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ABSTRACT

Alanguage K C &7 is repetitive if for cach posilive integer n there exists a
word w € ¥ such that W™ is a subword of K. K is called strongly repetitive if
there exists a word w € LT such that, for each positive integer 7o, wW" is a
subword of K. It is shown that it is decidable whether or not an arbitrary DOL
language is repetitive. It is also shown that if a DOL language is repetitive then it

is strongly repetitive.



INTRODUCTION

The investigation of the combinatorial structure of languages forms an
important part of formal language theory. One of the most basic combinatorial
structures of languages is the repetition of subwords (in words of a language).
Roughly speaking, the investigation of repetitions of subwords can be divided

into two (certainly not disjoint!) directions.

(1) The investigation of languages where repetitions of subwords (in the words
of the language) are forbidden. This area was initiated by Thue ([T]) in 1906
and since then Lhis area was a subject of aclive investigalion in numerous
areas of mathemaltics and in formal language theory (see, e.g., [BEM], [C],
[MH]. and (31]).

() The investigation of languages where repetitions of subwords (must) occur.
The most classical example here is the class of context-free languages
where the celebrated "pumping lemma" forces arbitrary long repetitions to
be present in an infinite context-free language.

Recently one notices a revival of interest in area (1) ("Thue problems")
among formal language theorists (see, e.g., [B], [H], [K], [S2]). In particular it
was discovered that the theory of nonrepetitive sequences of Thue [T] is strongly
related to the theory of DOL systems (see, e.g., [RS]). As a matter of fact it was
pointed out in [B] that most (if not all) examples of the so called square-free
sequences constructed in the literature are either DOL sequences or their cod-
ings. Thus by now quite a lot is known about DOL languages (sequences) not con-

taining repetitions of subwords (see also |[ER3]).

On the other hand very little is known on DOL languages containing repeti-
tive structures. The pumping-like properties do not hold for DOL languages and

"detecting” repetitiveness in a DOL Janguage becomes a challenging problem.



This paper is devoted to the study of repetiliveness in DOL languages. Let
us first make the notion of repetitiveness (of subwords in a language) more pre-
cise. We say that a language K C L 0s repelitive if for cach 7 2 1 Lthere exists
a word W € L7 such thal w™ is a subword of A We say Lthat K is strongly
repetitive if there exists a word w € L% such that w™ is a subword of a word of
K for each m = 1. 1t is casily seen that there exist repelilive languages that
are not strongly repetitive, while on the other hand each strongly repetitive
language is obviously repetitive. By the pumping lernma infinite context-free
languages are strongly repetitive.

We demonstrate that
(1) a DOLlanguage is repetitive if and only if it is strongly repetitive and

(2) it is decidable whether or not an arbitrary DOL system generates a repeti-

tive language.



1. PRELIMINARIES

We assume the reader to be familiar with the basic theory of DOL systems
(see, e.g., [RS]). We will use the standard notation and terminology concerning

DOL systems (as used in [RS]).

Perhaps recalling the following notational matters will make the reading of
this paper easier.

N denotes the set of nonnegative integers and Nt denotes the set of posi-
live integers. For a set A4, #A denotes its cardinality. A denotes the empty
word. For a nonempty word w, first (w) denotes its first letter and last (w)
denotes its last letter; for n € N, pref,, (w) denotes the prefix of W of length
n and sub, (w) denotes the set of subwords (segments) of w of length 7.
Then sub(w) denotes the set of all subwords of W and for a language K,

sub(K) = U sub(z). For a DOL system G = (X, h, ©), F(G) denotes its
reK :

sequence, [ () its language and mazxr () = max§ Iz | - h(a) = z for some
@ € 2. Aletter @ € ¥ is called ative if A" (@) # A for all n € N*. We will
use 7'(G) to denote the (infinite) derivation tree corresponding to £/(G). For a
node z in 7(G), lb(x) denotes its label, anc () its direct ancestor and
anc?(x) the direct ancestor of anc (). Let £(G) = wy, wy, -+ . Fora
node Z on the level 7 = 0 of T(G) (counted top-down) and (an’occurrence of) a
subword Z of wg where s = r we use conir, () to denote the contribution of
Z to z; similarly if % is (an occurrence of) a subword in w, then we use

contr, (1) to denote the contribution of % to 2.

In order not to overburden the (already involued) notation.:

(1) we will often not distinguish notationally between a (subhvord and its

occurrence, and

(2) we will often mot distinguish in our nolation belween nodes and their



labels,
as the precise meaning should be clear from the context, these conventions

should not lead {o a confusion.

We will recall now two useful notions concerning DOl systems. Let
G = (Z, h, w) be aDOL system.

Aletter @ € L has rank 0 (in G) (see, c.g., (ER2]) il 1,((G,) is finite, where
Gy = (X, h,a). letfori = Ly = Y—{a ¢ L : a is of rank smaller than 7}
and let f(;) be the homomorphism of L° defined by : fwyla)=a for
a € Ly and f){a) = A for @ € —Y(;). Then let by be the homomor-
phism of E(;) defined by hyy(a) = fy(h(a)). If aletter @ € Y,y is such
that the language of the DOL system (E(i)= h’(‘ll)’ a) is finite then @ has rank 1

(in G). Fori = 0, we use £; to denote the set of all letters from & of rank 7.

Let G = (2, h, w) and G = (X, h, &) be DOL systems. G is called a
simplification of G it #2 < #% and there exist homomorphisms f : L = %",
g 2" > Y suchthath =g f. h = f g and@ = f(w). If G does not have
a simplification if is called elementory. 1L is known ([ER1]) that if G is elemen-
tary then b is injective. If Gg, Gy, ..., Gy, 7 = 0, is the sequence of DOL sys-
tems such that Gy = &, G; is a simplification of Gy_q for 1 €14 < m and G, is

elementary, then G, is called an elementary version of G,



<. BASIC DEFINITIONS AND RESULTS

In this seclion we define some basic nolions {(and some basic results con-
cerning them) to be investigated in this paper. Thesec include the main notion of
(strong) repetitiveness of a language as well as several more technical notions
which will be useful for proving the main resulls of this paper.

Definition. Let K be a language, K € &7
(1) K is repetitive if for each m € N¥ there exists a word w € LV such that

w™ ¢ sub(K).

(2) K is strongly repetitive if there exists a word w € L% such that
w™ € sub(K) for eachn € Nt =

Obviously, if K is strongly repetlitive then K is repetitive, but there exist
repetitive languages, lhat are nol strongly repetitive. Consider, e.g., the
language Ky < {a, b, ¢, d{* defined by
Ko={{wd)* :n ¢ NY, w cfa, b, ci’ |w| =mn andfor no

z,y €fa, b,c)’ zefa, b, ot w=zxzzyl
Clearly K is repetilive bul not strongly repelilive language (notice that K is a
context-sensitive language).

Definition. A DOl system ( is called (strongly) 7*r;eprat.'ili;ue if L(G) is

(strongly) repetitive. =

The following special subclass of DOL systems will be useful in the con-
siderations of the next section.
Definition. A DOL system G = (U, h, w) is pushy it sub(L(G))nLy is

infinite; otherwise G is not pushy. =

If a DOL system G is not pushy then ¢{G) denotes

max{|{w]| :w € sub(L(G))nLql.



Lemmua 2.1
(1) Itis decidable whelher or nol an arbilrary DOL system is pushy.

(2) If aDOL system G = (¥, h, ©) is not pushy then 2; = ¢ forall? > 0.
(3) 1f a DOL system ( is not pushy then ¢ () is eflectively computable.

Proof.

(1) Let G = (L, h, ©) be a DOL system. We say that (7 satisfies the edge
condition if the following holds:

there exist z € L, k € N*, w € L7 and u € 5§ such that alph (u) con-
tains an alive letter and either A* (2) = wxu or K% (2) = urw.

We observe that (¢ is pushy if and only if G satisfles the edge condition.
This is seen as follows. Obviously, if & satisfles the edge condition then G is
pushy.

Assume now that G is pushy. Then sub(Z(G)) contains arbitrary long
words over L. Consider now a word 2 € L4 nsub(/(()), it appears as a sub-
word of w, for some 7 € N¥, where I'(() = wy, @y, ... . Thus we have the fol-

lowing situation:
Figure 1.

where 1, is the first to the left of 2 occurrence of a letter not in Ly and 7, is
the first to the right of 2 occurrence of a letter not in EO- Clearly 2 can be
chosen so that at least one of lz, 7, must exisl as otherwise L(G) would be
finite and so & could not be pushy. Assurme that both L, and T, exist; if only
one of them exist, the reasoning is even simpler. Then pz(pr) is the path lead-

ing from a node in wq to L, (7,).



Since 2 can be chosen arbitrarily long (at least) one of the following condi-
tions must hold.
(i) py contains different nodes 7q, M5 such that b (n4) = Ib(n,), and both

contr, (n,) and contr, (ng) contain (an occurrence of) an alive letter.

(i) p, contains different nodes 7y, My such that b {m ;) = Ib{(my) and
both contr,(m,) and contr, (my) contain (an occurrence of) an alive

letter.
Then it is easily seen that G must salisly the edge condition.

Now (1) follows from an easy observation that the edge condition is decid-
able (it is well known that it is decidable whether an arbitrary letter is in 24 and
whelther an arbitrary letter is alive).

(2) This follows directly from the definition of a letter with rank 42 > 0.

(3) Assume that G = (X, h, w) is not pushy, then ¢ ((;) exists. Clearly

g (@) = minfn ¢ N*: Linsub, . (L(G)) = ¢1.

Thus to find ¢ () it suffices to construct in succession sets Lonsub, (L(G)),
1 = 1,2, ..., until one of these sets becomes emply - 1 this happens for the
index 15 then @(G) = 15—1. The existence of ¢ () guarantees the termina-

tion of this algorithm. =

Our next notion is the fundamental technical notion of this paper.
Definition. A DOL system G = (L, h, ) is called speciol, abbreviated a
SDOL systemn, if it satisfies the following conditions.
(0) G is reduced.
(1) Gis sliced meaning that
(1.1) foreach @ € X, and eachn € N*, alph (h"(a)) = alph(h(a)),
(1.8) foreach @ € L, the lengthsequence { |R™(a) |1, » gis cither strictly

increasing or constant and



(1.3) we .

(2) G is strongly growing meaning that

(2.1) G is propagating and

(2.2) noletter in G has a rank (including the zero rank).

(3) (G iselementary. =

The next few results bind the notion of repetitiveness with several
subclasses of DOL systemns as well as Lhey indicale how this nolion carries over

through some operations on languages and DOL systems.

Lemma 2.2. Let G be a DOL system.
(1) If G is pushy then (' is strongly repetitive.

(2) 1f G is finite then G is not repetitive.

Proof. (1) This follows easily from the observation made in the proof of
Lemma 8.1 that the edge condition is equivalent to the pushy property.
(2) Obvious. =

Definition. Let K be a language and let (K, ..., K;), n = 1, be a n-tuple
of languages. Then K < (Ky, ..., K, )it K € KK, K, and K} C sub(K) for

each 1 <1 <n. =

Lemma 23 Let K, Ky, ..., K,,n =1 be languages. (1) Let

n
K = UKAL Then

=1
X &iw:z@y} repetitive if and only if there existsa 1 <7 <= n
such that K] is {strongly) repetitive.
(2) Let K < (K, ..., K;). Then
K is (strongly) repetitive if and only if there exists a 1 =< 72 < m such that K; is

(strongly) repetitive.
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Proaof.

Obvious. =

LemmaR.4. Let ¢ be a DOL systemn and let (G’ be its simplification. Then ¢
is (strongly) repetitive if and only if ' is (strongly repetitive).
Proof.

Follows immedialely form the facl thal one can homomorphically

“"translate” from G to &' and from G' to (. =
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3. MAIN RESULTS
In this section we slale two main resulls of this paper and indicate the stra-

tegy of their proofs.
The following two results are the main results of this paper.

Theorem 1. 1t is decidable whether or not an arbitrary DOL system G is

repetitive. =
Theorem 2. Every repetitive DOL system is strongly repetitive. ®

In order to prove these resulls we will prove the following two (more techni-
cal) theorems. They allow us to concentrate on SDOL systems (rather than con-
sider arbitrary DOL systems).

Theorem 3.

(1) 1t is decidable whether or not an arbitrary DOL system is repetitive if and
only if it is decidable whether or not an arbitrary SDOL systern is repetitive.
(2) 1If every repeti:t.ive SDOL systemn is strongly repetitive, then every repetitive

DOL systern is strongly repetitive. =

Theorem 4.
(1) Tt is decidable whether or not an arbitrary SDOL system is repetitive.

(2) Every repetitive SDOL system is strongly repetitive. =

Clearly Theorem 3 and Theorem 4 togelher imply Theorem 1 and Theorem

2. Thus the rest of this paper is devoted to proofs of Theorem 3 and Theorem 4.

In the next section we prove Theorem 3. In Section 5 we consider closed
and strongly closed subalphabets of the alphabet of a SDOL system. Considera-
tions of this section form important technical Lools for Section 6 where

Theorem 4 is proved.



4. PROOF OF THEOREM 3
In this section Theorem 3 is proved.

Theorem 3.
(i) It is decidable whether or not an arbitrary DOL system is repetitive if and
only if it is decidable whether or not an arbitrary SDOL system is repetitive.
(if) If every repetitive SDOL syster is strongly repetilive then every repetitive

DOL system is strongly repetitive. =

Proof. (i) Clearly it suflices Lo prove the if parl of Lhe statement only. To
this airmm we proceed as follows,

Let G = (X, A, ) be an arbitrary DOL syslem.

First we decide whether or not G is finite (it is well known that finiteness is
decidable for DOL systems). If ( is finite then (sec Lemma 2.2(2)) G is not
repelitive and we are done. I (7 is infinite then (see Lemma 2.1(1)) we decide
whether or not & is pushy. If it is, then (by Lemma 2.2(1)) G is strongly repeti-
tive and we are done, | |

Thus let us assume that G is nol pushy.

Lot GY be the “eoded version of G defined as follows (6 = (X RS )
where
2= (o, B) iz L=y, o, B¢ Lgand |al , |B8] = q(G)],

OJC

i

(o, Y1 o) (oG, Yo, ag). (G o, Ypo1, &y ) where

W= OGY 1 0Y g O Yp 1Oy, Yy € T—g and oy € B¢ for 1=1<n—1
and 1 €5 =n,

for (a, z, B) € ¢,

he (e 2, 8)) = (Ao, ¥, ag)(ag, Yz @) - (Gny, Yno1, anh(B))

where

h(2) = oY 10Ya O - Yn 10 Y; € L-Lgand oy € Lyforl €1 < n—1
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and 1 €7 =n.
By Lemma 2.1 G is effectively constructible.
Claim 4.1,
(1) G° is (strongly) repetitive if and only if G is (strongly) repetitive.
(2) G€ is strongly growing.
Proof of (laim 4.1
(1) This follows direclly from Lhe following obvious observation.
It E(G) = g, @y, .. and F{GC) = w§,wf, ..., then, for every m = 0,
W = Y1 Op 1Yy —10y if and only if
W = (g, Y o), Yo, ag) (-1, Yn, &p) where y; € L=y and
oy € 20‘ forl<1=<n—land 1 €7 =n.
(2) Since G is not pushy, no letter outside 2 has a rank. Consequently no

letter in (¢ has a rank and so (¢ is strongly growing. =

Clazm 4.2. There exists an algorithm which given a strongly growing DOL
system I produces a finite set /{4, ..., I/y, £ = 1, of DOL systerns such that
(1) H is (strongly) repetitive if and only il [/ is (strongly) repetitive for some
l=1<t,
(R) Hy is special foreach 1 =1 < 1.

Proof of Qaim 4.2.

Consider the algorithm A defined by the following diagram
Figure 2.

where inpuls are strongly growing DOL systems and the operations are defined

as follows.



14

SLICE

Let H = (0, g, p) be a strongly growing DOL system. 1t is well known that,
for eacha € O
alph(g(a)), alph(9=(a)), alph(g®(a))...
is an ultimately periodic sequence; let P, be a fixed positive integer which is a
multiplicity of a period of this sequence and is bigger than a threshold of this
sequence.
Let, for each a € Q, Tq be a positive integer such that the sequence
igr“(a) f, lggr“(a’,) I ... 18 a striclly growing sequence of positive integers; it is

well-known that such an Ty exisls.

Let s be the least common multiple of all the integers p,,7,. Then
SLICE(H) = {Hy, Hy, ..., Hg_4} where H; = (0, g%, g%(p)) for

O0=1<s—1.

SPLIT

Let H be a set of (strongly growing) DOL  systems. Then

SPLIT(H) = |_J SPLIT(#) where for H=(0g,p).
HeH

gf)*f;ﬁ(ﬁ) ={Hy, ..., Hpy) with Iy = (O, 9, a;) for cach 1=1< |p]

where @; is the 1’ th letler of p.

REMOVE UNACCESSIBLE (RU)

Let H be a set of (strongly growing) DOL systems. Then

RU(H) = U RU(H) where for H = (0, g, p), RU(H) = (@, g, p) where
' HeH

o0
—

6= U alph (gt{(p)) and § equals g restricted to @) .
i=0
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ULTIMATELY SIMPLIFY (US)

Let. H be a set of (strongly growing) DOL systems. Then

HecH
It is easily seen that when A is given a strongly growing DOL system H, it
produces a finite set H, ..., Hy, t = 1, of DOL systems which are special.
Hence () of the statement of the claim holds. Then part (1) of the statement

follows directly from Lemma 2.3 and Lemma 2.4. =

Now we complete the proof of Theorem 3.(i) as follows,

Let us consider the algorithm R given by the following diagram.
Figure 3.

Clearly, if it is decidable whether or not an arbitrary SDOL system is repeti-
tive, then (from Claim 4.1 and Claim 4.2 it follows that) the algorithm R decides

whether or not an arbitrary DOL system is repetitive.
Hence (i) holds.

(i) To prove (ii) let us assume that every repetitive SDOL system is
strongly repetitive. Let us analyze the algorithm R and in particular the cases
when it decides that a DOL system in question is mpetitivé, There are two such
cases.

(1) The answer 'repetitive’ given on the exit YES from the test "Is & pushy?".
In this case, by Lemma 2.2(1), 7 is also strongly repetitive. |

(R) The answer "repetitive” given on the exit YES from the test "Is one of Gf
repetitive?”’. In this case we know that (at least) one of the "component sys-

tems” G, ..., Gf is repetitive; since all these systems are special, our assump-
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tion implies that (at least) one of the systems (,..., Gf is strongly repetitive.
Then, by Lemma 2.3 and Lemma 2.4, (7 is strongly repetitive,

Hence, whenever G is repetitive it is also strongly repetitive and (ii) holds.

Consequently Theorem 1 holds. =



17

5. CLOSFED AND STRONGLY CLOSED SUBSETS OF L

In this section we define and investigate closed and strongly closed subsets
of (the alphabet of) a DOL system. The results of this section form an important

tool in proving Theorem 4 in the next section,

Let G = (X, h, S) be a DOL system and let © be a nonempty subset of L.
We say that ® is closed (with respect to G)if h(a) € O for each @ ¢ O
and we say that O is strongly closed (with respect lo (7) if alph (h(a)) = 0
for eacha € ®. Note that if @ is strongly closed then it is also closed.

Let w € sub(L(G)), let @ C ¥ and let w € O We say that u is a O-
block (of w) if w = xaubf where a, b ¢ $—0. A O-block % is mazimal in
w if no other ®-block in w is longer than % ; then .B®(w) denotes the number

2

20 ?

of different maximal O-blocks in w. (Bg., if w= a3ca”c?afcac and

O = {a}then B®(w) =2).

Now let G = (X, h, @) be an arbitrary (but fixed) special DOL system with
E(G) = wy, Wi, ... and let m = maxr(G). We will investigate several useful

properties of closed and strongly closed subsets of 2..

Lemma 5.5 Bo(w) = #¥m? for each closed subset ©® of ¥ and each

w € sub(L({G)).
Proof.

Let O be a closed subset of ¥ and let w © sub(L(G)). 1 lj’@(w) # 0

then W contains a @-b[ock; let us consider a maximal @-block « in W, assume
that w = w;aubwy, where a,b € -0 and consider thei depicted
occurrences of &, @ and b (these occurrences of @ and b are referr’ed to as
the left and the right border of the given occurrence of % respectively). Since
w € Sub(L(G)), there exists a 7 € N* such that w is on the r-th level of

T(G) (w € sub(w,)). The situation can be illustrated as follows:
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Figure 4.

where X is the first (bottom-up) common ancestor node of first(w) and
last (w) while p () is the first (bottom-up) common ancestor node of the left
and the right border of u (p{w) is called the real ancestor of 1; the (sub)tree
rooted at X and ending at the r-th level (of T(G)) is denoted Ty, the (sub)tree
rooted at p (U) and ending at the r-th level is denoted 7,,. The leftmost (right-
most) path in a tree leading from its root to a leaf is referred to as its leftmost

(rightmaost) boundery, both paths together constitute the boundary of the tree.

Let us consider 7, separately:
Figure 5.

where h(Lb (p(w))) = Ib(d,) ..Ib (d]h(ib(p(u)))])* d, falls on the left boun-
dary of 7, and d; falls on the right boundary of 7, where

sk <l = |h(b(p))].

We define the fype of u, denoted as type(w) to be the triple
(b (plw)), k, 1)

Claim 5.3. Either p(u) or anc (p(w)) or anc®(p (1)) lie on the boun-
dary of T,,.

Proof of Claim. 5.3:

Assume that () does not lie on the boundary of 7T,,. We show that then
either anc (p(u)) or anc?(p (1)) lie on the boundary of T,,. This is proved

by contradiction as follows,
Assume that neither anc (p (w)) nor anc?(p(w)) lie on the boundary of

Ly - that is they are both nodes within 7., but outside of Ty Since G is spe-

cial, (the label of) anc 2(p (U)) derives an occurrence of p (%) in one step and
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consequently &, _q contains an occurrence of @wb that will contribute to the
(given occurrence of) subword w a O-block longer than % (remember that G is

special and Ois closed); a contradiction because U is a maximal ®-block in w.

Hence Claim 5.3 holds. =

Claim 5.4. For each § < 7 the number of real ancestors of maximal ®-
blocks from w is bounded by 2m.~?,
Proof of Claim 5.4,

This follows directly from Claim 5.3, =

Claim 5.6, 1 % and %' are maximal blocks of w such that
type (u) = type (1') then both p{w) and p(u’) are on the same level of
T(G).

Proof of Qaim 5.5.

Assume to the contrary that p (u) is on the level wg and p (U’) is on the

level wg, for some 51 # S5 (say 51 < Sy).

Let @ and b be the left and the right border of % in w and let @', b’ be the

left and the right border of w4’ in w. Let @y = @, @y be the ancestor of @, ...
and @; be the ancestor of @;_; for 1 <1 = (s,=7); analogously let b.bo, .

i

bg - be the line of direct ancesters starting with the direct ancestor by of
bo =b,

Hence we have the following situation:
Figure B.

and an analogous situation for '

We observe that the position of @;_; among the direct descendant nodes of @;
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and the position of b;_; among the direct descendant nodes of by,
1=1i=(s;~7)—1, are uniquely determined by fype (p(u)). (Since @ is
«ciosed. @;_q is the rightmost direct descendant Z of @; such that h{x) g @F
and b;_; is the leftmost direct descendant Z of b; such that A(z) 2 O while
positions of @ (g )1 and b s _py_qin h(p (w)) are determined by the type of
p(’LL)) An analogous observation holds for the sublree rooted at p(u’) and
ending ata'u'b’.
This implies that if S| # S5 (say §; < ) then 7}, is isomorphic to a strict
subtree of 7,  rooted at the root of 7T, and consequently (because G is special
and ® is closed) |w'| > |w | which contradicts the fact that both % and %' are

maximal @~blocks inw, =

Now we complete the proof of Lemma 5.5 as follows.

By Claim 5.5 the number of maximal &-blocks in w is bounded by the pro-
duct of the number of different types of maximal O-blocks in w by the number
of real ancestors of maximal ®-blocks on one level of T(G). Consequently, by

Claim 5.4 the number of maximal &-blocks in w is not bigger than
(#2( %ﬂ ))-2mP <= #rm

Thus Lemma 5.5 holds. =

Now we move to investigate strongly closed subsets of 2. We start by noting

the following property.

Lemma 5.6 Let ® be a strongly closed subset of .. For every . € N* and
everya, b € O, |A"(b)| =m-|A"(a)].

Proof.

Since ® is  strongly  closed, b € alph(h(a)) and so

[A™* Y a)| = |A™(b)] for eachn € N*. But m |h™(a)] = |h™**Y(a)] and
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som |h™(a)| = |A™(b)| which proves the lemma. =

The relevance of strongly closed subsets of L to the investigation of repeti-
tive properties of (G stems from the following result.

Lemma 57 If n > #27714/—{-4 then for each W # A holds: {f
w™ € sub(L((G)) then alph(w) is strongly closed.

Froof.

Let > 2mP+4, w # A and let w™ € sub(L(()). Hence for some

7 > 1, w™ is a subword of w,. Thus we have the following situation:

Figure 7.

n
Censider now the {»é&th occurrence of W in (the depicted occurrence of)

w™. Let @ be an arbitrary element of alph(w) and consider an arbitrary

occurrence of @ in the given occurrence of w (in w™). letx = omcz(a);

Figure 8.

Since . > #YXm™*+4, all second generation descendants of = lie within
(the given occurrence of) w™. On the other hand, @ € alph(h*(x)) implies
that (because G is special) a € alph(h(z)) and so by the above
alph (h(a)) < alph(w). Thus alph (w) is closed.

Assume now that alph (w) is not strongly closed. Thus alph (w) contains
a letter, say b, such that alph (h(b)) # alph(w); let alph (h(b)) = @ This
means that alph (h(w)) contains a letter not in @ and consequently h(w™)
contains at least n — 2 = #27714+2 maximal ®-blocks. This however ycéntrad-

icts Lemma 5.5 and so alph (w) must be strongly closed. =
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We define now a concept important for our further considerations.
Let z € L(G), ® be a strongly closed subsel of % and let

u € sub(z )m@+. Thus we have the following situation
Figure 9.

where X is the first (bottom-up) common ancestor of first(w) and last (w);

7Ty, is a subtree of T((G) rooted at X with 2 being its frontier.

The cover of w, denoted cov(u), is the subgraph of 7,, spanned on all
nodes of 7;, the contribution of which to w, is totally included in 4 (this
includes also nodes from ). The surface of cov (w), denoled sur(w), con-
sists of all nodes of cov (w4 ) such that their direct ancestor in 7((G) is not in
cov{u). Let s <7 be the smallest integer such thal some nodes of Cov (u)
are on the level s of 7'((). All nodes from cov (W) on the level § form the lewvel
0 of cov(w) - their set is denoted by covg{w); all nodes from cov (w) which
are on level S +1 of 7(() form level 1 of cov(w) - their sel is denoted by
CO?}I(’U,), and so on up to 1 = (S --7") where ($—7) is called the height of

cov () and denoted by hf (1)

lemma 5.8. The number of surface nodes on each level of cov(u) is

bounded by 2m.~.
Proof.

First we note that for each node z in sur{w) either x or anc (z) or
anc 2(.1:) is on the boundary of 7,,. This is seen as follows. Assume that Z is
not on a boundary of 7y,. Now if neither anc (x) nor anc?(x) are on the boun-
dary of T, then anc?®(x) is within 7, and its contribution to Z lies within % .
Since G is special this implies that Ib(anc(z)) ¢ @ and so Z is not in

sur(w); a contradiction.
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But if cach node 2 in sur () is such that cither  or anc (x) or anc?(x)

is on the boundary of 7,,, then the number of surface nedes on cach level of

2

cov (u) is bounded by om= (no more than M” nodes coming form left boun-

2

dary and no more than 7.~ nodes coming from the right boundary). =

fcontr, (b)] 1

|2 | 4m3’

Lemma 5.9 For each node b of covg(w),

Proof.

Claim  5.6. Tor every node b € CO'UO(’U,), every positive integer

ko€ {0, ., ht(u)] and every node o € covg(u),

m-|contr,(b)|
lcontr, (a)] = - .
2
Froof of Claim 5.6.
Since (7 is special, for all positive integers 7,5 with § <7 we have

(remember that we identify nodes with their labels whenever it does not 1eéd to

r
a  confusion) Jﬁ;%@_]_} [R5 (a)]. Thus, by  Lemma 5.8,

-
mlﬁ—;&mz [h"=(a)] and so for » =ht(w) and s =k we get

m-{contr (&) ]

lcontr, (a)] = =

Clearly 2 can be expressed as the catenation (in proper order) of contribu-

ht (u} -1

tions to % from all letters from sur(w). Thus |u| = )]

=0

C; where (; is

the joint length of contributions of all the letters from sur{(u)ncov;(u).
Assume now that & is a node in cov O(u). lience, by Claim 5.6 and Lemma 5.8,

for each 1 =1 < ht(u)—1

4 =
2%

2-m3 |contr, (b)] |
- and so
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rt(uw)-1 2m3 |contr, (b)]
ol =" .
=0 2

<2m3 |contr,(b)]| ) L
< 4m3|contr, (b)].

|contr, (b)] 1

!u l 3 and the lemma holds. =
2 4m

Thus

Lemma 510, Let 0=l =hi{u)-1 and let a ¢ coy;(w). Then

|contr, (a)] 1
| | amAtt
Proaf.

Let ¢ € L. Then obviously, for each?, § = 1 such thatv = s,
|hT ()| =m7™-[R%(c)].
Thus if we take b € covg(w) andset 7 = ht (u), I = r—s we get
R (5)] = m! Rk -1(b) |
and so by Lemma 5.6 we get
[contr, (b)]| < m b+l |contr, (a)].
Consequently by Lemma 5.9 we get

|contr, (a)| 1 .
[ | 4mAtt
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6. PROOF OF THEOREM 4

In this section we provide a proof of Theorem 4. We slart by introducing the

following useful notion.

Let © be a strongly closed subset of X; we assume some fixed order of ele-
ments of @, Let 7mbe a cyclic permutation of Q. we say that A is (@, 7T)- cyclic
if the following two conditions are satisfied:

(1) for each z € @ it h(x) = Ty Ty where Ty, .., 2, € O, then
Z; . = m{x;) for eachi <1 < m—1,
() foreachz,y ¢ O, if m(x) = y then n(last (h(x))) = first (h(y)).

Lemma8.11. Ifh is (@, 7T)-cyclic, then for every & € ® and everyn. € N*

there exists aw € @F such that [w| = #O and w™ € sub(h™(x)).

Proof.

Assume that a word % is of the form u = an(a) - - - 7Tt(a,) for some
a€@® and =0 Then h(u)=bn(b) - Trt'(b)wﬁere

(t'+1) = (t+1)max{2, # 0}
This cbservation follows directly from the definition of a (@, 'n‘)-cyclic

homomorphism (and the fact that A is strictly growing).

Then the lemma follows from this observation: for each z € ® and

n € NV it suffices to take w = pfref#@(h" () =

Lemma 8.12. There exists a p € N* such that, for each w # A and each
n = p, if wh € sub(L(G)), then alph(w) is strongly closed and there exists
a permutation 71 of alph (w) such that h is (alph (w), m)-cyclic.

Proaof.

Let p = 12-#Ym8 Since p > #Tm4+4, Lemma 57 implies that if

w # A n =pandw™ < sub(l(G)) then alph(w) is strongly closed.
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So let m =0 and let w # A be such that v = w™ € sub(L(G)). Let
0= alph (W) - we know that ® is strongly closed. Thus we leave the following

situation:

Figure 10.

Let g = ht(v). Clearly we can assume that cov (v ) has at least five lev-
els.

Claim 8.7.
3

W

(1) for each a € covy(v), |contr,(a)]

w,

() for each a € covs(v), |contr,(a)] = 3m |w|.
Froof of Claim 6.7.

(1) Let @ € cov,(v). By Lemma 5.10,

contr,(a)] . 1

|v | 4mb
Hence
|contr,(a)| > ~L~«L
4m,8

and since 12 = p

#2-12]w |m?8

fcontr,(a)| = o

= #23lw| =3

w.

() Analogously for @ € covg(v) we get

|contr,(a)]| = #Z3m |w| = 3m |w]|, =

Let p € CO’UO(”U) and let Y5 be the (occurrence of) the subword contri-
buted by p to cov 3(’0) and let Y4 be the (occurrence of) subword contributed
by p to COU4(U ) Since ® is strongly closed and (7 is special, each letter of Ya

occurs at least 3 times in yg and each letter of 74 occurs at least 3 (even 4)
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times in 4.

We will consider now 75 and 4. Lel Z be an arbitrary letter of ¥g and let ¥
be an arbitrary letter of 7y, Then we will consider arbitrary three consecutive
occurrences of Z in Y3 and arbitrary three consecutive occurrences of ¥ in Y4
let then 73 = - Zogxoagr - - and Y4 = - YBYPy - - where the
depicted occurrences of x and Y are the considered occurrences
(z £ alph(ay0p) andy £ alph(862)).

Claim 8.8, &y = oo and 8 = fa.

Proof of Claim 6.8,

We will prove that §; = £ the proof of equality &y = s is analogous.

By Claim 6.7, contr, (y) = wluﬁwg for some [ = 1, a proper suffix w;

of W and a proper prefix Ws of W.

We have four possible cases to consider.
(1) contr,(By) = contr,(Bs) = A.
This can happen only if §; = 5 = A - then indeed £, = .
(2) contr,(B1) = A and contr(f,) = ’Zl}lwf*ﬂ“}g for some { = 1, a proper
suffix W4 of W and a proper prefix Wy of W,
Then
contr, (y By Bay ) = wiwhwyw whw,w whww whw, = 6.
Consequently wWayw | = w, WeW, = w and Wyw, = W and so w; = W and
Wo = Wo.
Thus § = w w3y, = 9 ~%(yy By ).
On the other hand
Ry Boyy) = wiwtww whwow whwsw whw,

= 2w 1w8i+f+3w2 =3

Thus h9 ™*(y By ) = h9 4 (yy Bay ) where Y Bayy # yy Boy.
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Sinée h is injective, this is a contradiction and consequently case (2) is impossi-
ble.

(3) contr,(By) = ﬂ)"iwr?f&g for some L = 1, a proper suffix Wi of W and a
proper prefix Wy of W and CONLTy, (Bs) = A

This case is analogous to case (3).

(8) contry(f;) = ww!wy' and contr (Bo) = wwhwy for some U', [ = 1,
proper suffixes W', W of W and proper prefixes Wy', Wy of W.

Then

contr, (Y BryBay ) = wrwf waw W wp w W wal il Tow rubw, = 3,
Consequently Wow ' = Wy'w, = Wyl = Wow{ = w. Hence w'y = Wy and
w'p = W

Thus

5 = w T hy = T4y By ay).

On the other hand

hT ™y oy B1y) = wyw T wg = W4y Bry By).

It B # Bo then Y B2y By # Y By B2y and, because h is elementary, we get a
contradiction.

Thus §; = Bz.

Now Claim 6.8 follows from cases (1) through (4). =

Cloim 6.9, Let .,y € ® and let V3 T 0T 0T " Uy L0y, and

Yo = Bo¥B1Y - Br_1YBy where m,r =3 z £ alph((xoi © Q) and

y £ alph(By- - B,). Then Ay = A = 0 = Qg and
By=Bz= -+ =f,_y and moreover if either &; = A or ;= A then
40 =1

Proof of Qaim 6.9,
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The first part of the conclusion follows directly by Claim 6.8. The second
part follows from the fact that & is strongly closed and so all occurrences of x

in 75 (all occurrences of % in ¥,) are consecutive only if #@ = 1. =

If #8 = 1 then clearly A is (@,id®}-cyc]_ic where ’id®is the identity map-
ping of 0]

Thus we will assume that #& > 1.

Claim 6.10, There exist a permutation 75 of © and a permutation My of ®
such that y3 = amg(a)n§(a) - - - mh(a) and y, = brm(b)mi(B) - - - w§(b)
forsomes =7 > landa, b € (.

Froof of Qaim 8.10.

We will prove that 75 is of the form amng{a) - - - 7w5(a); the proof for V4
can be done analogously.

Letz,y € O

First we note that there can be at most one occurrence of ¥ between any
two consecutive occurrences of ¥ in 3. This follows directly from Claim 8.9,
because otherwise there would be no occcurrence of T between these (and hence
any) two occurrences of % in s which contradicts the facf that © is strongly
closed (and ¥3 is an image by h of a word in @"").

Similarly, Claim 6.9 implies that there is at least one occurrence of Y

between any two consecutive occurrences of Z in s,

Consequently, there is precisely one occurrence of % between any two con-

secutive occurrences of & in 3.
Nowletyg=cCq -y forsomet =3, ¢y, ...,0, € @ andlet #0 =n.
Then we have Y3 = CCg - * €, C ¥ for some g € OF where ¢ 1 €2 -y Cp

are all (occurrences of) different letters. If we set €, = @ and T3 to be deter-
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mined by 73(c;) = ¢y4q for 1 €1 =m—1 and m5(C,) = € then the claim
holds. To see this we will show that m5(c;) = Cj+q for 17 <{-1. Thisis
certainly true for 1=<j7<mn. Take j >7 and consider the subword
Cjn+2 " " Cj-1C4C 41 of 73 (where
ﬂs(cj»n+2) =Cin43 ﬂg(cj ~—1) = Cj), Clearly none of the letters
Cjom+2s - Cjoq, Cj equals Cypy (as otherwise in a subword of the length n —1
the letter C; 44 would repeat and consequently between two occurrences of Cj+1
we would miss a letter from ®@). Thus {cjed = @-—ﬁcj, Cj—1s s Cjp4p) and

consequently ﬂg(cj) = Cjyq ®

Let 72 be the subword contributed by P to cov,(v): then we have
Y3 = h(’yg) and Y, = h(’)/g). Since © is strongly closed, for any letter @ €
h(a) is a subword of 73 and a subword of 4. Consequently the sequence of
letters in A (@) must "run" according to 773 and according to 714 (see Claim
6.10). But alph(h(a)) = @ andso 7y = my.

Let 7 = 713 = 7,. Then (because ¥4 = h(ys)), h is (@, m)-cyclic and so

Lemma 6.12 holds. =

Now Theorem 4 is proved as follows.

Claim 8.11. (7 is repetitive if and only if there exists a strongly closed

®c Yanda permutation 77 of ® such that & is (@, m)-cyclic.
Proof of Claim 8.11.

If & is repetitive then Lemma 8.12 implies that there exist a strongly closed

@ cYanda permutation T of ® such that A is ( @ m)- cycho

On the other hand if there exist a strongly closed BcTanda perrmutation
7 of © such that A is (0, m)-cyclic, then by Lemma 6.11, for each @ € ® and
each n 2 1, (an(a) - - - m# 0 1a))* € sub(L(G)) and so L(G) is repeti-
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tive, =

Since (obviously) it is decidable whether or not there exists a strongly
closed @ C T and a permutation of 7 of @ such that A is (@, m)-closed, Claim
8.11 implies (@) of Theorem 2.

Part (b) of Theorem 4 is seen as follows.

By Lemma 8.12, if & is repetitive then there exist a strongly closed Ocx
and a permutation 71 of ® such that h is (@, 7m)-cyclic. Then by Lemma 6.11, for
each @ € @ and each n € N* (arn(a)n?(a) - - - w#9 1 (a))* € sub(L(G)).
Consequently G is strongly repetitive.

Thus Theorem 4 holds. =
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