THE TOOLPACK MATHEMATICAL SOFTWARE
DEVELOPMENT ENVIRONMENT)

by
Leon J. Osterweil
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CsS~226-82 July 21, 1982

This research was supported, in part, by NSF grant MCS
MSC8000017, Department of Energy grant number DEAC02-
80ER10718, and U.S. Army Research Office Contract number
DAAG 29-80-C-0094.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF

THE ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

l. Introduction

This paper describes Toolpack[1l], a project still in
progress to build a prototype software development environ-
ment. The purpose of the Toolpack project 1is to gain
insight into some of the central questions confronting the
would-be builder of a software environment by creating and
studying an experimental prototype.

It is becoming generally agreed that if software tools
are to Dbe effectively exploited they must be amalgamated

into well integrated collections. It also seems agreed that
these collections should be broad in scope, easy to use, and
highly efficient in actual operation. Such a well

integrated tool collection has come to be called an environ-
ment. To be more specific, in an earlier paper [Oste 81] it
was proposed that an environment was a collection of
software tools which had the following five properties:

(1) Breadth of scope--capabilities spanning the entire
range of activities to be performed in order to accom-
plish a complete specific software job.

(2) User Friendliness--Input language and diagnostic capa-
bilities which would neither intimidate nor harass the
user, as well as sufficient adaptability to assure that
the tools would remain useful and supportive as the
user's work procedures and style underwent reasonable
changes.

(3) Tight Integration--Tools which are sufficiently aware
of each other's capabilities to avoid the semblance of
overlapping capabilities as well as the possibility of
incompatibility.

(4) Internal Reusability=--An architecture and design which
encourages the reuse of simple modular capabilities in
furnishing the various functional capabilities of the
environment.

[1]Toolpack is a research project involving cooperation
among researchers from Argonne National Laboratory, Bell
Telephone Laboratories, IMSL Inc., Jet Propulsion Laborato-
ry, Numerical Algorithms Group Ltd., Purdue University,
University of Arizona and University of Colorado at Boulder.
The project is supported by the National Science Foundation,
the Department of Energy and the participating institutions,
themselves.

(5) Use of a Central Data Base--an architecture and design
in which the various functional tools draw their inputs
from, and place their outputs back into, a central
repository of information. This repository is to be
considered the focus of all knowledge about the
software project.

Although much of this seems clear and well agreed to,
it is far 1less clear how to go about building such an
environment. In particular it is unclear how to achieve each
of the five characteristics just described with a single
software system. There is even considerable question about
whether the five are consistent and compatible with each
other.

For example, it has been suggested [Oste 81] that tight
integration and internal reusability might be inconsistent
objectives. It appears, at least on the surface, that tools
which are keenly aware of each other might be difficult or
impossible to construct from standard self-contained
modules.

The need to center the environment around a data base
containing all project information also poses a problem.
Clearly a given software development project generates an
enormous amount of information. If the data base is to con-
tain all information spanning all aspects and phases of the
project then it would have to contain all of this informa-
tion and reflect all of the myriad relations which charac-
terize the project and its status. It is not clear that
this can be done in an efficient, cost-effective way. Thus
there arises the question of whether a central data base can
be created in a manner which is consistent with the need for
efficiency and breadth of scope.

In considering how such an environment might be built
it 1s reasonable to look to the paradigm of the software
development lifecycle as a model, and to simply follow
accepted software development lifecycle procedure. Thus
conventional wisdom suggests that one should start construc-
tion of a software development environment by carrying out a

careful analysis of the requirements. In the process of
doing so0 one should obtain the answers to the questions
raised above. For example, careful requirements analysis

should make clear the specific actual needs for the various
pieces of information and relations which must be 1in the
central data base. Similarly the requirements analysis pro-
cess should make clear the performance requirements (e.g.,
access speeds) necessary in order for the environment to be
acceptably fast and inexpensive.

Here the circular nature of this problem starts to
become apparent. In order to pinpoint the requirements for

an effective software development environment sufficiently
to definitively obtain answers to the above questions, it
is essential to be able to interview a wide variety of
software developers who are knowledgeable and experienced in
such matters. Specifically, it is essential to get defini-
tive answers about experiences and Jjudgments concerning
specific tool capabilities and the items of information
which they utilize and create. It is unfortunately the case
that this sort of knowledge and experience 1is very rare,
because of the lack of widespread use of a variety of
software development tools. In fact it is the lack of
widespread effective utilization of superior tools that has
led us to believe that environments must be created. Hence
there seems to be a paradox in that the knowledge needed to
form the basis for an environment building effort is not
available for precisely the same reasons that are prompting
the effort in the first place.

Furthermore, there seems to be agreement that access to
superior software development environments will rapidly
cause developers to change the manner in which they do their
work. Thus any guesses about what might be needed in the
way of tool capabilities and configurations would probably
change as experience with environments grew. Thus it seems
that here, as in the case of other software projects which
are designed to address a new and evolving problem, it is
naive to expect that we will be able to definitively estab-
lish a firm baseline set of requirements.

Instead what must be done is to evolve a strategy for
studying the requirements for a software development
environment which assures that there 1is steady progress
towards the goal of sufficient knowledge and confidence to
justify embarking upon a full scale environment development
activity. One way of doing this is to embark on a program
of constructing a series of increasingly ambitious experi-
mental prototype environments. If each prototype 1is
designed to be the object of study and the sequence is
arranged in such a way that the most critical requirements
and design issues can be elucidated or resolved by the early
prototypes, then there would seem to be good reason to
expect that an effective environment would emerge as an
end-product of this process.

It is in this spirit that the Toolpack project has
embarked upon a plan for producing a sequence of at least
three successive releases of an environment for software
production.

2. Goals of the Toolpack Prototype Development Effort

The main goal of the Toolpack project to is establish a
positive feedback loop between environment developers and a
broad and diverse base of environment users by supplying
those wusers a sequence of environments that is increasingly
responsive to the users' needs. The purpose of this feedback
process 1is twofold. One purpose is to create and promul-
gate a vehicle for the more effective development and
maintenance of software. The other is to obtain reliable,
detailed, gquantitative answers to many of the central gues-
tions confronting software development environment builders.
Specifically, it is expected that at 1least the following
issues will be elucidated or resolved:

(1) What is an acceptably broad and complete suite of tool
capabilities for supporting some specific software
development jobs?

(2) How important are various data items and relations and
how accessible must they be to various sorts of
environment users?

(3) Is there a set of modular "tool fragments" which 1is
sufficiently powerful yet flexible to provide the basis
for a broad yet tightly integrated set of tool capabil-
ities?

(4) What are the general characteristics of a user inter-
face language which is sufficiently powerful, vyet
acceptably "friendly"?

In order to get reliable insights into these questions
it is important to construct prototypes in such a way that a
large and diverse community of wusers will become active
users of the environment. Thus the Toolpack project has
taken great pains to assure that its prototype environments
will be of great interest and assistance to a large and sig-
nificant community of users.

The target community for the Toolpack prototypes is the
community of Mathematical Software developers. This commun-
ity is in many ways a nearly ideal target community. The
mathematical software community is among the oldest software
production communities, tracing its origins to +the small
group of scientists who conceived of the stored program com-
puter in the 1940's. Thus it is a coherent group that has
well agreed wupon goals and procedures. Among the accepted
procedures of this community is the wutilization of tools
(e.g., see [JPL 78], [JPL 81]). In addition, the community

has consciously and innovatively striven toward quality for
perhaps a longer period of time than any other software com-
munity. This has manifested itself for example, in the not-
able "PACK" projects of the 197@'s [Cowe 77].

This community is perhaps unique in that it has 1long
held that portability is a necessary characteristic of high
qguality software. Thus the community 1is accustomed to
receiving and evaluating new software items as a community,
regardless of differences in the hardware/software confi-
gurations Dbeing used by different members of the community.
Of course it is essential that such new software items be
presented in portable form.

There are other characteristics of the mathematical
software community that cause it to be very desirable for
our purposes. It has long ago established a single program-
ming language (Fortran) as its, more or less uniform, stan-
dard. Thus a suite of support tools of interest and value
to the entire community can be made source language
specific. This greatly simplifies the problem of writing
generally useful and acceptable tools.

The software produced by this community is ordinarily
rather modest in size, usually aggregating less than 19,000
lines of source code. This also simplifies the problem of
writing acceptably efficient tools.

In addition, the mathematical software community gen-—
erally follows a software lifecycle model which is far
simpler than the lifecycle models which are widely espoused
by and for many other software development communities.
Mathematical software development rarely, if ever, Dbegins
with formal requirements analysis. Similarly, there is
rarely a formal preliminary (or architectural) design phase.
This appears at first glance to be paradoxical, especially
in view of the high quality and good acceptance of mathemat-
ical software over the past decades. The explanation
appears to be that mathematical software requirements and
preliminary design specifications have been derived over a
period of decades (if not centuries) by mathematicians and
numerical analysts. These specifications appear as
mathematical formulas in books and technical reports. Thus
the process of producing mathematical software appears to
start on this base and proceed immediately with what other
communities would label detailed (or algorithmic) design.
These designs are often expressed directly in the form of
code for a higher level pseudolanguage such as SFTRAN [JPL
8lal, Ratfor [Kern 75] or EFL [Feld 79], Dbut perhaps more
routinely they are coded directly in a relatively portable
Fortran dialect. There then follows a familiar pattern of
testing, documentation and the upgrading and adjustment that
is most often referred to as "maintenance".

It is doubtlessly true that mathematical software began
encountering, and grappling with, the sorts of data manipu-
lation problems whose solution would benefit from the more
formal requirements and preliminary design techniques pre-
valent in other communities today. It might be interesting
to conjecture about why these contemporary technigques have
never been adopted by the mathematical software community,
but such conjecture would digress from the issue at hand.
The issue is that this community currently does not gen-
erally perceive the need for these techniques and associated
tools. Thus their absence from Toolpack should not endanger
community acceptance. This acceptance can be based only on
solid support for the lifecycle as it is practiced, rather
than as it might or should be practiced.

This prevailing lifecycle model is particularly for-
tunate for the Toolpack project because is suggests that a
tool support set can be relatively modest, addressing the
creation, testing, analysis, documentation, and transporta-
tion of only code (and perhaps some algorithmic design) and
still be considered to be a complete tool set by this com-
munity. More fortunately still, most if not all of these
tool capabilities have already been produced and evaluated
to some extent by some members of the community. Thus a
comprehensive tool set will not be totally unfamiliar to the
community. Further, the preexistence of such tools means
that the environment production activity can focus more on
the issues of integration, user interface, and data Dbase
contents, and will not need to be preoccupied with more mun-
dane matters such as the recreation of tool capabilities
whose reproduction will contribute less to the accumulation
of new knowledge about environments.

With these factors in mind, the Toolpack project has
set out to build a portable environment capable of extending
comprehensive support to the community of people who are
engaged in producing, testing, transporting and analyzing
mathematical software written in Fortran. Toolpack project
environments will Dbe made available through a series of
releases, each of which is designed to improve upon its
predecessors as a consequence of experience and evaluation
obtained through extensive and diverse utilization of those
predecessors.

The specific approach to the architecture and design of
the family of Toolpack environments will now be summarized.
A more complete summary can be found in [Oste 8lal. It
should be stressed that this approach has been arrived at
only after extensive discussions and consultations designed
to determine the preferences and predispositions of the
mathematical software community so as to assure, as well as
feasible, widespread acceptance of the Toolpack project
environment releases. The approach has also been designed

so as to assure that the gualitative and quantitative obser-
vations of user experiences will make substantial contribu-
tions towards resolution of the critical environment design
issues enumerated above.

3. Requirements and Functional Capabilities of the Tool-
pack Environment

The purpose of Toolpack is to provide strong,
comprehensive tool support to programmers who are producing,
testing, transporting or analyzing moderate size mathemati-
cal software written in Fortran77.

3.1. Overall Requirements

The following are taken to be the Dbasic assumptions
upon which the Toolpack environment architecture and design
are based.

(1) The mathematical software whose production, testing,
transportation and analysis is to be supported by Tool-
pack systems shall be written in a dialect of Fortran
77. This dialect shall be carefully chosen to span the
needs of as broad and numerous a user community as 1is
practical.

(2) Toolpack software and systems are to be designed to
provide cost effective support for the production by up
to 3 programmers of programs whose length is up to 5000
lines of source text. They may be less effective in
supporting larger projects.

(3) Toolpack software and systems are to be designed to
provide cost effective support for the analysis and
transporting of programs whose length is up to 19,000
lines of source text. They may be less effective in
supporting larger projects.

(4) Toolpack software and systems will support users work-
ing in either batch or interactive mode, but may offer
stronger more flexible support to interactive users.

(5) Toolpack software and systems will be highly portable,
making only weak assumptions about their operating
environment. They will be designed, however, to make
effective use of large amounts of primary and secondary
memory, whenever these resources can be made available.

3.2. Toolpack Tools

The Toolpack group is in agreement that the following
tool capabilities constitute a sound basis for a programming
support system for the production of high quality Fortran
programs:

@. A compiling/loading system

1. A Fortran-intelligent editor

2. A formatter

3. A structurer

4. A dynamic testing and validation aid

5. A dynamic debugging aid

6. A static error detection and validation aid
7. A static portability checking aid

8. A documentation generation aid

9. A program transformer

A compiling/loading capability is generally available
on host operating systems. Thus no tool development effort
in this area is proposed. Tools are to be developed in all
of the nine other areas, however. In fact, significant tool
capabilities have already been developed in some of these
areas, as shall be described subsequently.

3.2.1. Fortran-Intelligent Editor

A powerful editor [Hagu 81] will be included in Tool~
pack to assist the programmer in producing Fortran source
code. This editor will offer a range of general text mani-
pulation facilities, 1including the usual capabilities for
inserting, deleting, 1locating and transforming arbitrary
strings of characters. 1In addition, the editor will provide
the following facilities for constructing and modifying For-
tran programs.

--The user will be able to abbreviate Fortran Xkeywords;
these abbreviations will Dbe automatically expanded by the
editor.

--The editor will assure that various fields of Fortran
statements are placed in the proper columns.

-=-As with the Cornell Program Synthesizer [Teit 81] and the
Mentor [Donz 8#] system, the Toolpack editor will prompt the
user for anticipated constructs. Moreover, the subsequent
incoming statement will be checked for syntactic correctness
and certain kinds of semantic consistency, e.g., the usage
of a variable against declarations of the variable.

--The user will be able to search for occurrences of speci-
fied variables and labels. The editor will be able to

10

distinguish those occurrence from occurrences of the same
string of characters in other contexts, e.g., comments.

--It will be possible to confine searching and replacement
operations to fixed domains of a program, such as a particu-
lar DO loop or a particular subroutine. For example, it
will Dbe possible to change all occurrences of a given vari-
able (say X) to another variable (say Y) within a specified
subroutine.

3‘%'3’ Formatter

The Toolpack project will provide a tool to put Fortran
programs into a canonical form. In particular, the format-
ting tool, called Polish-X [Fosd 81] will have the following
capabilities.

~--Variables and operators will be set off by exactly one
space on either side, except in certain cases, e.g., sub-
scripts.

~=-DO loop bodies and IF statement alternatives will Dbe
indented.

--Statement labels will optionally be put in regular
increasing order.

--It will be possible to optionally align the lefthand and
righthand margins of statements.

-=-It will be possible to insert ON and OFF markers to indi-

cate that Polish-X is to leave certain sections of the pro-
gram unaltered.

g.g.g. Structurer

The ability to infer and emphasize the underlying loop-
ing structure of a program is useful. The failure of For-
tran 77 to supply suitable constructs for doing so has left
a significant void in the language. Hence a tool is to be
provided that will recast Fortran 77 program loops as, for
example, DO WHILE loops, either simulated in Fortran 77 by
canonical constructs or realized explicitly according to the
rules of Ratfor [Kern 75], EFL [Feld 79] or SFTRAN [JPL
8la]. This tool will, moreover, be able to automatically
upgrade many Fortran 66 GO TO's to Fortran 77 IF-THEN-ELSE
constructs. Such structuring often improves readability and
comprehensibility, and serves as valuable documentation.
The structuring capability in Toolpack will be closely pat-

11

terned after the UNIX[2] struct command [Bake 77].

3.2.4. Dynamic Testing and Validation Aid

The Toolpack project will produce a facility for
automatically inserting instrumentation probes into Fortran
77 programs and for creating useful intermediate output from
these probes at run time. This facility will enable the
user to capture and view a variety of +trace and summary
information. It will be possible, for example, to capture a
program's statement execution sequence or to generate a his-
togram of the relative frequencies of execution of the vari-
ous statements. Similarly, it will be possible to capture
and study subroutine execution sequences and histograms, or
variable evolution histories.

It will be possible for the user to implant in the sub-
ject program monitors for certain kinds of errors. For
example, the user will be able to specify that either all or
certain specified arrays are to be monitored to be sure that
the subscripts by which they are referenced stay within
declared bounds.

This facility will also incorporate a capability for
checking the outcome of an execution against specifications

of intent fashioned by the user. The specifications of
intent are to be embodied in assertions, stated in comments
and expressed 1in a flexible assertion language. These

assertions will be expanded into executable code by the
Toolpack dynamic testing facility. Once an assertion viola-
tion 1is detected, relevant information about the program
status at the time of the violation will be automatically
saved.

A system, call Newton [Feib 81] (see Figure 1), is
being developed to provide the functional capabilities just
outlined.

The dynamic testing capability will make it all to easy
to produce very large amounts of output. There is some sen-
timent among Toolpack group members that tool support should
be provided to aid the process of inferring useful diagnos-
tic and documentation information from this raw output.
This support would treat the output from the dynamic execu-
tion as a data base of information, and would consist of
data base management aids and report generators to organize
and format the diagnostic output for ease of understanding.
There are currently no firm plans to construct such a tool.

[2] UNIX is a trademark of Bell Laboratories.

12

3.2.5. Dynamic Debugging Aid

Debugging is to be facilitated by the ability to scru-
tinize to arbitrary 1levels of details the progress of the
execution of a program that is behaving incorrectly. Thus
the Newton system, classified above as a dynamic testing and
validation aid, can be viewed as a debugging aid as well.

In addition, however, debugging is assisted by
snapshot, breakpoint and single-step-execution capabilities.
These are also to be provided by Newton. They will enable a
user to suspend execution at designated sites or on desig-
nated conditions. While execution 1is suspended the user
will be able to examine the current values of variables, the
execution history to date and the source text.

3.2.6. Static Error Detection and Validation Aid

The Toolpack project will furnish flexible capabilities
for statically detecting a wide range of errors and, where
possible, for proving the absence of errors. These tools
will offer the wuser the ability to easily select from a
range of capabilities that includes those supplied by the
Dave data flow analysis system [Oste 76].

The structures of modern modular compilers and of the
Dave IT system suggest that the static analysis of a program
can be organized into the following progression of analytic
steps: lexical analysis, syntactic analysis, static seman-
tic analysis and data flow analysis. Thus the Toolpack
static analysis capability will be subdivided into individu-
ally selectable capabilities offering these levels of ana-
lytic power (see Figure 2).

The lexical analysis step will accept as input the pro-
gram source text, and convert it into the corresponding list
of lexical tokens. Tllegal tokens such as unknown Kkeywords
or variables that are too long, will be detected in this
process and reported.

The syntactic analysis step will require the 1list of
lexical tokens as input. This process will construct a
parse tree representation of the user's program and a symbol
table. 1In the process of doing this, syntactic errors, such
as illegal expressions or malformed statements, will be
detected and reported.

The static semantic analysis step will build upon the
output of the first two static analyzers and will produce a
number of structures designed to represent and elucidate the
functioning of the program. These structures will facili-
tate the checking and cross-checking that can detect such

13

errors as mismatched argument and parameter lists, unreach-
able code segments, inconsistencies between variable
declaration and usage, and improper DO loop nesting and
specification.

The data flow analysis step will rest upon the semantic
information and flowgraph structures built by the other
three analyzers, and will produce reports about the refer-
ences and definitions affected by each statement and subpro-
gram Oof the usrer's program. These reports will then be the
basis for analytic scans of all possible program execution
sequences. These scans will produce reports about whether
there 1is any possibility of referencing a program variable
before it has been defined, or defining a program variable
and then never referencing it.

There is some sentiment among Toolpack group members
that a tool is needed for centralizing and coordinating
error reporting from these four static analysis tools. Such
a tool would be similar in purpose to the error reporting
tool discussed in Section 3.4. Here too, there is currently
no firm plan to build such a tool.

3.2.7. Static Portability Checking Aid

The Toolpack project will furnish a capability for
statically determining whether or not a given Fortran 77
program is written in such a dialect and style as to facili-
tate transporting the program. This capability will be
modeled after the PFORT Verifier [Ryde 74], a very success-
ful and useful tool for checking the portability of Fortran
66 programs. Such portability obstacles as use of statement
types not defined in the language standard (e.g., NAMELIST),
assumptions about word lengths (e.g., packing of multiple
characters in a word without use of the CHARACTER data
type), and use of non-portable machine constants will be
detected and reported.

Certain interprocedural checks not done by the PFORT
Verifier, ©but supported by Dave, will be incorporated into
the Toolpack portability checker. For example, Fortran pro-
grams sometimes rely for correct execution upon assumptions
about the parameter passing mechanism of the compiler on
which the programs were developed. Data flow analysis
determines the treatment of every parameter and COMMON vari-
able by every subprogram with sufficient precision that non-
portable parameter passing practices can be detected.

The functional capabilities needed to create this por-
tability aid are quite similar to those needed by the static
error detection and validation aid just described. A pri-
mary difference is that this tool, as opposed to most other

14

Toolpack tools, will need to analyze and support a res-
tricted Fortran 77 dialect, as opposed to a liberalized,
extended dialect.

3.2.8. Documentation Generation Aid

The Toolpack group recognizes the importance of high
quality program documentation and the desirability of tool
support for the process of creating it. The group believes
that the static and dynamic analysis capabilities already
described create items of information that are useful pro-
gram documentation. A documentation aid might well draw
upon this information and facilitate its availability. In
addition, the documentation aid might assist the preparation
of user-generated documentation. No specification for this
tool is currently available.

.2.9. Program Transformer

There is general agreement among Toolpack group members
that it is highly desirable to produce a program transforma-
tion tool as part of the Toolpack project. It 1is agreed
that the tool should offer such capabilities as assistance
in translating one dialect of Fortran to another, assistance
in altering a program to perform its computations at a dif-
ferent level of precision, and facilities for creating
special=-purpose control or data structures.

There is currently little agreement, however, about the
tradeoffs this tool should make between power, rigor, effi-
ciency and usability. Three specific tools have Dbeen
proposed-—-a template processor system, a macro processor
system, and a correctness-~preserving transformation system.

The template processor [Ward 81] is designed to enable
the user to define Fortran language extensions by establish-
ing data structure "templates". These templates can be
named in the body of a Fortran program along with program
data objects. The program data objects are then taken as
arguments to be imbedded in the template description. The
effect of this is that the user can employ and manipulate
complex data structures in a source program without having
to define those data structures within the program. This
also leaves open the possibility that an expert could estab-
lish these complex data structure templates for wusers who
lack the expertise to create the structures, but who,
nevertheless, have a need for them. The template processor
is designed to be extremely easy to use, but does little to
guarantee that the Fortran statements it generates are
correct or efficient.

15

The macro processor, called BIGMAC II [Myer 81], is
similar in operation to the template processor. It enables
users to define macros (code skeletons) which can then be
expanded into actual bodies of code with the incorporation
of parameters supplied to the macro at an invocation site in
a user's program. Here too, the macros can be written by an
expert and made available +to casual users, much 1like a
library subprogram. BIGMAC II macros are more complicated
and difficult to write than templates, but have the advan-
tage of assisting the writer in preparing efficient and
correct Fortran programs. These differences spring, essen-
tially, from the ability of BIGMAC II macros to acguire
information about their invoking environments, to communi-
cate with each other, and to produce output Fortran code
that can be implanted in a few different strategic places in
the source code of the invoking program.

The correctness~preserving transformation system,
called TAMPR [Boyl 76], is the most powerful and sophisti-
cated of the three proposed transformation systems. TAMPR
constructs a parse~tree representation of the subject For-
tran program, enables the user to analyze and transform the
tree, and finally +translates the transformed tree back to
equivalent Fortran source code. TAMPR scrutinizes the
transformation rules to be sure that the transformations
that they specify do not alter the functionality of the sub-~-
ject program. This aspect of TAMPR makes it the safest of
the three transformation systems. In addition, because the
user 1is completely free to analyze and transform as much of
the tree as desired, TAMPR has virtually limitless transfor-
mation power. The main drawbacks to this system are that,
at least in prototype form, it appears to be very expensive
to use and requires that the user be highly skilled and con-
versant with mathematical formalism.

In order to assist the Toolpack group 1in evaluating
these three alternatives, it is likely that all will be made
available as part of Toolpack so that a large and diverse
user community can compare and evaluate them in a variety of
usage contexts.

3.2.10. Additional Capabilities

Support from individual Toolpack group members has been
expressed for eventual inclusion of a preprocessor for Rat-
for [Kern 75], EFL [Feld 79], or SFTRAN [JPL 8la], for a
document preparation aid like ROFF, for a source text ver-
sion control facility, for a tape archiving program and for
a general- purpose macro processor as advocated in [Mill
82]. Decisions about inclusion of such capabilities in
Toolpack will hinge upon perceived user demand.

16

4. Tool Integration Strategy

The tool objectives described in Section 3 are to be
achieved by a software system, currently implemented in pro-
totype form, called the Integrated System of Tools (IsT).
A primary motivating goal of the architecture and design of
the IST is that user support be supplied in as direct and
painless a fashion as is feasible. 1In particular, the IST
attempts to relieve the user of having to understand the
natures and idiosyncrasies of individual Toolpack tools. It
also relieves the user of the burden of having to combine or
coordinate these tools. Instead the IST encourages the user
to express needs in terms of the requirements of the actual
software job. The IST is designed to then ascertain which
tools are necessary, properly configure those tools, and
present the results of using the tools to the user in a con-
venient form.

The architecture and design encourage the user to think
of the IST as an energetic, reasonably bright assistant,
capable of answering questions, performing menial but
onerous tasks and storing and retrieving important bodies of
data.

In order to reach this view, the user should think of
IST as a vehicle for establishing and maintaining a file
system containing all information important to the user, and
using that file system to both furnish input to needed tools
and capture the output of those tools. Clearly, such a file
system is potentially quite large and is to contain a diver-
sity of stored entities. Source code modules would cer-
tainly reside in the file system, but so would such more
arcane entities as token lists, and flowgraph annotations.
In order to keep IST's user image as straightforward as pos-
sible this design proposes that most file system management
be done automatically and internally to the IST, out of the
sight and sphere of responsibility of the user. The user,
in addition is to Dbe encouraged to have access to only a
relatively small number of files - only those such as source
code modules and test data sets which are of direct concern.
The user may create, delete, alter and rename these enti-
ties. More important, however, the user may manipulate
these entities with a set of commands which selectively and
automatically configure and actuate the Toolpack tool ensem=-
ble. The commands are designed to be easy to understand and
use. They borrow heavily on the terminology used by a pro=-
grammer in creating and testing code, and conceal the some-~
times considerable tool mechanisms needed to effect the
results desired by the user.

17

4.1. User Visible IST File System Entities

In order to encourage and facilitate the preceding
view, IST will support the naming, storage, retrieval, edit-
ing and manipulation of the following classes of entities,
which should be considered to be the basic objects of IST:

4.1.1. Program units

An IST program unit (PU) is the same as a Fortran pro-
gram unit, except that IST will require a number of
representations of the program unit other than the source
code (e.g., the corresponding token list and parse tree).
The identity, significance, and utilization of these other
representations are to be made transparent to the casual
user. They will be managed automatically by IST. On the
other hand, they will be accessible and usable by more
expert users through published standard naming conventions
and accessing functions.

4.1.2. Program Unit Groups

Any set of IST program units which the user chooses to
designate, can be grouped into an IST program unit group
(PUG). Other PUG's may also be named as constituents of a
PUG, as 1long as no circularity is implied by such defini-
tions. Ordinarily it is expected that a PUG will be a body
of code which 1is to be tested as part of the incremental
construction process. Hence a PUG might be a set of newly
coded program units and a test harness. It is, however, not
unreasonable (and indeed potentially quite useful) to con-
sider a subprogram library to be a PUG as well. Here, too,
an IST PUG will consist of more than just source text, but
the wuser will not need to be aware of the existence of any
such additional entities.

A PUG may also include optional transformation specifi-
cations which enable users to painlessly apply canonical
transformations to their code. This will facilitate such
functions as porting of code and coding in higher level
pseudolanguages and languages such as Ratfor [Kern75], EFL
[Feld79], and SFTRAN [JPL 8la].

4.1.3. Test Data Collections

An IST test data collection (TDC) is a collection of
test data sets to be used in exercising one or more IST exe-
cution units. A test data collection may consist of one or
more sets of the complete input data needed to drive the
execution of some complete executable program. Each test

18

input data set may also have associated with it a specifica-
tion of the output which is expected in response to process-
ing of the specified input.

4.1.4. Options Packets

An IST tool options packet (OP) is a set of directives
specifying which of the many anticipated options are to be
in force for a particular invocation of one of the Toolpack
tools integrated into IST. We see, for example, the need
for Test Option Packets (TOP's) to specify dynamic testing
probe insertion options and Formatter Option Packets (FOP's)
to specify program source text formatting options, among
others. It 1is expected that some standard options packets
will be created initially by the individual toolmakers and
automatically incorporated as part of a newly installed IST.
These standard options packets will undoubtedly be altered
to meet the needs of individual users and installations. 1In
addition, entirely new option packets will probably be built
to satisfy individual needs. It should be stressed, how-
ever, that tool options will also be specifiable directly as
part of a tool invocation command. Options so specified may
either replace or supplement an option packet specification.

i.i.i. Procedures

An IST procedure is a sequence of IST commands which
can be directed to the command interpreter simply by speci-
fying the procedure name. IST procedures are expected to be
command sequences for accomplishing generally useful stan-
dard jobs. Thus writing a procedure enables the user to
save the effort of respecifying a standard sequence of com-
mands whenever a standard job must be done. This capability
is supplied as a convenience and is intended to supplement,
not replace, the one-at-a-time command invocation capabil-
ity. IST procedures will allow parameterization of inputs.

It is expected that Toolpack project software will
facilitate the process of capturing and analyzing the pro-
cedures which users define and utilize. This will provide
insight into the development procedures which users actually
follow, as well as insight into how these procedures change
with the availability of effective tools.

4.2. The File System

Clearly the primary feature of the proposed IST is the
central file system of information about the subject pro-
gram. The user is encouraged to think and plan work in
terms of it, and the functional tools all draw their input

19

from it and place their output into it. A schematic diagram
of this architectural feature is shown in Figure 3.

IST itself will manage the file system primarily by
means of a tree structured directory system and a modular
set of file accessing and updating primitives. IST files
will not correspond directly to host machine files,but will
rather be mapped onto segments of one or more large host
system files. The IST file accessing and updating capabili-
ties will effect this segmentation and operate directly upon
these large host system files. The objectives of this
approach are to reduce the overhead of dealing directly
with, and depending too heavily upon, host file systems and
to increase the portability of IST. An implementation of
such a set of I/0 capabilities (called PIOS), has been writ-
ten in portable Fortran [Hans 80b]. A tree structured file
directory system (PDS) has also been written in portable
Fortran [Hans8@b]. These are quite appealing both as models
of effective functional modularization and as actual imple-
mented support libraries. They offer the added feature of
being designed for ready interfacing with each other,
thereby forming a portable file directory and accessing
mechanism. This tandem has been used in implementing the
IST file system in the first IST releases.

The IST file system is to be initialized with the start
of a programming project and remain and grow throughout the
lifetime of the project. There is no reason why several
users may not all access this file system although PIOS
requires that the file system be accessed by one user at a
time, or by more than one user only in non-interfering ways.

This pragmatic restriction appears to be a workable one
for this prototype effort. In the long run, however it
threatens to be a severe one. A full-fledged multiuser file
system offering file protection and permission capabilities
will be needed if the Toolpack concepts are to be broadened
to support wider needs and communities.

In contemplating these needs and appropriate solutions,
one is 1lead, it seems inescapably, to the conclusion that
such a file system must be viewed as the basis for effective
configuration management and control. It would seem thus
that it is only through this perspective that adequate
requirements and consequent designs can be evolved.

The architecture of the IST anticipates the need for
this in that the file system is designed and implemented as
a separable module. The file system is directly used only
by the IST command interpreter, and there only through stan-
dard functions and subroutines. In order to substitute a
new file system it would be necessary only to have that file
system support these existing functions and subroutines. It

20

is true, of course, that a new file system incorporating
protection and permission capabilities would require the
submission of identification, such as passwords, with each
file system access reguest. This requirement need not
necessitate the alteration of existing calling sequences,
however, as this identification could (perhaps should)
reside in the user's global data areas.

Perhaps the most striking aspect of the IS8T architec-
ture 1is the fact that it does not hypothesize a relational
data base as its central element but rather a file system.
As noted earlier, certain elements of the file system (e.g.,
the outputs of the static and dynamic analysis tool capabil-
ities) seem to be best thought of as relational data bases.
It is less clear that it is essential for the entire Tool-
pack information repository to be relational. It is impor-
tant that this hypothesis be tested and evaluated Dbecause
the operational costs of large relational data base systems
appear to be quite high, possibly undermining their practi-
cal utility.

Toolpack will test the important hypothesis that a
software development environment can be successful even when
relational data base technology is applied only to smaller,
more localized bodies of data.

In order for these objectives to be achieved there must
be an underlying agreement about the naming of file system
entities. As stated earlier, each of the file system enti-
ties created by the user (see Section 4.1) is to have a
unigue name which the user assigns. Different views, ver-
sions, or aspects of the entity are to have distinct names
which are to be arrived at by attaching qualifiers as dic-
tated Dby the published naming conventions to the user name.
In some modes of use, the user will not need to be aware of
these gqualified names in order +to get useful work done.
This is because the IST will have considerable power to
infer the names of needed views and versions from the con-
text of the IST commands issued by the user. More advanced
users seeking to carry out the more powerful and sophisti-
cated functions of the IST will find it very important to
know these naming and qualification conventions, however. In
order to best understand this the IST command language will
be presented next.

4.3. The IST Command Language
The form of an IST command will always be as follows:
command name list of pu's options specification

where the commandgname must be chosen from the list of

21

available tool capabilities, list of pu's is a list of PU's
and/or PUG's which the user specifies, and
options specification is either the name of an options
packet for the tool specified, or an explicit 1list of
options specifications, or both.

In the current prototype version of the IST, the com-
mand names have been defined as two letter sequences because
it was believed that users would prefer to avoid verbosity.
Thus in order to invoke the formatting tool, the user would
input the sequence "fm". 1In order +to invoke the static
analysis capability, the user would input the sequence "an",
and so forth. Actual user experience with these choices and
user reactions to them will dictate whether or not a more
verbose form of these command names will eventually be
adopted.

The list of pu's which follows the command name is the
list of PU's to which the specified command is to be
applied. Thus if the user wishes to format dozens or even
hundreds of PU's, this can be accomplished readily by group-
ing the PU's into one or more PUG's and then specifying the
PUG's after the command name. This ability to group PU's in
flexible ways and then have tools process them as conceptual
units is seen as one very important feature of the IST.

It should be noted that there is no prohibition against
placing a single PU in several different PUG's. The user
may wish to group a subroutine library together as a PUG
because the library is a conceptual unit to the user. The
user may then wish to group the subroutine 1library with
several different test drivers. This can be done by creat-
ing several different PUG's which differ from each other
only in that they incorporate the different test drivers.
This is permitted by the IST. Furthermore, there are no
diseconomies in doing so.

If, for example, the user directs that one of two over-
lapping PUG'S be formatted and then directs that another
overlapping PUG be formatted next, the IST will recognize
that the subroutine library shared by both has been format-
ted after having formatted the first PUG, and will not then
repeat the formatting of the subroutine library in format-
ting the second PUG. The mechanism for effecting this effi-
ciency will be described shortly.

The options specification is optional. If the name of
an options packet is included here, then the options speci=-
fied in that packet will be used to configure the tool named
in the command in processing the 1list of PU's. If no
options packet is specified here, then the IST will access
and employ a default options packet which is stored in the
file system.

22

It is also possible for the wuser to specify options
explicitly directly on the command line. 1In this case the
explicitly named options are used to either augment or over-
ride the options listed in the options packet.

It is important to observe that, although the invoca-
tion of a tool through the IST may involve a great deal of
work, the user is informed of the disposition of the command
only by a very terse message. The purpose of this message
is merely to advise the user of whether or not the command
has been executed successfully, and where further informa-

tion about the execution can be found. Invariably the
further information will be found in a set of files, whose
names will be made available to the user. Usually these

files will be report files which the user may list out by
using file listing commands. As observed earlier, however,
it is expected that the more sophisticated analytic tools
will produce report files which will be best absorbed by the
user with the aid of special browsing or perusal tools.
These tools will accept report files as their input and dig-
est and format the files in response to user commands for
certain types of information.

The various IST tools will create and access the vari-
ous versions and views of the PU's in order to get their
work done. The user will be able to access these versions
and views, but will be shielded from the necessity to do so.
The static data flow analysis capability, for example, will
need access to a parse tree, symbol table and flow graph of

all PU's of the PUG's it is directed to analyze. The user
need not know any of this, however, and need only specify
the name of the PUG to be analyzed. The IST command

language is obliged to understand that these other files are
necessary and is empowered to create them by invoking entire
complex sequences of lower level tools about which the end
user need know nothing. Furthermore, once these lower level
tools have created these versions and views, the IST command
language interpreter may choose to store them for future
reuse. Thus, 1f the user subsequently asks to have the
analyzed program formatted, the IST will recognize that some
of the work needed in order to do the formatting has already
been done in the process of doing earlier analysis. The IST
command interpreter is equipped with sufficient logic to
recognize which internal files contain this useful informa-
tion and to reuse it in formatting. It is expected that
these capabilities should enable the IST to effect signifi-
cant efficiencies in actual use. More details about how
this is accomplished will be presented shortly. In order to
do so, however, is important to first understand the Virtual
File System Concept.

23

4.4. The Virtual File System

A stated design objective for IST is that it run effec-
tively on a wide range of machines, effectively utilizing
larger amounts of storage when and if they can be made
available. One way in which large amounts of storage can be
effectively utilized is to store all derived and intermedi-
ate entities for possible future reuse. Storage economies
can be gained Dby refusing to store those entities and
instead regenerating them as needed. The strategy for
retaining or regenerating these entities must be adjustable
and transparent. It is highly desirable that both the end
user and the tool ensemble always be safe in assuming that
any needed named entities and derived images will always be
available. Thus it is necessary that the IST file manage-
ment system assume the responsibility for either retrieving
these items directly or having them created or regenerated
(in case storage exigencies precipitated their deletion by
IST). A conceptual diagram of the virtual file system
architecture is shown in Figure 4.

For example, suppose a functional tool needs the parse
tree of a particular PU, call it SUBR. The requesting tool
must know that SUBR's parse tree will always be stored in a
file named SUBR/TRE, and then must request it through the
call:

CALL DBFTCH(“SUBR/TRE‘, ARRAY, LEN)

where ARRAY is the name of the array which is to receive the
parse tree, and LEN is the length of ARRAY, included to
enable array overflow checking.

Subroutine DBFTCH simply looks up ‘SUBR/TRE' in the IST
directory, accesses it and transfers it to ARRAY. It is the
job of the IST command interpreter to assure that the file
exists and is up-to-date. The command interpreter assures
this by querying the IST directory before invoking the tool
to see whether any file which the tool might need is either
absent or obsolete. If so, the command interpreter sees
that all such files are created. Guidance for this process
comes from an internal directed acyclic graph (DAG) which
specifies how the various IST file system images are
derived from each other, by having each node represent a
file system entity type, and each edge represent the tool
needed to produce the entity at its tail from the entity at
its head. Of course some tools may require and/or produce
more than one file type. An example of a very simple DAG is
shown in Figure 5. Using this DAG the command interpreter
produces an ordered list of the steps needed to create
missing files, +translates this list into tool invocations,
and effects their executions before invoking the original
requesting tool.

24

In the example, the command interpreter would look up
‘TRE' in the dependency DAG, and see that a parse tree is
derived from a token list by a parser and a token 1list is
derived from source text by a lexical analyzer. The command
interpreter would then check for the existence of the token
list for SUBR. If it were present IST would cause the
parser to produce the required parse tree. If the token list
were absent, the command interpreter would issue commands to
invoke the lexical analyzer first and the parser next. If
the source text were not in the file system, an error mes-—
sage would be passed to the user.

This virtual strategy is also employed to enable source
text versions such as formattings and instrumentations and
entire static analysis and dynamic testing data bases to Dbe
purged to save space and to be recreated only on demand.
This flexibility should prove useful in hosting the IST on
smaller machines. Here it may be necessary to permanently
store only source text. Under these c¢ircumstances all
derived images and intermediate entities will be routinely
purged, and always recreated on demand. This extra computa-
tion seems a reasonable trade for lack of storage.

There appears to be little experience in devising
strategies for deciding which entities to delete and when to
delete them for the various machines and architectures on
which IST will have to be hosted. Hence a lengthy period of
experimentation and adjustment will ©be necessary. The
replacement/retention strategy will be encapsulated in a
module to facilitate this.

4.5. The Command Interpreter

The IST command interpreter processor consists of two
phases--compilation and sequential tool invocation (see Fig-
ure 6). Compilation, in turn, consists of three subphases:
command syntactic analysis, semantic analysis, and object
code generation (see Figures 7).

Syntactic analysis will, at least in later releases, be
accomplished by a parser generated by a parser generator.
The command language is small and uncluttered making it com-
fortably describable by parser- generator input. Moreover,
it is recognized that users' reactions to IST may be
strongly influenced by the perceived friendliness and ease
of use of the command language itself. It thus seems impor-
tant to enable changes in the language when and if experi-
ence indicates they are desirable. This will clearly Dbe
facilitated by the parser- generator-created parser.

The second compilation phase, semantic analysis, will
be more complex entailing the selection of the standard

25

template of IST files and functions indicated by the command
(see Figure 8). In particular, the semantics of each IST
command will be defined by a standard sequence of IST file
system types—-namely the file types which contain the infor-~
mation and data objects directly needed to satisfy the
user's command.

Because IST employs the wvirtual file strategy Jjust
described, it cannot Dbe expected that all of the files of
the types which the semantic analysis phase indicates are
needed will be physically present. Thus it is the job of
the code generation subphase of compilation to infer from
the list of needed files and the physical file system status
an ordered list of intermediate files to be created and the
tool fragments needed to create them.

The end product of this phase is to be a sequential
file of 1IST code describing in detail all steps to be car-
ried out by IST tool fragments in order to effect the speci-
fied command in the exact context of the current state of
the IST file system. As such this phase might well be
viewed as a pseudocompilation into a machine independent
intermediate code.

In closing this description of the compilation phase,
it seems important to observe that the structure of the com-
mand compiler makes it amenable to dynamic alteration so as
to accept command language extensions. This is due to the
fact that each of the three compilation phases is essen-
tially table driven. The parsing phase is driven by parse
tables; the semantic phase is driven by the table of tem-
plates; and the code generation phase 1is driven by the
dependency DAG. These three tables are to be stored in the
IST file system. Thus there appears to be no reason that a
user tool might not be written to accept a user's specifica-
tions of how a new tool fragment is to be invoked by the
user, and integrated with other fragments and file types
within the file system. Such a tool is currently planned,
it is expected that is will make Toolpack/IST the sort of
flexible, extensible system that will grow and adapt to the
needs of different user communities.

A program chaining approach such as is wused by the
Software Tools Project [Sche78] will most likely be used, at
least in early releases to carry out the second interpreter
phase--sequential tool invocation. With this strategy each
tool is made into a separate main program by encasing the
tool function (which 1is a subroutine) in a specially con-
structed interface main program. The sequence in which the
main programs are to be executed is contained in the sequen-
tial file produced by the third phase. Effecting the indi-
cated sequencing and error branching is the job of the
interface main program. In order to carry out this job the

26

main program must be able to access the command file, iden-
tify the next tool or tool fragment to be executed, create a
command directing the invocation by the host operating sys-
tem of the indicated tool or fragment's encasing main pro-
gram, present the command +to the host system, access the
command file for the arguments needed by encased tools, and
manipulate the error flags with which it will communicate
with its encased tools.

Experience indicates that it is reasonable to expect
all of these tasks to be readily achievable on a wide spec-
trum of current systems. Thus this chaining strategy seems
to offer an ideal combination of flexibility and portability
potential.

5. Summary

The foregoing sections have described the design and
implementation strategy for the early releases of the Tool-
pack IST. In these sections there have also been discus-
sions of the ways in which these releases will be used as
experimental vehicles for obtaining answers to the four
basic questions outlined in Section 2. Specifically:

(1) The Toolpack tool suite will be evaluated to see
whether it is adequate to cover the needs of mathemati-
cal software developers.

(2) The Toolpack file system and diagnostic data bases will
be instrumented and monitored to help ascertain the
precise data needs of mathematical software developers
as they perform their jobs.

(3) The specific tool fragments from which the Toolpack
tool capabilities are constructed will be evaluated to
determine how readily and flexibly they form the basis
for these capabilities. Alterations to this set of
fragments may be necessitated.

(4) Reactions to the proposed command language (which bor-
rows concepts taken from Lisp, the Unix shell, and the
Make processor [Feld79a]) will be monitored, and
attempts will be made to determine underlying basic
requirements for such languages. Perhaps more impor-
tant, the adaptability of the Toolpack tool fragments
and the ability to readily contrive new tools in
response to changing user needs will Dbe carefully
observed. The combined efficacy of the flexible com—-
mand language and the adaptable tool fragments will be
studied to determine whether they effect an acceptably
friendly user interface.

27

The tentative schedule of early releases is as follows:

Release -1: Date: November 15, 1981
Audience: Toolpack group only
Description: Command interpreter plus a few
representative tools and tool fragments, some
in prototype form

Release O: Date: September 1, 1982
Audience: Toolpack group and selected test
sites

Description: Command interpreter and complete
suite of tools, some may be in prototype form

Release 1: Date: Spring 1982-3
Audience: first unrestricted public release
Description: Command interpreter and complete
suite of tools.

6. Future Directions and Plans

It is anticipated that the early releases of the Tool-
pack IST will provide definitive enough information that it
will be reasonable to design with some assurance a variety
of other environments which should be broader in scope.

One clear direction in which these techniques should be
readily extended is towards newer and more interesting
languages. A frequent criticism of this work is that it is
too centered on Fortran, a language which 1is becoming
increasingly out of step with the most modern thoughts about
high level languages. It seems inappropriate to debate the
relative merits of Fortran here, especially since this paper
should, by now, have made it clear that Fortran was chosen
primarily because it offers an excellent experimental vehi-
cle. A critical mass of Fortran tools is already in
existence and a receptive, perceptive community of users of
both the language and tools is also in existence.

Of greater importance, however, is that the IST design
concepts and actual software have been designed in such a
way as to facilitate their conversion to support other
languages. Lexical analysis, syntactic analysis and seman-
tic analysis have all been modularized in separate tool
fragments. Other tool fragments operate on abstract
representations of source programs, and are thus well insu-
lated from the source language and its peculiarities. It
seems that the IST could offer similarly strong support for
other languages 1is the 1lexical, syntactic and semantic
analysis tool fragments were replaced by tool fragments for
analyzing some other language. Moreover, the lexical and
syntactic analyzers are currently automatically produced

28

from analyzer generators. Some research 1is underway to
investigate the practicality of using attribute grammars to
specify and drive the <creation of semantic analyzers as
well. Thus it appears that there is hope that these three
language dependent front-end tool fragments might one day be
automatically generated from a language specification.

This seems to be a good plan for the future, and there
is honest optimism that it is an achievable goal. This
optimism must, however, be tempered by the suspicion that
many of the Dback-end tool fragments incorporate implicit
assumptions about the semantics of Fortran which will only
be ferreted out and concentrated in the semantic analysis
module after considerable experimentation, observation, and
adjustment.

It would seem that the best way to work in this direc-
tion 1is to promptly begin design of an IST-like capability
for a more modern, sophisticated and challenging language.
Ada [3] seems to a be a very logical choice. One reason
for this choice is that, here too, there is a community that
is sensitive to the importance of tools. The Ada community
has in fact already gone to the trouble of producing a prel-
iminary specification for a tools environment [Buxt 80].
Prototype environments for Ada are already under construc-
tion. They are not based upon the notions of reusable tool
fragments and a virtual data base, and thus should serve as
illuminating comparison bases with an environment which is
based upon these notions.

Ada also seems a good choice because of the ways in
which it encourages and supports the concept of modularity.
There are language facilities for writing higher level code
which assumes the existence of support modules whose code
may not be visible. What is visible to the writer of this
higher level «code is a summary view of the interface which
this support code presents. Clearly this summary view is a
very logical candidate for inclusion in a file system sup-
porting the construction of the higher level code. The Ada
language itself does not go beyond the point of mandating
that a rudimentary view of this interface Dbe furnished by
the creator of the support modules. It is clear, however,
that such a rudimentary view is minimal, but far less +than
desirable. For example it would be preferable to have this
view contain enough information to enable the sort of
thorough data flow analysis that is suggested in [Tayl 84]
and [Tayl 8%a]. The writer should not be burdened with hav-
ing to provide such a large amount of information, however.

[3]Ada is a trademark of the U.S. Department of Defense
Ada Joint Program Office.

29

With an architecture such as this paper suggests, however,
the information could be created by analytic tool fragments
and stored in the file system for future use. A large body
of diverse information about support modules could be accu-
mulated incrementally over a long period of time and either
stored over a period of time (or regenerated on demand
according to the dictates of local economics) for the bene-
fit of wusers who wish to be guided to the proper use of
these modules.

It is worthwhile to observe in closing this discussion
of application to other languages that the language in which
tool fragments is coded should not be a concern of the end
user. In particular there is no apparent reason that the
language in which tool fragments are coded be the same as
the 1language in which the code being analyzed is written.
Toolpack/IST tool fragments are currently written primarily
in languages such as Ratfor which are converted by prepro-
cessors into Fortran 66. This was done because Fortran 66
was perceived as being the most reliable portability vehi-
cle, and one of the requirements of the Toolpack project 1is
that Toolpack software be portable. Other languages, such
as Pascal are becoming sufficiently standardized that they
can no longer be overlooked as portability vehicles. Other
environments, moreover, may not need to be as highly port-
able. Under these new and changing circumstances it would
be reasonable to code tool fragments in other languages.
These tool fragments could coexist gquite nicely with older
tool fragments written in Fortran derivative languages if
that were to prove to be expedient.

Another important issue that will be addressed as an
outgrowth of this work is the issue of how best to distri-
bute this sort of environment across a range of newer
hardware, such as personal work stations. This issue
clearly comes up as a consequence of viewing the central
file system as being multiuser accessible. TIf the various
users are considered to be working at their own work sta-
tions, then the central file system is already distributed.
A whole range of contingent issues then become important.

Finally, there is the issue of going beyond the current
user interface language with its tool orientation to a
language which is knowledge based and oriented towards being
a gquery system. It appears that current and contemplated
user interfaces are too tool oriented, requiring users to be
at least somewhat expert in the capabilities of individual
tools. It would be far preferable if the user interface was
designed so as to give users the impression of the existence
of a knowledge base. Thus the development environment's
user interface would take on more the appearance of a query
system to support program development than an imperative
language for invoking tools. The Toolpack architecture

30

leans in this direction because of the virtual strategy
adopted for the file system. Needed files are automatically
materialized in indirect response to tool invocations. It
is only an extension of this notion to consider that tools
themselves might be automatically invoked as well in
indirect response to requests for key program development
information. The experimental results gotten from early
releases should indicate how far this inclination should be
continued, as well as the ramifications of such a continua-
tion for the internal architecture.

7. ACKNOWLEDGMENTS

The design of the Toolpack IST is the product of a
great deal of collaborative work and discussions with indi-
viduals inside and out of the project. In particular the
original design concepts of the command language were con-
tributed by Stuart I. Feldman of Bell Telephone Labora-
tories. The concepts underlying his Make processor were,
obviously, also quite influential in the design of IST.

The implementation work has been ably led by Allan L.
Shafton. The design and implementation of key command
interpreter tool fragments was led by Geoff Clemm, Brent
Welch and Mark Maybee.

Finally the financial support of the National Science

Foundation, Department of Energy and U.S. Army Research
Office is gratefully acknowledged.

8. REFERENCES

[Bake 77] Baker, B.S., "An Algorithm for Structuring
Flowgraphs" Journal of the ACM, 24 #l1 pp. 98-
129 (January 1977).

[Boyl 76] J. M. Boyle and K. Matz, "Automating Multiple
Program Realizations," MRI conf. Rec. XXIV
Symp. on Computer Software, Polytechnic Press,
Brooklyn, N. Y., pp. 421-456 (1976).

[Buxt 80] J. N. Buxton, V. Stenning, "Requirements for
Ada programming support environments," Stone-
man, Department of Defense (February 1980).

[Clem 79] G. M. Clemm, "CLEMSW User's Manual," Tech.
Report #CU~-CS-167~-79, Dept. of Computer

[Clem 81]

[Cowe 77]

[Donz 84d]

[Dorr 74]

[Feib 8117

[Feld 79]

[Feld 79al]

[Fosd 81]

[Hague 81]

[Hans80@a]

31

Science, University of Colo., Boulder, Colo.,
1979.

G. M. Clemm, "FSCAN-81 Report and User's
Manual," Tech. Report #CU-~CS-202-81, Dept. of
Computer Science, University of Colo.,
Boulder, Colo., 198l.

W. R. Cowell, L. D. Fosdick, "Mathematical
Software Production," in Mathematical Software
I1II, Academic Press, N. Y., pp. 195-224, 1977.

V. Donzeau-Gouge, G. Huet, G. Kahn, and B.
Lang, "Programming Environments Based on
Structured Editors: The Mentor Experience,"
INRIA Research Report No. 26, INRIA, Rocquen-
court, France, 1984.

J. Dorrenbacker, D. Paddock, D. Wisneski and
L. D. Fosdick, "POLISH, A Fortran Program to
Edit Fortran Programs," Tech. Report #CU~CS-
@5@0~74, Dept. of Computer Science, University
of Colo., Boulder, Colo., 1974.

J. Feiber, R. N. Taylor, L. J. Osterweil,
"Newton=--A Dynamic Program Analysis Tool Capa-
bilities Specification," Tech. Report #CU~-CS-
209-81, Dept. of Computer Science, University
of Colo., Boulder, Colo., March 1981.

5. I. Feldman "The Programming Language EFL,"
Computing Science Tech. Rpt. #78, Bell Labora-
tories, Murray Hill, New Jersey, June, 1979.

S. I. Feldman, "Make-~A Program for Maintain-
ing Computer Programs," Software-Practice and
Experience 9 (April 1979), pp. 255-265.

L. D. Fosdick, "POLISH~-X Transformations,"
University of Colorado, Dept. of Computer
Science, Tech. Report #CU-CS~203~81 (May
1981).

S. J. Hague, "The Provision of Editors for the
Manipulation of Fortran," Toolpack Document
SJH 11112 (November 1981). Available from
Applied Mathematics Division, Argonne National
Laboratory, Argonne, Ill. 68439.

D. R. Hanson, "A Portable File Directory Sys-
tem," Software Practice and Experience 10
(August 1989), pp. 623-634.

[Hans 80b]

{John 75]

[ogpPL 78]

LogpL 81]

[JPL 8la]

[Kern 75]

[Meyers 81]

[Oste 76]

[Oste 81]

[Oste8la]

[Ryde 74]

[Sche 78]

32

D. R. Hanson, "The Portable I/O System PIOS,"
University of Arizona, Dept. of Computer Sci-
ence, Tech. Report #80-6a (April 1984, revised
December 1984%).

S. C. Johnson, "Yacc: Yet Another Compiler-—
Compiler," Bell Laboratories Computing Science
Tech. Rpt. #32 (1975).

Proceedings of Conference on the Programming
Environment for Developing Numerical Software,
Jet Propulsion Laboratory, Pasadena, Calif.,
Oct. 18-29g, 1978.

Proceedings of Conference on the Computing
Environment for Mathematical Software, Jet
Propulsion Laboratory, Pasadena, Calif., July
15, 1981.

SFTRAN III, Programmer Reference Manual, JPL
Internal Document, 1846-98, Pasadena, Calif.,
April 1981.

B. W. Kernighan, "Ratfor--A Preprocessor for a
Rational Fortran," Bell Laboratories Computing
Science Technical Report #55.

E. W. Meyers, Jr., and L. J. Osterweil, "BIG-
MAC I1: A Fortran Language Augmentation
Tool," Proc. 5th Int'l Conf. on Software
Eng., IEEE Cat# 81CH 1627-9, pp. 410-421,
(March 1981).

L. J. Osterweil and L. D. Fosdick, "DAVE - A
Validation, Error Detection, and Documentation
System for FORTRAN Programs," Software - Prac-
tice and Experiences 6 pp. 473-486 (Sept.

1976).

L. J. Osterweil, "Software Environment
Research Directions for the Next Five Years,"

Computer 14 pp. 35-43, (April 1981).

L. J. Osterweil, "Draft Toolpack Architectural
Design," Dept. of Computer Science, Univ. of
Colorado at Boulder, Nov. 1, 1981.

B. G. Ryder, "The PFORT Verifier," Software -
Practice and Experience," 4 pp. 359-377,

(1974).

Scherrer, D., COOKBOOK, instructions for
implementing the LBL software tools package.

[Tayl

[Tayl

[Teit

[Ward

[Weth

801

81]

81]

81]

81]

33

Internal Rep. LBID@98, Lawrence Berkeley
Laboratory Univ. of California, Berkeley,
1978.

R. N. Taylor, L. J. Osterweil, "Anomaly detec-
tion in concurrent software by static data
flow analysis, IEEE-Transactions on Software
Engineering, SE-6, 3 (May 1980), pp. 265-278.

R. N. Taylor, "Static Analysis of the Syn-
chronization Structure of Concurrent Programs,
Ph.D. Thesis, Dept. of Computer Science,
University of Colorado, Boulder, Colorado,
1984.

T. Teitelbaum and T. Reps, "The Cornell Pro-
gram Synthesizer: A Syntax-Directed Program-
ming Environment." Communications of the ACM
24 (September 1981) 563-573.

W. Ward and J. Rice, "A Simple Macro Proces-
sor," Toolpack Document WW/JR 19921 (September
1981). Available from Applied Mathematics
Division, Argonne National Laboratory,
Argonne, Ill. 64@439.

C. Wetherell and A. Shannon, "“LR-Automatic
Parser Generator and LR(l) parser," IEEE
Trans. on Software Eng. SE-~7, pp. 274-278,

(May 1981)~

User's source
program

User —
yser ?~;§§;
Selected CWLO
5%;””‘9 Test ‘%jnstrumentor
L

Instrumented
srogram

[Fortran]
corpiler

Newton
Run-Time
Library

Executable
mdule

generators
and
peruysal aids

Biagﬁostic
" output

\i&

Figure 1: Use of Dynamic Test Tools

USER

e
PHYSICAL FILE SYSTEM m::\

SOURCE TEXT TOKEM LISTS PARSE TREES ~ SYMBOL TABLES

DIFFERENT VERSIONS: (ep1vep, FORMATTED, STRUCTURED)

Figure 3

THE VIRTUAL FILE SYSTEM CONCEPT

i USER

WTOOLS: \\
L

m‘--ﬁ-whm

V.
> VIRTUAL FILE SYSTEM RoUTINES
RETENT 10K
DIRECTORY STRATEGY
MODULE

S \
PHYSICAL FILE SYSTEM

ENTITIES

Figure 4

SOURCE

LEXICAL LEXTCAL

ANALYZER ERRORS

TOKEN STREAM

SYNTACTIC
NALYZER

SYNTAX

(PARSER) |

PARSE TREE,
SYMBOL TABLE

ERRORS

STATIC.
SEMANTIC

STATIC

-

ANALYZER

DATA FLOW
ANALYSIS

Figure 2

™~
SEMANTIC ERRORS

ANNOTATED
FLOWGRAPH

DATA FLOW

P

ERRORS

INSTRUMENTED /7~ ¥

SOURCE

Figure 5:

SOURCE

"\ FORMATTEI
} SOURCE

XR

SYMBOL
) TREE

(:j::>4“' RN\

CROSS
REFERENCE

JATTRIBUTE
TABLES

. -LOWGRAPH
A sample dependency DAG. Each node represents a type of file to be found
in the Toolpack/IST file system. FEach edge represents the dependency of
this file type on another file type. Specifically, the file type at the
head may be required in creating the file at the tail. The label on the
edge represents the tool fragment needed to create the file type at the
tail. Note that some tool fragments (eg. FM) require more than one file

type to produce their output, while others (PR) produce more than one
file type. '

% COMMAND

COMMAND)
COMPILER

~ OBJECT CODE
\ (TOOL FRAGMENT
\ _—_ INVOCATION DIRECTIVES)

COMMAND |
EXECUTOR |

* DIRECFORY

Figure 6: Overview of the IST Command Interpreter showing two main phases--compilation
and execution. Dotted lines show flow of information into and out of the

file system directory. Dashed lines indicate data flow thorugh the file
system itself.

COMMAND

PARSING

PARSED
\ COMMAND

SEMANTIC
~ ANALYSIS

£ PHASE 1
"~ OBJECT CODE
\ (NEEDED
\ END-ITEM FILES)

CODE
GENERATION

\ SPECIFIC

PHYSICAL \ TOOL

FILE . \ FRAGMENT
SYSTEM ¥ INVOCATION
.§TATUS DIRECTIVES

Figure 7:

Breakdown of the Command Compilation process into its three subphases. Note

that only code generation requires information about current file system status.

PARSED COMMAND

COMMAND OPERAND
NAME LIST
’ ‘\\
/ Name Required ~~ =~ __
I, of Result ———
/ COMMAND FILES N

/ . L1 Lex . N
f (Texicallanalysis \\\
’ _LR;;) TRE \
\ Li{parse SYM l
\\ (format) POL , - <<

~ g

~—p . . g?uzmma-~\\mww““* \
-a» <)
‘ ; — ¥ av)

‘ ' INTERMEDIATE

. . OBJECT
CODE
TABLE OF COMMAND SEMANTICS |
Figure 8: Diagram showing operation of the semantic ana?ysws

phase of command compilation. The incoming parsed command .
has two parts, the command name and a list of subject files--
the fileswhich the user wants processed by the given command (in
this example no options are specified). In this phase, the command name
is used as an index into the Table of Command Semantics which associates
with the command name, the names of one or more file types which contain
the information which the user is requesting in invoking the stated com-
mand. Intermediate Object Code is formed by pairing off all combinations
of ‘such file types and stated operand files.

