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ABSTRACT

Let A be an alphabet and IT its nontrivial binary partition. Each word over
A can uniquely be decomposed in subwords (called blocks) consisting of letters of
II; only, 7 € {1,2}. Let K C A*. K has a LB-property (with respect to IT) if there
exists a function f : INT — IN" such that for every w € K and every positive
integer m the number of blocks of lenght at most m in w is bounded by f(m).
K has a CB-property (with respect to H) if there exists a positive integer ny and
a growing function g : INT — INT such that for every w € K and every positive
integer m the blocks of length at most m can be covered by at most ng segments
of length at most g(m).

It is proved that a CB-property always implies a LB-property but not neces-
sarily otherway around. It is proved that an EQIL, language has a LB-property if
and only if it has a CB-property.




INTRODUCTION

A study of combinatorial properties of languages in various language classes
constitutes an active and important research area within formal language theory.
A typical result here is of the form : if K is a language of type X, then P(K) where
P is a combinatorial property of K. Such a property can be expressed directly |
as e.g. in all kinds of pumping theorems, or indirectly (conditionally) getting then
the following form : if K is a language of type X and P (K), then P (K) where
Pi, Py are combinatorial properties. '

This paper is concerned with a combinatorial property of the letter-type
concerning EOL languages. Let A be an alphabet and II its nontrivial binary
partition. Iach word over A can uniquely be decomposed in subwords (called
blocks) consisting of letters of II; only, ¢ € {1,2}. Let K C A*. K has a LB-
property (with respect to II) if there exists a function S :INT — INT such that for
every w € K and every positive integer m the number of blocks of lenght at most
m in w is bounded by f(m). K has a CB-property (with respect to II) if there
exists a positive integer ng and a growing function ¢ : IN" — IN" such that for
every w € K and every positive integer m the blocks of length at most m can be
covered by at most ny segments of length at most g(m).

v A CB-property always implies a LB-property but not necessarily otherway

around. It is proved that an EOL, language has a LB-property if and only if it has a
CB-property. This result is proved by the “in depth” analysis of derivations in EOL,
systems and in this way we believe that this paper contributes to our understanding
of the nature of derivations in EOL systems. Also we provide some applications
of our main result. The first of this yields an example of a language which is an
ETOL but not an EOL language. The second example is given gramatically (using
the grammatical mechanism of the so-called regular pattern grammars, see e.g.
[KR1]) . We prove this language to be not an EOL language, which allows one
to prove an important strict inclusion in [KR2] ; we can do this without knowing
precisely the form of strings belonging to this language.




1. PRELIMINARIES

We assume the reader to be familiar with the basic theory of EOL systems and
languages, e.g. in the scope of [R5]. In this section we recall some basic terminology
concerning EOL systems, fixing in this way the notation for our paper. Also, some
new notions are introduced.

Ifor a finite set X, # X denotes the number of elements of X. IN denotes
the set of nonnegative integers and INT denotes the set of positive integers. For
a finite subset X of IN, min X and max X denote Lhe minimum and maximum of
X respectively. An alphabet is a finite nonempty set, of symbols. f : INT — INT
denotes a total function with domain IN* and range IN™; [ is called growing if for
every n € Nt f(n) > n. ‘

Let A be an alphabet. A denotes the empty word. For a word w € A*, |w|
denotes its length and alphz denotes the set of letters occurring in z. For an
alphabet ©, #¢ = denotes the number of occurrences of letters from © in z. For
~a nonnegative integer 7, w(¢) denotes the 4-th letter of w if 1 < 4 < |w| and
w(z) = A otherwise. If z is nonempty , then last z denotes z(|z]). Let w = uv
where u, v € A* . Then u is a prefiz of w and v is a suffiz of w; we write u pref w
and v suf w respectively.

For a language K, K° = {A} and for a nonnegative integer n, K*tl =
K™ - K. For a nonnegative integer n, K <n — U _ K.

An EOL system will be denoted as G == (X, P,w, A) where ¥ is its total
alphabet, A is its terminal alphabet, w € N7F is its aziom ,and P is the set of
productions. In the notation of an EOL system we use a production set instead of
a finite substitution since this seems to be more plausible for the purpose of this
paper.

If a € ¥ and @ — = belongs to P then o — 2 is called an a-production of G.
The fact that o — = belongs to P is ofien abbreviated as a?:c.

I'e € X and G is as above then G, = (X, P, , A).

Since the problems concerned in this paper become trivial obherwise we con-
sider infinite EOL systems only (i.e. EOL systems which generate infinite lan-
guages), unless explicitly clear otherwise.

Let G = (X, P,w, A) be an EOL system.

(1) A letter & € ¥ is called recursive if o g‘) uav, uv € B* The set of recursive
letters of G is denoted by rec G. ‘

(2) G is called propagating if ar>e implies z 5% A. In this case we say that G
is an EPOL system.

(3) G is called synchronized if for every e € A, o ¢ implies z & A*. Without

a

loss of generality we can assume that it G is a synchronized KOL system then there
exists a symbol /' € 3 — A, the synchronization symbol of G ,such that F' — I is




the only I-production of G and for each a € A, o0 — J7 is the only a-production
of G. In the rest of this paper whenever we consider a synchronized BOL system
it will be assumed that its synchronization symbeol equals 7.

I G is synchronized , then we use us G to denote © — (AU LS, I},

fi) G is' called stendard if the following conditions hold:

is propw( ting and synchronized
kS Ao "! '''' < -
o€ L, apre npiies & ¢& alph z;
o € usl, & =3 uwaw for some uw € (va @Y, = = for some z €
¥ A ; "

Gx

; for some v & AT

Let G = (2, P,w, A) be an EOL system and let £ be a positive integer. Let
us recall that a derivetion in G (of length £ leading from z € V* toy € V*) is
a sequence (2 == zg,%1,...,%¢ = ¥), such that zo = 2, 2, =;» Lo, ..., Tg1 '—J; )

together with a precise description of how all the ocmwrcnce% in @; are rewr M en

to obtain z.q for 0 < ¢ < £— 1. Such a description can be formalized (see, e.g.
[RS]). For the purpose of Lhis paper it is suffices to depict a derivatio '

1)]—43‘,2:? -7> nr-
G G

A derivation in G leading tton on G

To each derivebion there corresponds a d,er'ivm;imfz free ; if 2 ivation tree
of G corresponds to a successful derivation in ¢, then it is called » successful
' derwcéion lree ( G
C ¢ Tis a derivalion tree of G whoge nodes are labelicd by elements
of Xy, then T is calied [niclled derivalion free of (7.

R SR ; PuE . . o
girom who s € L7 s called o svecessful

in addition to the rather slandard notation and terimineology concerning deriva-
tion ftrees we will also use f 1000 ing
Yor o tree T, height T denoles its height.

For a node v of a derivation iree we will use £(v) to denote the {abel of v.

Let G be an EPOL system and let T be a derivotion tree in & of height £,
Then for 0 < ¢ < ¢, sel; T e noie i,zw set of nodes wh 1sta e rc\o‘{,
equals 1, and rnmw, ﬁ dencles the word ‘whlch results from the ucqucmm of all
nodes (01(19 ed from left to right) from set; T by fw"epb“f'i’w each node by its label.
Whenever we omit, the index 4 in the above notation, if, is assumed that 4 equals
height 7.




2.LONG BLOCK AND CLUSTERED BLOCK PROPERTY

In this section we define two combinatorial properties of lan,guagos forming
the subject of investigation of this paper : a long block property and a clustered
block property. We need a number of auxilliary notions first.

Definition 2.1 Let A be an alphabet and let w € A*. A segment of w
is a construct (u,k,£) where u € A" [ ke IN |1 < k< ¢< |w and u =
w(k)w(k +1)...w(€). The set of segments of w is denoted by SEG(w).

In the sequel the usual terminology concerning words will also be used for
segments (e.g. ,the length of a segment (u, k, £) is defined as |u| ); however, this
should not lead to confusion.

Definition 2.2  Let X, ¥ C SEG(w). We say that X covers ¥ if for every
(u,k,€) €Y there exists a segment (v, &, ¢') € X such that k' < k and # > £. g

Definition 2.8  Let A be an alphabet and let IT = (A, A2) be a binary
partition of A (i.e. Ay, Aa # 0, AjUA; =Aand A; N A, =0 ).

Then a block of w (with respect to II) is a construct (u, k,£) € SEG(w) such
that either u € AT and w(k—1), w(€+1) ¢ A; or u € AT and wk—1), w(l+1) ¢
As .

The set of all blocks of w (with respect to IT) is denoted BLyy(w) (BL(w) if 11
is understood).

F'or a positive integer m we also denote

BLT(w) = {(u, k, ) € BLy(w) | || < m).
]

We are now ready to state the definitions of a long block property and a
clustered block property.

Definition 2.4  Let KX C A* and let I be a binary partition of A. Then
K has a long block property (with respect to I1), written K € LB(I1) or K € LB if
Il 1s understood if there exists a function f : INT — IN™ such that for everyw € K
and cvery positive integer m, # BL{T(w) < f(m). We also say that K € LB(II)
with perameter f.

Definition 2.6 Let K C A* and let If be a binary partition of A. Then K
has a clustered block property (with respect to 1I), written K € CBh{ll) or K € CB
if It is understood, if there exists a positive integer ny and a growing function
g : INt — IN* such that for every w € f{ and every positive integer m there exists
a X C SEG(w) such that the following conditions hold:

() #X < n; |




(ii) for every z € X, |z| < g{m);
(iii) X covers BL] ( ).

We also say that K € CB(II) with parameters ng and g. |

The following example illustrates the above definitions

Bxample 2.1 Lel & == {a,0} | 1T = ({a},{0}) and let

A
K = {abob*a*1* . a™" | n > 1}.

r"“\

1) n oB).
Ch' rly for every w € K and every y ositive integer m, # BL™ (w) <
Zm. Thus, if we defline f: IV — WNT by 7 f(m) == 2m, then K € LB with parameter

Also if we define g : INT — N7 by g(m) = 2(1+ 2 +--- 4+ m) = m(m + 1),
then X&' € CB with parameters 1 and g. This can be seen as follows . For w =
ab...a®bF € K take

X = {(ab...a®* 1,006+ 1))}

" where £ = min{k, m}.

We investigate now the relationship between LB and OB properties.
First of all we demonstrate that a language which has a clustered block
property with respect to [, s hos o long block property with resnect to 11.

Theoremn 2.7 Let ' C A% and let IT |
K e OB{L) tmplies X € UI (r
o ;

Proef Assum

on of A, Then

; ¢ OB} with pﬂ“‘r mf‘r; ng and g. Define f

Nt INT by f{m} 21 We elaim that I e LD }with parameter f. This
1s proved as followr, - 7T, et m be a positive int - C p.ﬁ.b@(m)
be such that it satisfies (i} through (iii) of Definition /‘ 5. Then the total length of
all so"cmw s of X is not longer than # X times the maxi m'»l length of a “egmont

%n X 1e. ng - g(m). Thus — because the leﬂg;;h, of 2 block is alwoys positive —
!_}L ((w) < ng - glm) = f(m) and consequently K ¢ LB(IT) with paiameter e

K
&

On the other hand, the following cxample demonstirates thot the converse o
Theorem 2.1 does not, ho]d.

T,

Sxample 2.2 Let A == {a,0}, 1T = ({a}, {}) and let

K o= {a™s7 a2, 2™ i p > 1 and ie, 00 > Lfor 1 <0< n}.

Then K & LB(H)\ CR(I).




‘Proof  Obviously K € LB(Il) with parameter f @ INT — NV where
J(m) = 2m for every positive integer m. The fact that K ¢ CB(H) is proved
by contradiction. Assume that K € OB(I1) with parameters ng and ¢. Consider
m == ng -+ 1 and

0 === abﬂ("ﬂﬂ‘]} (J;g b;’}(l’m*H)—i—Q' . .a’mr{—lbg{_ng+1)+ng+1 i
Obvicusly every element of DL consists of a’s only and # B'L?‘l”'l(w) = ng+1.
Now let X C STG{w) satisly conditions (i) through ( i} of Definition 2.5 for m =
1o -~ 1 and w. %mr‘ for every 7 € X, |2] < (;(ng - 1), every z € 0 can cover at
most one element of BL{Y (wja Consequently # 5@;”"‘1{_?5) < mg; 2 con:?;radiction.

In the following theorem we state the obvious fact that if for a language there
exists a positive integer which limites the number of blocks in every word then
this language has a long block property and a clustered block property.

The following result is obvicus and hence given without a proof.

Theorem 2.2 Let K C A* and let 1T be a bina r] partition of A. If thore"
exisbs a positive in Leger n such that for e'lch w € K, #BLpy(w) < n, then K €
CB(I) (and hence K € LB(II}) ). &

We proceed fo investigale operations on languages which preserve the CB-
property.

Tw’“ TG 2 }_ ,e(, [ 1 _4'{3 C A7 and let H be a binary partition of A. H’
"""" U :

Proof Leu }1.1 Z?s E be as in the statement of the lemma. Let K €

CBOY with paramoters ?Z-g_ ‘ BT i nolers no and

& GBI with parame cre g(n) =

2(n)} for a positive integer n. g@

Definition 2.0 Let X C SEG(w). X is disjoint if for every (uy, by, &),
(UQ}jCﬂ,gQ)EX— eith }IQ >[’ -1 or [uz )ﬁg-%—l

',E.‘ he foin of ,/:", denoted V IN(X), is defined as follows.

(i) JOIN(X) C 8EG(w), JO

M e

t1
\
(;i) For every disjoint ¥ €

e

M(X) is disjoint and covers X .
2G(w) ~which covers X, ¥ also covers JOIN{X).

Thus given X C SEG(w]) its join is obtained by combining into one segment
those segrents thal cither overlap or touch each other.
Lemama 2.9 eoi, Ky © A% and let 1 be a binary partition of A. Let & be
1 L VI

a positive integer. If Ky € CB() and X C K%, then K € CR(I).




Proof lLet Ky, k, IT be as in the statement of the lemma. Let K; € CB(II)
with parameters n; and g;. We will demonstrate now that K € CB(IT) with
parameters k- ny and g where, for all positive integers n, g(n) = k - ny - g;(n) for
a positive integer n.

Let w € K and let m be a positive integer. Then w = wjws...w; where
w; € Ky for 1 < ¢ < k. Since Ky € CB(II) for each wy, 1 < ¢ < k ,there exists
an X; C SEG(w;) such that :

(i) # X < my

(ii) for every z € X, |2] < gl( ); and

(iii) X; covers BLT (w;).

For 1 <1 <k let

= Lk S bl e+ 3 fugl) | (b, ) € X}

j=1 j=1

Let X = JOIN(UE_, X).
- Then the following conditions hold:

() #X < (US, Xo) = T, #X < ko,
(ii) for every z € X,

o] < #(U, X3)  max{|w| | w e U1 Xt < k-my - ge(m)

and

(iii) X covers BL{T(w).

To see that (iii) holds consider a block u € BL{}(w). Thus either u = uju ;.. Ujts,
1 <7 < j5+s < k where yjsulw; | i1 prefl wiys and uyp¢ = wjqe for
7 <{€<j+4s,0ruisasubword of u;, 1 < 5 < k.

liach of those u; ’s, 7 < ¢ < 7+ s is covered by a segment from X;: and so
u is covered by a segment of JOIN(U!_, X;). Thus & & CB(II) with parameters
k-nyand g. g

Lemma 2.1 and Lemma 2.2 yield the following theorem.

Theorem 2.3 Let £, € be positive integers. Let Ky, ..., Ky € A* and let
Il be a binary partition of A such that Ky, ..., K, € CB(I). If K C(KU...U
K¢)=%, then K € CB(I).

We end this section by a result which states that in the st udy of “block
properties” we can restrict ourselves to the study of lmngu‘lges over a two letter
alphabet.



Theorem 2.4 Let K C A* and let [ = (A, Ag) be a binary partitibn
of A. Let h be the homomorphism on A* defined by h(a) = a for @ € Ay, and
h(a) = b for o € Ay, where a, b are two fixed different letters. Then

(1) K € LB(Il) if and only if A(K) € LB({a}, {b}) , and

(2) K € CB(I) if and only if A(K) € CB({a}, {b}) .

Proof (1) Obvious.

(2) If K € CB(I) , then A(K) € CB({a}, {6}). This can be seen as follows. If
no , g are parameters proving that K € CB(II) , then the same ng, ¢ will prove
that A(K') € CB({a}, {b}) ; for a word h(w) we consider covering by h(X).

If h(K) € CB({a},{b}), then K € CB(II). This can be seen as follows. If
ng, ¢ are parameters proving that h(K) € CB({a}, {b}) then the same ng,g will
prove that K € CB(II). Let w € K and let m be a positive integer. Consider h(w)
and X C SEG(h(w)) such that conditions (i) through (iii) from Definition 2.5 are
satisfied for h(w). Let '

X' ={(u, k,£) € SEG(w) | (h(u), k,£) € X}.

Clearly X' satisfies conditions (i) through (iii) from Definition 2.5 for w. Since w
and m were arbitrary, K € CB(II). g




3. BASIC LETTER TYPES

The aim of this paper is to prove that if K C A* is an EOL language and Il
is a binary partition of A such that K € LB(IT), then K € CB(II).

In view of Theorem 2.4 it suflices to consider A == {¢, b} and II = ({a}, {4}).
Thercfore in the rest of this paper, unless explicitly stated otherwise, we assume
that A = {a, b}, Il = ({a}, {6}), K C {a,b}" is an IOL language and K & LB(I).
Let G = (%, P,5,A) be an EOL system generating K . Without loss of generalily
we can assume that G is standard (see the proof of Theorem 11.2.2 in [RS]).

To prove that I & CB we proceed as follows. Observe that

maxr &
K =G ({ ) Ka. } U M))
aCGus G

AN

where My is a finite language (equal to all words of K which can be derived in one
step from S). Thus in view of Theorem 2.2 and Theorem 2.3 it sullices to prove
that for cach o € us G , I{G4) € CB. To this aim letters of us G are divided into
~ various categories. First of all we need a subdivision of the words of /&

Definition 3.1 A nonemplty word w € K is

— of type 1if # BL{w) =1,

— of type 2 il # BlL(w) = 2, and

— of type 3 if # BL{w) > 3.

Note that type 1 words are words of the form either ¢™ or 07, 7 > 0 (the
former are referred to as type ff? and the latter as type 10). Type 2 words are words
of the fm m either a™0™ or {"a™ | n, m > 0 (the former are referred Lo as type o
and the lalter as type20. @ ‘

Now letters of us & can be divided into various types.

2.2 For a letter « € us @,
' 3 %Y - : £ e h
typea == {z € {la, 10,2¢,20,3} | o (:}» w and w is of type z}.

G is called promissing if for every o € us G, F:typea = 1.

Then if typea == {x}, ¢ is said to be a lelter of type ¢. Furthermore | for a
derivation tree of &, each node labelled by a letter of type = is called a nede of
tupe x.

If G is promissing then for = € {la, 16, 2a, 2b, 3},

typez = {a | type o = {z}}.

Lemma 2.1 There exists an BOL system G == (X, P, 9, {a,b}) such Hmt
(@) = K and ¢ satisfies the following conditions



(1) & is standard.

(2) G is promissing.

(3) For every alphabet ® C vsG and every o € us @

either for all m > 0, there exists an z & (us G) such Lhat oz-ﬁr Tand #gr > n

or there exists a ng > 0 such that for every pomtwc mtcgei‘ n, a=+z for some
a

z € (us ()" where #g z < ng.
() H acusG NrecG, then o = uoy for some uv € 17

(5) Let @ € us G Ntype3 be %uch that alphz Nrec G Ntype3 = & whenever

o . Then sy and alphy C us G imply alphy C typel Utype2. [

¥
E2

or the rest of this paper we fix an BOL system G = (X, P, 8, {«,b}) which
generates K and satisfies conditions (1) through (5) of Lemma 3.1.
We consider now several properties of derivation trees in G.

Lemma 3.2 Let T be an arbitrary derivation tree of G.

For every node of type 3 its direct ancestor is either the root (labelled by 5)
or a node of type 3. :

For every node of type 2a its direct ancestor is either the root or a node of
type z, = € {3, 2a}.

For every node of type 2b its direct ancestor is either the root or a node of
type =, = € {8,20}.

For cvery node of type 1a its direct ancestor is either the root or a node of
type =, © € {3, 2a,2b,1a}

For every node of type 1b its direct ancestor is either the root or a nede of
type =, z € {3,2a,20,10}. | :

Lemma 3.2 There exists a positive integer & such that, for every (us G)-
labelled derivation tree I of G and every 0 < ¢ < height T', #f, e g result; T

I
.

\../

IA

Proaf  Since J{ € LB, there exists a function f : INT — N such that
HBL™™T Y () < fmaxr G). Let k= (maxr ). We prove that for this choice of
k the lemma holds. This is proved by contradiction.

Assume that T is a (us G)-labelled tree of G and 0 < 4 < height T' is such
that #y.esult; T > k. Clearly based on T' a successful derivation trec T
of G can be constructed such that there exists a 0 < 7 < height 7¥ such that
Hiype s result; T4 > k.

Then, since cach letter of type 3 does create al least one bleck and since G is
standard, we have

S C, E‘OQUHJ ' ”“) w € K and BLmaxr (J( ) > k= (]na,)(r (;)’




a contradiction.
Henee the lemma holds. B

For the rest of the paper we will assume that k; is an arbitrary but fixed
integer salisfying the statement of Lemma 3.3.

The following theorem shows that if « is a letter of type 1 or a letter of type
2, then I(G,) € CB.

Theorem 3.1 If a€tlypel Utype?2 , then L(G,) € CB.
Proof If oiseither of type 1 or of type 2, then each word in L{G,) has at
most two blocks. Thus by Theorem 2.2 L(Go) € CB. &

We will also show that for every letter a of type 3, L{(G,) € CB. To this aim
we divide letters of type 3 into two categories.

Definition 3.3  The set type 3/ is the set of all letters of type 3 such that
o ::? z implies alph z Nrec G Ntype3 = @ and type 31 is the set type 3 —type3/.

Nodes of type 31 (311 respectively ) are nodes labelled by letters of type 37
(type 311 respectively). H

We can now prove the analogon of Theorem 3.1 for letters of type3/.

Theorem 8.2 If a €typedl , then L(G,) € CB.

Preof Follows immediately from Lemma 3.1 (5), Theorem 2.3 and Theorem
3.1. 1@

12




4. THE MAIN RESULT

In the last section we have divided letters of G into basic types and for each
letter type ezcept for type 311 we have proved that a letter of this type gives rise
to a language in CB. Thus to complete the proof of our main result it suflices to
demonstrate that also letters of type 3/ yield languages in CB. This will be done
in this section. We need a number of definitions first.

- Brefinition 4.1 Let o € type2//. Consider a successful derivaiion tree in
(. The subtree spanned on all nodes of type 377 is called the skeleton of T" and
denoted skel 7. ‘

A node in skel 7" which has al most one successor (in skel T') is called simple;
otherwise it is called comples.

A maximal (looked al top-down) branch in skel 7' which contains only simple
nodes and ends either on a complex node or a leal is called a limb (of ¥7). Such a
limb will be denoted as {vy, ..., ;) where vy, ..., v are subsequent nodes of the
limb. '

A spike (of a limb) is a subbranch of a limb consisting of nodes vy , ..., vy,
m > £ such that v, still belongs to the same limb and £(ve) == {vmr1). A spzke
as above is said to be of type £(v¢) and will be denoted as K ve, ..., v >. B

Definition 4.2 Let o € type 3/, let T be a successlul derivation tree of
G, of height £, let p = (i),l, o+ Up, ) be a limb of T such that for ry <4 < rg , v,
has distance 7 to the root and let 0 =< v;,,...,v;, > be a spike of p.

Then for 4y < 7 < £, Iset;(T, o) denotes the following subset of set; T

Wiy <0 < dg+1 thcn Iset (7", o) consists of all nodes of set; 7" which are
descendants of vy, , ..., v;—1 and which are to the left of v;.

I 29 + 1 < 1 < £ then lset; (T, o) consists of all nodes of set; I” which are
descendants of v;, ..., v;, and which are to the left of all elements of cel; T' which
are descendants of v,41. :

If in the above definition we replace left by right then we get the definition
of rset;(7, o).

Finally Iresult (7, o) (rresults(T, o) respectively ) is the word which results
from the sequence of all nodes (ordered from left to right) from lset (7, &) (rset; (7T, o)
respectively) by replacing each node by its label.

If ¢ = height T then in the above the subscript 7 is omitted. H

Definition 4.8  Lel o € type3I1. We associate with o two languages LO(a)
— the left contributions of o ,2nd RC{a) — the right contridulions of o as follows.

(1) z € LC(a)

if and only if

there exists a letter @ of type 311, a successful derivation tree T of (/g , a limb
p = {vy,..,v;) of T and a spike 0 =< vy, ..., v, > of p of type & such that
z = lresult (7', o).

13



(2) = € RO(e)

if and only if

there exists a letter f# of type 311 a successlul derivation tree T of /g , alimb
p = (vy,..,v;) of T and a spike 0 =< vy,...,v,, > of p of type & such that
z = rresull(7,0). B

The following lemma gives an upper bound for the number of complex nodes
occurring in a successful derivation tree of G, where a € Lype2//.

Lermmma 4.1 There exists a positive integer k£ such that for every o €
type 2] and every successful derivation tree T of G, , skel T contains no more
than b complex nodes. '

Freof  The lemma is proved by contradiction. Assume that no bound k
exists. Let o € type3/f and let T be a successful derivation tree of G, such that
skel T has more than &y complex nodes. This T can now easily be transformed
(using Lemma 3.1 (4) ) into a (us G)-labelled tree T% of G with at least k; +1 complex
nodes and such that each node of type 3II has a son of type 3II. Consequently there
s 2t > 0 such that #,,.5result; 77 > k; which contradicts Lemma 3.3. Thus

the lemma holds. B

For the rest of the paper let ko be an arbitrary but fixed positive integer
salislying the statement of Lemma 4.1.
Jing

Now, given o € type 3f7 we V’i“ pz ove that I{G,) C MF {or a positive i'ﬁtomnr
by Theorem 2.3 L{(,} € CB. W

k. Then we will prove that M € CB and thus

need the following definitions first.

Deflinition 4.4 Let o € type3//. Let T be a successful derivation tree of
Go and let p == {vy,...,v;) be alimb of T.

Let SPIKE(p) be the (possibly empty) sequence of spikes defined inductively
as Tollows.

It p does not have spikes then SPIKE(p) == 0.

Otherwise SPIKE(p) = {(p1,...,p¢), t > 1 where py, ... , p; are spikes
constructed one-by-one as foliows.

Choose the first (top-down) node v;, on p such that p contains another node
labelled by the same letter ; let vj,4.1 be the last node on p labelled by the same
letter as vy . Then py € vy, V501, -, U5 . Then stort with v, 41 2nd proceed
as above. One stops when there are no spikes anymore in the remaining part of
the limb.

By Rest p we denote the set of all nodes from p not involved in any of py, ...,
pe. Blements pq , ..., pp of SPIKE(p) are called true spikes of p. For cvery limb p
of T', a true spike of pis called a a true spike of T. B




Deflinition 4.5 Let o € type3IT and let T be a successful derivation tree
of GG,. Let €y be the set of all nodes which occur in a true spike of 7" and let Cs
be the set of all nodes which contribute in one step to the terminal word. Observe
that €y N Oy == @ (the last node of a limb is never included in a spike). Cy is the
set of all nodes of skel T not contained in Cy U Cs.

Then the extended skeleton of T, denoted eskel 7' is obtained from skel T" by
including also all nodes (and their edges to nodes from skel ') that can be obtained
in one step from nedes in Cy.

The nodes of eskel 7 which do not belong to 7' are referred to as edded nodes
of T. Obscrve that none of the added nodes is a leal of T and all added nodes

belong to typel Utype2 Utype3. B

In the following lemma we calculate bounds on the number of true spikes of
an arbitrary successful derivation tree of G, and the number of its added nodes
(o € type 3IT).

Lemma 4.2 Let a € type3/I and let T be a successful derivation tree of
Ga-

(1) The number of true spikes of T' is bounded by # % - (kg - maxe G + 1) .

(2) The number of added nodes of 7" is bounded by # X - (kg - maxr G + 1) -
maxr G.

Proof (1) Since each limb of T either starts from a son of a complex node
or from the reot, the number of limbs of T is bounded by kg - maxr & 4 1. Since
every limb can contain at most £ 2 true spikes, the number of true spikes of T is
bounded by # % - (kg - maxr G -+ 1).

(2) Ciearly the number of added nodes of 7' is bounded by the number of
limbs of T times the number of nodes on a limb not included in a true spike of 1
times maxr @, thus by # 2 - (k2 - maxr G + 1) - maxr G. B

. : . - )7 P . 1
Next we present 2 language A such that L{G ) C M*® {for a positive integer
p O > o v 3 B
K (o €typedl]).

Lemma 4.2 Lot o € Lype 31T and let M be the following language: M =
My U My U My U My where

My = U L{G/f>9

Aetypeliitype 2Utype 31
My ={zeciab}"|p =z and f € type3I},

My= |J 10(p), and

fEtype 31T




M= |J Rro@).

Betype 31T

Then there exists a positive integer k such that L{(G,) € ME.

Proof Let k = (ko -maxr G+ 1)(F 2 (maxr ('+2)—|—1) Consider 2 successful
derivation tree T'in G of w. The word w is divided into subwords as follows :

(i) contributions of added nodes,

(i} contributions of nodes of be Cs category,

(iii) left contributions of true spikes of T,

(iv) right contributions of true spikes of T.

Obviously in this way w = wy...w, where for 1 < ¢ < p, w; € /. To prove
the lemma it sullices Lo prove that p < k.

(1) 4{i |1 <1 < p, w; € My} is bounded by the number of added nodes of
T thus by £ - (kg - maxr G + 1) - maxr G (see Lemma 4.2 (2} ).

(2) {0 | 1 _<_ i < p, w; € M} is bounded by the number of nodes of the Cy
category, thus by the number of limbs, i.e. by kg - maxr G + 1

(3) #{i |1 <4< p, wi € Ma}is bounded by the number of true spikes of
T, thus by # 2 - (ke - maxr G + 1) (see Lemma 4.2 (1)).

(4) #{7 |1 <7< p, w; € My} is bounded by the number of true spikes of
T, thus by # X - (kg - maxr G + 1) (see Lemma 4.2 (1) ).
~ Combining (1) through (4) we get that p is bounded by

(ko -maxr G+ 1)(# X - (maxr G+ 2) + 1) = k.

Thus the lemma holds. B

To prove that for C type 317, L{G o) € CB it remains to prove that LC(F) €
CB and RC(#) € CB for each f € t’ypo‘U}' We need the following definition and
lemma first. '

Definition 4.8 Let 2 = ay...06, , 0; € usG for 1 <1 < n, (y,k,£) €
SEG(z).

Then y is called a promissed block of type Aif = 0q...041Y0pr1.. .Gy and
one of the fo],lowing conditions holds.

(1) y € (type 26){type La) {type 20).

(2) y € (type 2b)(iype La)” and appy € (bype 16 U type 2b).

(3) y € (type 1a)’ (type 2a) and a1 € (type 15 U type 2a).

(Hye (i,jpe ie)" , ap—1 € (type1b U type 2e) and agpq € (‘“vpc 101 J type 20).

We call v o promissed block of type B © == a;...¢p—1¥%rp1...0, 2nd one
of the following conditions holds.

(1) v € (type 2a)(type 16)" (Lype 20).

(2) v € (Lype ?cz)(’byp@ 15)" and a¢r1 € (type La U type 2a).

(3) v € (type 18) (L} pe2b) and a;_ € (typela U type 2b).

(4) y € (type 10)" | ap_y € (bype e Utype 2b) and agps € (type la U type 2a).




I y is a promissed block of type A or a promissed block of type B3 then y is
called a promissed block. B

Lemma 4.4 Let o € type3/l and let T be a successful derivation tree of
G o which contains a spike ¢ =< vy,...,v, > and there exists a positive integer

t such that cither lresulty(T, o) or rrcm] t:(T, o) contaius as subword a promissed
- block z. Then

(a) Il z is of Lype A then there exists a f € alph z such that for every n > 0,
ﬁ:)w w € (us Q)" implies Hiype 1a W = 1. .

(b) If z is of type B then there exists a @ € alph z such that for every n > 0,
B %} w, w € (us G’} implies ¢y pe 15w 2> 7.

Proof We will prove (a); the proof of (b) is analogous. That (a) holds is
proved by contradiction. Assume that (a) does not hold. Then Lemmma 3.1 (3)
implies that for every f € alphz there exists a positive integer Cp such that for

every n > 0 there exists a w, € (us G)" where %} Wy, A0 Fyype10 Wn < Cg. Let

D = max{Cy | B € alphz} - |z| - maxr G.

Let f be such that K € LB with parameter f. Without loss of generality we
assume that X is a subword of Iresult,(T, o).
Let 7' be the subtree with root v; where we delete
(i) all descendants of v,41,
(ii) all nodes of set 7', and
- (iii) all nodes of lset,(T,0) , 1 > 1.
Let T, ..., Typyrr be f()+ 1 disjoint copies of T". Let vl . v{(DHl be

D
the nodes corresponding to vq and let, 'Up+1: .. 1{5 }}“ be the nodes corresponding

to vp_;, Let 77 be the tree which results [rom Ti, ..., Ty(p)+1 by identilying v{ +
and o] for 1 < 7 < f(D) + 1. Let T be the tree which results from T by
removing all nodes of set T and by replacing the subtree rooted at vy by 77.
Finally T is completed to a successful derivation tree of G, as follows. Let
m == height 7" +- 1. In cach leal node v of T with £(v) = £ € alph z which cccurs

in set, T 5 < wio, append a tree representing o derivation

. ) g . g e
Dpj: = wp; € (usG)" where #,,.0, w5 < Cp

In each leafl node v of 1, with f{v) = B Q/‘ﬂpi z which occurs inset; 77 | 7 <m
append an arbitrary tree rcpresemmg a derivation Dg ; : B :? {uﬂ € (us G) . Let
T denote the resulting tree.

Bince G is standard the above construction implies the existence of a word
w € K such that P}i_,D('w) > f(D)+ 1; a contradiction. Hence (a) holds.
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We are now ready to prove that for o € type 311, RC(Oc) and LC(a) belong to
ChB.

Lemma 4.5 Let o € type3//. Then RC(a) € CB and LC(a) € CB.

Proof Let g :INT — IN" be defined by g(n) = (maxr G)*"". We will show
that RC(a) € CB with parameters 4 and g. The proof for LC(a) is aralogous.

Let = € RC(a). Thus we have a situation as expressed by Definition 4.3. We
will use the notation of Definition 4.3. We number the levels from 7' bottum-up
and we consider the covering of BL*(z) where ¢ is a positive integer. The situation
1s depicted in figure 1.

Let © = z1...z4, ¢ > 1 where ; € BL(z) for 1 < 4 < ¢. Blocks #; and Lq
are called outeide blocks and blocks zo, ..., z,_1 are called inside blocks.

Let 1 <4 < g be such a block. Let p(z;) be the number of the level on which
a node v; of & lies such that v; is an ancestor of last z; but v;+1 1s not an ancestor
of last z;. We consider inside blocks only.

Let z; be such a block. Now z; is called

t-young if p(z;) < t+4,

t-oldif p(x;,—y > t+4,

t-middle if p(z,—y) < t+4 and p(z;) > t -+ 4.

Claim 4.1 If z; is {-old, then |z;| > ¢+ 1.

FProof Let uy (ug respectively) be the word formed by all ancestors of nodes
from z; on the level p(z;—1)—1 (p(2i—1)— 2 respectively). The situation is depicted
in figure 2.

All Tetters of uy are of one of the follwing types: 31, 2a, 2b, 1a, 10 , and
consequently all letters of us are of one of the following types : 2a, 28, la, 1b.
Consequently vy is a promissed block (see Definition 4.6) and thus by Lemma 4.4
ug contributes at least p(z;—1) — 3 letters a (or letters b) to the block 7;. Since g4
is t-old, p(w;—q) > t+ 4 and eomoqumtlf plzicy) =3 2> t-+1; thus [z > ¢4 1.

t-4

Claim 4.2 The joint length of all t-young blocks is bounded by {maxr G)™7;

moreover, all {-young blocks are adjacent.

Proof  Both facts follow from the fact that to the left of a t-vcung block
(different from the firsl inside biock) there is always a f-young block and all of
them are included in the contribution to w of the node in o which is aa ancestor
of the last letter of the rightmost {-young block (and this node is on a level not
higher than t-+4. &

Claim 4.2 Among 22, ..., 41 there is at most one #-middle block.

FProof  This follows mlmediately from Claim 4.2 and the observation that
cach blocl to the right of a t-middle block is t-old and each block to the left of a
t-middle block is t-young. 1
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We have now the following situation concerning blocks in z.

— all t-old blocks are outside BL'(w),

— there are at most three (“special”) blocks to handle: 1, 7, and the t-middle
block, each of them has length at most £ and can be covered by a segment of
length (maxr G)H~4 if maxr G > 2 (clearly, this can be assumed without loss of
generalily).

— all t-young blocks form a subword of length bounded by (maxr )",
Then clearly we can choose X C SEG(w) such that
() #X < 4; |
(i) for every z € X, |2] < (maxr @)™ = ¢(t); and
(iii) X covers BL*(w).

Thus indeed RC(0) € CB with parameters 4 and g. B

We are now ready to state the analogon of Thecrem 3.1 and Theorem 3.2 for
letters of type3/1.

Theorem 4.1 If a € type3I] , then L(G,) € CB.
‘ Proof If o € type3!I, then L(G,) C MF for a positive integer k& where M
is as in the statement of Lemma 4.3 ,

M =M UM,UM;UM,.

We know that M; € CB by Thoorem 3.1 and Theorem 3.2 , My € CB by Theorem
2.2, My, My € CB by Lemma 4.5. Thus M ¢ CB by Lomma 2.1 and consequently
Lemm_a 2.2 imiplies that L{G,) € CB. B '

Theorem 3.1 , Theorem 3.2 and Theorem 4.1 can be combined into the.
following result.

Theorem 4.2 K € CB.

Proof Forevery a €usG , o € typel Utype2 Utypedl Utype3f]. Then
by Theorem 8.1, Theorem 3.2 and Theorem 4.1 , L{G,) € CB.
Since

K = LG ( U L@Gau Mo)k

atcus G

for a finite language My and 2 positive integer £, Theorem 2.2 and Theorem 2.3
imply £ € CB. g

We are now ready to prove the main result of the paper.
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Theorem 4.3 Let A be an alphabet , let II = (A, As) be a binary
partition of A and let L C A* be an EOL language such that L € LB(II). Then
L e oB(r). ,

Proof Let L be as in the statement of the theorem. Let A be the homomor-
phism defined by h{a) = a if @ € Ay and A{a) = b if o € Ay where o and b are
two different symbols.

Then by Theorem 2.4 , A(L) € LB({a}, {0}). Then Theorem 4.2 implies h(L) €
CB({e},{b}) and consequently, again applying Theorem 2.4 yields L ¢ CB(H). g
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5. APPLICATIONS

In this section we present examples to show the usefulness of Theorem 4.3 for
proving that a language is not an EOL language.

Example 5.1
K = {a"*b7a2b2. 0™ b |n > 1and 14,75 > £for 1 < £ < n}.

It was proved in Section 2 that for IT = ({a}, {#}), K € LB(II)—CB(II). Consequently
Theorem 4.3 implies K ¢ L(EOL). Observe that K € L(ETOL). R

Example 5.2  Let G be a rewriting system with letters @ and b, productions
a — b% and b — a2, axiom @ and with the following rewriting rule.

Let £ =ay...ap ,n > 1,0a; € {a,b} for 1 < i < n, and let y = yy...yn.
Then z ? y if either a;zy: for 1 <1 < n ,or there exists a 1 < 7 < n such that

y; = a; and for 1 < 1 < n,% 5 7, a;z*y;. Thus in a string either all letters are
rewritten or all but one letter are rewritten.

The system G is a regular pattern grammar (see, e.g., [KR1]). We will now
show that K = L(G) (which consists of all strings derivable from the axiom ) is
not an EOL language. Observe that we are going to prove this without knowing
any explicit expression for the language K.

Let Il = ({a}, {6}).

Claim 5.1 K € LB(IlI) with parameter f where f(1) = 1 and for m >
1, f(m) = f(lm/2]) + 3. ({m/2] denotes the integer k such that 2k < m and
2(1c +1) > m).

Proof The proof goes by induction on the length of the blocks m.

(Hm=1

We must prove that for every w € K , # BL{j(w) < 1. This is proved by
induction on the number of derivation steps needed to derive w.

If w is the axiom then w = a and thus #BLH( a) = 1. Assume that for any
w e K whlch can be derived in less than or equal to n steps, # BL{j(w) < 1. Then

let @ 25 wn.,_l, i.e. a2 Wy, = Wpy1 and by induction # BLY(wy) < 1.

To obtain w,41 either all occurrences of letters from w,, are rewritten or all
but one occurrences of letters from w,, are rewritten. If all occurrences of letters
from w,, are rewritten then the form of the productions implies that every block of
Wr+1 has length at least 2, hence #BL%I(wnH) < 1. If one occurrence of a letter
i1s not rewritten, then this occurrence is the only possible candidate to belong to
a block of length 1, hence # BLjj(w,41) < 1.

This concludes the proof for the case m = 1.

(2) Assume that for every w € K , # BLE (w) < f(k) for 1 < k < m. Then we
prove that for every w € K, # BL"”+1( ) < f(m+1). This is proved by induction
on the length of a dorlvatlon of w.

If w is the axiom , #BL’"‘“( ) < f(m + 1) clearly holds. Assume that for

any w € K such that a 5w, #BLI 1 (w) < f(m +1). Then let ¢ % w0, = wy41.
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As in (1) there are two possible ways to derive w,; from w,. If productions are
applied to all occurrences of letters of w,, then every element of BLIFt! (w,44)

must come from an element of BLHmH)/QJ(wn). Thus
#BLE (wnrr) < #BLE™ () < f(((m + 1)/2)) < J(m)
If one occurrence of a letter of w,, is not rewritten then
#BLE (wnr1) < #BLE™ 2 wa) +8 < f(((m + 1)/2]) + 3 < 1(m).

This concludes the proof of (2).
From (1) and (2) the claim follows.

Claim 5.2 K ¢ CB(II).

Proof The proof goes by contradiction. Assume that K € CB(II) with
parameters ng and ¢g. We will derive a word w which violates the property.

Let n > g(2m0t1) . (ng+ 1) and let t = g(2™0+1). To get w we first derive a2"
and then proceed my + 1 steps (using the second rewriting rule) according to the
following scheme (for each step we have underlined the occurrence which is not
rewritten in that step).

aa?" "' = abthh*:
= b%a’thataa®?
= a’b**a%b?abthh"e
= BBt g 1th2 02t hat ga s

If (ng + 1) is odd we get

w = g2 TR R0t 2% 2% 2 2N g Eno s
and if (ng +1) is even we get the same word with the roles of @ and b interchanged.
Without loss of generality assume that ng is odd (ng is even is symmetric).
Then all blocks of w consisting of b’s only are longer than t. Let mg = 2mot! All
blocks of length at most mg consist only of a’s. However no two different elements
of BL°(w) can be covered by a segment of length at most g(mo) = ¢. Thus if
X covers BL{7®(w) then # X > ng; acontradiction. This ends the proof of Claim
5.2.

Since K € LB(II) — CB(II), by Theorem 4.3 , K ¢ L(EOL). B
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