thusk =n =2,

Lemma 1.6, |Dy(ya by, 2)| < |Dulyy, a1, 2)].

Proof of Lemma 1.6:

Assume first that
| Dnya, b1, )] = [ Dh(y1, €1 )], (9)

Then obviously |Dy(yz, ba z)| = |Dy(y1, @2, z)| and so by Lemma 1.2 we
get @, = b, and oy = b, Consequently ¥ is a square (it contains the subword
ayazb by = @ a0a,ap); a contradiction.

Thus (9) cannot hold.

Assume then that

[ Dn(yz b1 2)| > | Dayn, T D | PO €11

Then A (b,) and h{ap) contain a common border and so by Lemma 1.2 it

must be that b, = a;. Consequently ¥y is a square; a contradiction.
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Thus (10) cannot hold.

Since neither (9) nor (10) holds, Lermnma 1.6 holds. ®
Thus we have the following situation:

Figure 7

Thus h{a;) and h(b;) have the common border, let Z be the border result-
ing from the overlapping of h(a,) and h(b;). Hence by Lemma 1.2 we have
a,; = bp. Moreover we can write Dp(y,, 1, ) in the form Z § #Z for some § € A",

Then however we have h(b,) suf §Z which contradicts Lemmma 1.3.
Consequently we arrive at the conclusion that Case 1 cannot hold.
Hence the following must hold.
Case 2. Cu(y,Z,2) =y10Yp Where a €Z,y, =0, o, Yg=b; - by,
Gy z)=ya, Gy zz)=ayy fork,n=2anda,, .., &, by, .. b, €L’
Then y,a, ay, € parse,, ().

Thus we have the following situation:

Figure B
By Lemma 1.5, either y,a ':“ ay, or |y,a| = |aoyg| =2
4
Assume first that
Y, Q t:“‘ B Y Berrnrennrirriieeeeeeeiree e (11)
2
‘Then k=n,a=D(y,a, z,) =Dy, a, z3)=6 ‘ and

B=Dy(y, a,z;)= Dy(ya br, xzz) =7. Also, by Lemma 1.2, ag = by_y for each
1<g=k.

If ay=a then a, - g =ab, ' b, and if & =a then

Qg -G a=by by 1be.- Thus in both cases y is a square. Consequently



gy#Faandb, # Qo {12)

By (12), the word a,ab, is square free. Then
h(a,ab;) =h{a,) B h(be) =2, a6y 2z
=z;ofBafz;
for some 2,, 2, € A"

Thus we have |a,ab, | = 3 and h(a,ab;) £ SF(A*).

Consequently
if (11) holds then A(Tg) ¢ SF(A*).ocoiiiiviiiiiiiiiiiee, (13)
Assume now that |yi1a| = |aya] =2 (14)

Then |Gy (y,z1x2)| = |a10by, | = 3 while A(Gy(y, z,2z)) is & square. Conse-
quently
if (14) holds, then A(Ts) & SF(A .o mviiivirromrrrenrriiersirrinnn, (15)

Since Camse 2 must hold, Lemma 1.5 together with (13) and (15) implies

Lemma 1. =

Clearly Lemma 1 implies the "only if" part of the statement of the theorem.

Thus the theorem holds. =

We can restate the theorem in a somewhat "neater" form expressing the set

T3{U Ty in a more transparent form.

Let, for a homomorphism A:L* - At ‘
TEST, = Tg\Jlw € SF(Z*):|w]| >3 and thereexista, b € L andu € L+
such that w = @ u b and either h(u) sub h(a)
or h(u) sub h(b)}.
Theorem 1'. Let hA:Z* » A* be a homomorphism. Then h is square free if

and only if h(TEST,) C SF(A*).
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FProof:

Follows immediately from Theorem 1 and the fact that T3\ 7, = TEST),. =
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2. DISCUSSION

In this paper we have provided a structural characterization of square free
homomorphisms. We will demonstrate now how our main result is related to
some other results encountered in the literature concerned with the topic of

square free homomorphisms.

(1) In his seminal paper [T] Thue provides the following sufficient condition
for a homomorphism to be square iree.

Proposition 1. Let h:L* - A" be a homomorphism. If
(i) foreacha,b €Z, h{a)subh(b)impliesa =b, and
(i) R(T3) < SF(AY)

then A is square free. ®

This proposition follows immediately from Theorem 1: if a homomorphism
h:Zt - AY satisfies the condition (i) above "then
Th ={ab: a,b € Landa # b} UL and consequently 7, C T3 thus by Theorem 1

the condition (ii) above implies that h is square free.

(2) In [B] Berstel provides the following "numerical”" characterization of

square free homomorphisms.
Proposition 2. Let h:L* » A* be a homomorphism. Then h is square free if
and only if h(w) € SF(A*) for eachw € SF(Z*) such that |w| <[2rat(h) +2. =

Using Theorem 1 we can improve the Berstel bound (on the length of words

to be tested by’*a homomorphism for establishing its square freeness).”
Lemma 2. Let A:Z* > A* be a homomorphism. If w € TgQ Th then
|w]| =lat(h)] + 2.

Praoof:
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Letw € TqU Ty,
If ]w| = 3then |w| <lrat (k)] + 2 and so in this case the lemma holds.

Thus assume that |w]| > 3; hence either w =au b or w =b u a where
g, bel uweit and h(u)subh(a). Then |h(u)| < |h(a)| <mazr(h). Since

lh(u)| _ mazr(h)
minr(h) = minr(h)

lu|minr(h) < |h(u)| we get |ul|= and consequently

lu| <fret(h). Thus {w]| = {u| +2=<{rat(h)] + 2 and so the lemma holds also

for all w € T3\ T, such that |w]| >3

Consequently Lemma 2 holds, =

Now Theorem 1 and Lemma 2 yield the following result.

Theorem 2. Let h:X* » A" be a homomorphism. Then h is square free if and

only if h(w) € SF(A*) for each w € SF(T*) such that |w | <|rat(h) +2. =

Since [2rat (k) = |rat ()] + 1, Theorem 2 provides a better bound than Ber-
stel theorem. Moreover our bound is optimal: in [Br] the homomorphism
h:fo, b, c} - {a, b, c}* defined by h(a) = ab, h(b) = cb, h(c) = cd is discussed;
it is easily seen that A (w) is square free for all w € {a, b, c}* such that |w| <2

however the word h{abc) = a be be d is not square free.

{3) After we have obtained our main result, we have learned of the paper
[Cr] by M. Crochemore. It provides several interesting results concerning
square free homomorphisms. We were not able to relate directly theorems 1

and 2 from [Cr] to our main result. We would like however to observe the follow-

ing.

(3.1) The following result is announced in the introduction of [Cr] as its

main result.
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Proposition 3. Let h:X* -» A* be a homomorphism where #Z = 3, Then h is
square free if and only if h(w) € SF(A") for each w € SF(%*%) such that |w| < 5.

This result provides a "homomorphism independent” characterization of
square free homomorphisms over the 3-letter alphabets. It follows from cur

Theorem 1 as follows.

Let Ts = fw € SF(Z*): |w]| < 5},

Lemma 3. Let h:IL* - A* be a homomorphism, where #X =3. Then
TsUTh € Ts.

Proof:

Since Ty C T it suffices to prove that T, ¢ T.

lLet w e Ty,

Hence w =aub where a,b el v ek’ and either h(u)subh(a) or
h(a)subh(d). Hence a,b,u must be such that either a £ alph(u) or
b £ alph(u). Thus #alph(u)=<2. But u € SF(E*) and so it must be that

|u| = 3. Consequently |w| < 5 and the lemma holds. =

Now Proposition 3 follows from Theorem ! and Lemma 3. ®

(3.2) The following result concerning square freeness of uniform homomor-
phisms is proved in [ Cr].
Proposition. 4. Let h:L* » A* be a uniform homomorphism. Then h is

square free if and only if h(w) € SF(A*) for each w € SF(Z*) such that |w | = 3.

This result follows also from our Theorem 1: it suffices to notice that if h is

uniform then 7, ¢ 7.
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(3.3) In [Or] the following "numerical" characterization of square free

homomorphisms improving the Berstel result is given.

Proposition 5. Let h:Z% » A* be a homomorphism. Then h is square free if

and only if h(w)eSF(A*) for each w e SF(A*) such that

jw | < max § 8.[%] . =

This result is also optional in the sense discussed under (2) above. However

for particular homomorphisms it provides a better bound than our Theorem 2.
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