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Repetitions of subwords in words form the very fundamental (combinatorial) structure
of formal languages. A systematic investigation of such repetitions was initiated by
Thue in [T]. Since then this problem area was a subject of an active investigation 1in
numerous areas of mathematics and in formal language theory (see, e.g., [BEM], [C],
(D}, [MH], [P] and [S1]). As a matter of fact, recently one notices a revival of in-
terest in "Thue problems" among formal language theorists (see, e.g., [B], [H], [K],
(S2]). In particular it was discovered that the theory of nonrepetitive sequences of
Thue [T] is strongly related to the theory of (iterative) homomorphisms on free mo-
noids. It was pointed out in [B] that most (if not all) examples of the so called
square-free sequences constructed in the literature are either DOL sequences or their
codings (see, e.g. [RS]). In this way a very significant connection was established
between the theory of (non)repetitive sequences and the theory of DOL systems. It
seems that the benefit is two-sided: the theory of nonrepetitive sequences originates
a new and very interesting research area within the théory of homomorphisms on free mo-
noids as conceived in the theory of DOL Systeﬁs while the theory of DOL systems pro-
vides a better insight into the theory of (non)repetitive sequehces (see, e.qg., [B]
and [S2]).

Since repetitions of subwords form such a basic structure in formal languages the re-
search concerning the general area of Thue problems forms a very fundamental part of
research in formal Tanguage theory.

In this paper we investigate "the repetitive properties" of homomorphisms and langua-
ges.

1. A CHARACTERIZATION OF SQUARE-FREE HOMOMORPHISMS

Let Z be a finite nonempty alphabet. A word x ¢ 5' is called a pure square if X = yy
+ . : i . )

for some y € 3 ; x is called a square if x contains a subword which is a pure square,

otherwise x is called square-free . We use SQ(Z) and SF(2Z) to denote the set of all

squares over I and the set of all square-free words over I respectively. For a finite

nonempty alphabet A we use HOM(3,s) to denote the set of all homomorphisms from z°



into 4% . A homomorphism h ¢ HOM(Z,8) is called squarc-free if (h(x) € SF(4) when-
ever x € SF(Z). Hence square-free homomorphisms are homomorphisms preserving the square-
free property; they form an important subject of investigation in the theory of (non)
repetitive sequences and languages (see, e.qg., [B], [S]).
Let h € HOM(Z,A). Then
T = 0 €SF(2) (Ba,b)Z(BU)Z*[w = aub and
either h(u) e h(a) or h(u)e h(b))y,
where for words x, y we write x e y if x is a subword of y. Also let
Tp = lw €SF(Z) : |w| =3}

We have obtained :thelfollowing structural characterization of square-free homomor- -
phisms.
Theorem 1. Let h € HOM(z,a). Then h is square-free if and only if
o UTp) < SF(a). | o
A well-known result by Thue (see [T] and also [BEM]) says that a sufficient con-

h(T

dition for a homomorphism h € HOM(Z,4) to be square-free is as follows:
(1). (Va,b)th(a) t h(b) implies a = b] and
(2). h(Tp) = SF(2).
It is easily seen that this theorem by Thue is a simple corollary of our Theorem 1.
Now, for a homomorphism h ¢ HOM(z,a) Tet maxr(h) = max{|h(a)| : a € 2} and
minr(h) = min{|h(a)| : a € £}, where for a word x, |x| denotes its length. In [B]
Berstel proves the following result:

a homomorphism h € HOM(Z,Z) is square-free if and only if h(x) € SF(2) for each
5 mazr(h)
= minr(h)

square-free word x such that [x| =2 +

Based on our theorem 1 we can prove the fd]1owing result.
Theorem 2. A homomorphism h ¢ HOM(z,z) is square-free if and only if h(x) ¢ SF(3)

e _ mazr (h)
for éach square-free word x such that |x| = 2 + L@EEWTUJ . o
Since [?Z?ii%ggl > Z?iggp%l + 1 our bound is strictly better than this of the

Berstel theorem mentioned above.

2. ON SQUARE-FREENESS TEST SETS

The chéracterization results discussed in the last section provide one with "test
sets" for testing the square-freeness of a homomorphism. A homomorphism h ¢ HOM(z,a)
1s square-free if h(x) is square-free for all x ¢ SF(z). Since SF(z) is infinite for
# 5 = 3 (where for a finite set A, #Adenotes its cardinality) such a definition is
not effective. On the other hand the results from the last section allow one, given
a homomorphism h, to construci effectively a finite set Fh (of square-free words),
such that h is square-free if and only if h(x) is square-free for every x ¢ F- In

this sense such a set Fh is called a square-free test set. We will look now more clo-



sely into square-freeness test sets referred in this paper simply as test sets.

Thus given a homomorphism h ¢ HOM(:,s) we say that a set X c 5t tests h if and
only if (h(X) c SF(a)) implies (h(SF(z)) ¢ SF(a)). Consequently Theorem 2 can be
restated as follows.

Theorem 2'.Let h ¢ HOM(z,5). Then {w ¢ SF(z) : |w| = 2 + |mazz(h l - .
In order to make the test set smaller one would like to replace the "<" sign
from the above result by the "=" sign. Indeed this can be done under an additional

assumption (the reader should be warned that the construction is not trivial!). In what
follows, for a finite set A, #A denotes the cardinality of A.

Theorem 3. Let h ¢ HOM(z,4), ¢3 = 3 and Tet m = 2 + i;?i; S‘J.

Then {w € SF(2) : |w| = m} tests h. s

It is easily seen that the above theorem is false if 43 < 3.

The tests sets we have considered above were "adjusted to h" in the sense that very
specific parameters concerning h were used to define these test sets (namely maxr(h)
and minr(h)). A natural next step is to consider test sets which will be universal for
all homomorphisms in HOM(2,A) with fixed = and 4. This can be done as follows.

Let Z, = {al,az,....} be a fixed infinite ‘alphabet and then let, for each n > 1,

Zo= 48,8 - Let nym = 1. The family T(n,m) of (n,m) test sets is defined as’
follows:

X € T(n,m) 1if and only if

X c SF(Zn) and (Vh)HOM(Zn,Zm)[h(X)~E SF(zm) if and only if h is square-free].

Clearly, we are interested in the existence of finite (n,m) test sets.
Here we have the following result. _ .

Theorem 4. Let n,m = 1. Then T(n,m) contdjns a finite nonempty set if and only
if either n <3 orms= 2. | o

3. REPETITIVENESS AND STRONG REPETITIVENESS

An example of repetitions (of subwords in words) in formal languages is the effect
of pumping in an infinite context-free language. Then we get a word, say w, such that
all its powers (repetitions) appear in words of the given language. This idea can be
formalized in two different (weaker and stronger) forms. (For a language K, sub{K) de-
notes the set of its subwords). |

A language K c 5%4s called repetttive it and only if
(Vn)21 (BWIZi[wﬁ € sub(K)J; K is called strongly repetitive if

(3w)z+(Vn)>l[wn € sub(K)].
Clearly, every strongly repetitive language is also repetitive, but the converse

does not have to be true in general. As the direct consequence of the pumping lemma
we get that every infinite context-free Tanguage is strongly repetitive, and so repe-



titiveness implies strong repetitiveness in a trivial way.

However the situation in DOL languages is much more involved. The pumping-T1like
properties do not hold for DOL languages and “"detecting" repetitiveness in a DOL
language becomes a challenging problem. We have obtained the following result,

Theorem 5. It is decidable whether or not L(G) is repetitive for an arbitrary DOL
system. '

This result yields also the decidability of the strong repetitiveness property be-
cause we have the following.

Theorem 6. Let K be a DOL language. Then K is repetitive if and only if K is strong-
ly repetitive.

4. COPYING SYSTEMS

From the existing Titerature concerning "Thue problems" one can certainly draw thé
conclusion that this problem area is mathematically quite challenging. On the other
hand repetitions (in languages and homomorphisms) play an important role in formal
language theory and so their nature should be well understood. Thus the topic of repe-
titions (in languages and homomorphisms) forms an interesting and well motivated
research topic. 4 .

A way to understand repetitiveness in formal languages is to consider repetitions in
their "pure grammatical form", that is introduce grammatical systems that explicitly
use repetitions as the way of language generation.

A copying system is an ordered pair G = (Z,w) wheré 2 is a finite nonempty alphabet
and n ¢ 3*. Then for words u, w € £° we say that u directly derives w, written u = w,

. o G
if u=xyz and w = xyyz for some x, y, z € 3°. Then = denotes the reflexive and the

transitive closure of E. The Zanguage ofG is definedGby L(G) = {x € 2% : w % X}
L(G) is referred to as a copying language. Analyzing copying languages turns out to
be a difficult task. (The reader should consider the problem of proving or disproving
whether the language of the copying system G = ({a,b,c},abc) is context-free).

We will provide now a result allowing one to prove that certain copying languages
are not regular.

Given a copying system G = (2,w), the relation % is a partial order on 3*. Hence
for a language K ¢ 7% we can distinguish the set of minimal elements of K, min(K) =
{x € K: (vy)K[if y % X theﬁ = y)}. Also we say that K is wpward closed under %
if (VX,y)Z*[if x € K and x é y then y ¢ K]. In what follows, for a word z, alph(z)
denotes the set of letters occurring in z.

Theorem 6. Let G = (»,w) be a copying system and let K c zﬁu If
(1). Kis regular, o
(2). K is upwards closed under % , and
(3). (HX)‘K[;JaZ;fﬂ?(X) > 3]
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o andpplication 01 tnils result we can snow that
Corollary. Let G = ({a,b,c), abc). Then L(G) is not reqular. g
We don't know of any other way to prove the above corollary.
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