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ABSTRACT

A DOS system formalizes the notion of generative determinism in the frame-
work of (somewhat modified) context free grammars. This paper investigates
the concept of ambiguify in DOS systems, in particular we concentrate on the
decision problems related to ambiguily in DOS systems. We show that the follow-

ing problems are undecidable for DOS gystems.

1. 13 there a word in a given regular language which is ambiguous in a given D0OS

gystem?

2. Are there two distinct words in a given DOS language (i.e. a language gen-

erated by a DOS system) which map to the same word under a given weak iden-

tity?

3. Is there a word in a given DOS language with two derivation trees which do not

"share' any frontier nodes,

Actually we show that the above undecidability results hold for a strict sub-
class of the class of DOS systerns (languages) defined by restricting ourselves to

acyclic and propagating DOS gystemns.
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INTRODUCTION

DOS systems are defined in [ERZ] to capture the notion of generative deter-
minism in a class of sequential rewriting systems such as are found in context
free grammers. A DOS system is given by a triple G = <2, A, w > where T is a
finite alphabet, A : £-X* and w € £*. As the notation suggests, DOS systéms are
intended to be a sequential analogue of DOL systems (see e.g. [RS]). The
language generated by G consists of all words derivable from the "axiom" w by
successive applications of "productions” given by the function A. There ig no
distinction between terminal and nonterminal letters, hence the study of DOS
systems may also be considered a branch of the investigation into pure gram-
mars (see e.g. [HP], [S], [MSW]). Furthermore, addition of a terminal alphabet
to DOS systems is unnecessary since it was shown in [ER2] that this does not
increase the language generating power of DOS systems (except to allow the

generation of the empty language).

This paper continues the research into DOS systems begun in [ER1], [ER2]
and [ER3] by defining the concept of ambiguity in DOS systems and exploring
some basic decision problems related to this notion. As in context free gram-
mars, ambiguities arise in DOS systems when distinct derivation trees exist for
the same word in the language. {Actually we consider derivation forests in DOS
systems since the axiom for a DOS system is not necessarily a single letter
word). However, the study of ambiguity in DOS systems differs from the study of
ambiguity in context free grammars in one major respect. Due to the genera-
tive determinism of a DOS system, all derivation forests within the system are
subforests of a single infinite forest called the D—~forest of the system. The D-
forest of a DOS systemn is simply an infinite forest whose root nodes are a
sequence of nodes labeled with the letters of the axiom of the system, and such
that the successors of any node labeled o are a sequence of nodes labeled with

the letters of the word specified as the replacement for a.
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The frontier of any derivation forest in a DOS system is a cul in the D-forest,
where by a cut we mean a sequence of nodes in their left to right ordering from
the D-forest such that there is exactly one node in the sequence for each infinite
path from a root node of the D-forest. Conversely, each cut in the D-forest
corresponds to the frontier of some derivation forest. Thus ambiguity in DOS
systems is characterized (with some qualiﬁcations) by the existence of distinct
but identically labeled cuts in the D-forest of the systern. This places the inves-
tigation of ambiguity in DOS systems into a combinatorial environment which is
greatly simplified over that given for arbitrary context free grammars.

The paper is organized as follows:

In Section 1 we specify the basic notation used throughout the paper. We
begin Section 2 of the paper by giving formal definitions of derivations and ambi-
guity in DOS systems, and inherent ambiguity of DUS languages. We then derive
a sirnple lemma concerning ambiguity in APDOS systems. These are propagating
DOS systemns with no cyeles of derivability among the letters of the alphabet.
{See [EHRZ].) Using APDOS systems, we give undecidability results for the follow-

ing types of ambiguity problems.

1. Given a regular langusge R and an (AP)DOS system G, is there a word w € R

which is ambiguous in G? (Theorem 1.4)

2. Given a week identity ¢ and an (AP)DOS system €, are there two distinct

words w; and wp derivable in G such that p(w;) = ¢{wz)? (Theorem 1.6)

3. Is there a word derivable in a given (AP)DOS system by two derivation forests

which do not "share” any frontier nodes? (Theorem 1.8)

The rethod used in oblaining the first two undecidability results is by
reduction {rom Greibach's "two-way' version of the Post Correspondence Prob-

lerm {[GRE]). The third result is obtained by reduction from the emptiness of
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intersection problem for DOS languages, proven undecidable in [ER1].



SECTION 1 BASIC NOTATION

Throughout this paper X denotes an arbitrary finite alphabet and X*
denotes the free monoid with null word A generated by Z. Z* =X* - {A}. For
w €L* | w | denotes the length of w and w® denote the reverse of w. N
denotes the set of natural numbers, including 0. For any set .S, P (S) denotes
the set of all subsets of § and card (S) denotes the cardinality of S. ¢ denotes
the emptly set. A weak identity is a homomorphism ¢ : £* » Z* where ¢ (a) = a
or ¢ (w) =\ for any a € L. For any alphabet %, ¥ denotes the shadow alphabet
for £, ie. {&:a €X} dden: (ZUL)* - %* is the unbarring homomorphism

defined by iden (o) = iden (@) = a forany a € &,

Given a DOS system & = <X, h, w>, the D-forest of  is an ordered forest
with nodes labeled from Z{J{A] defined inductively as follows: The roots of the
D-forest are a sequence of nodes labeled with the letters of w from left to right.
For any node labeled o in the D-forest, where o € L, its successors are a
sequence of nodes labeled with the letters of () from left to right. If h(a) = A

then the node has exactly one successor labeled A, as does any node labeled A.

A cut in the D-forest is a sequence TAU of nodes in the D-forest such that on
each infinite path starting from a root node there is exactly one node from TAU,

and the order of the nodes in TAU is their left to right order in the D-forest.

Given a function h : 5-%* A% L*>P(I¥), the sequential ertension of h, is

defined by

I

RE(N) = {A],
h¥(a) = {th{a)] fora € & and
R (a..ap)=fa; - goah(e)e, ol <i=k]foray, .. o €
A DOS system is a triple G = < I, h, w> where ¥ is a finite, nonempty alpha-
bet, A L% and w € &%, h is called the underlying mapping of G and w is

called the awxiom of . The language of G, denoted L((G), iz defined by

W
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L{G) = {z : z € (h*)*(w) for some n = 0}, where (h*)P is the identity function. A
sequence of distinct letters <oj,...00 >, gy €T fori:1<si<k, isacycleinh
itk >1, A{o) =04, forall 1<i <k and h{a;) = a,. A DOS system is acyclic if
h contains no cycles and propageting if h{e) # A for all ¢ €%. We use the
prefixes A and P to denote that a DOS system is acyclic or propagating respec-
tively. A DOS, PDOS or APDOS language is any language generated by a DOS,
PDOS or APDOS system, respectively.

Given a DOS system G = < I, h, w> and words u,v € ¥ we say u derives v

in one step, written v => v, if v € R®(u). We say u derives v (in one or more
(€

b
steps), written « :(;:'} v, ifw € (h®*)*(w) for some n > 0,

We adopt the concepts of a node, labeled ordered forest, successor and path
from the theory of directed graphs. Formal definiticns can be found in any stan-
dard {g;raph theoretical text. For any labeled graph &, Iz denoctes the labeling
function on G. The subscript & will be omitted when the graph in question is

clear from the context.
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SECTION 2 RESULTS

The simplest approach to ambiguity is to define a DOS system to be ambigu-
ous if its D-forest contains two distinet cuts for the same word., However, this
approach leads to trivial instances of ambiguity in systems in which the underly-
ing mapping h contains a cycle, or in which h(a) = a for some letter a. In this
case we will have a profusion of cuts for the same word simply because we can
"rederive” certain words ad infinitum by iterating a cycle or "identity produc-
tion" within a derivation. This situation can be avoided by restricting our atten-
tion to "minimal” cuts in the D-forest.

Definition. Given a D-forest F and two culs ¢; and ¢ in F, o, < ¢y if and
only if for every infinite path in F', the node of ¢, on this path is the same as the
node for ¢y on this path, or the node of ¢, is closer to the root node of this path
than the node of ¢y ¢; <cpifand only if ;< ¢y and ¢, # ¢ Given a word w, ¢
is a minimal cut for w in F if and only if I{¢) = w and there does not exist a cut

£y such thati{c,) =w andec, <c.

Definition. A word w is ambiguous in a given DOS system G if and only if
there exist two distinct minimal cuts for w in the D-forest of G. G is wmbiguous
if and only if there exists a word w € L(G) which is ambigucus in G. A DOS
language 7 is inherently ambiguous if and only if every DOS system & such that
L(G) = T is ambiguous.

A simple example of an ambiguous DOS system is the system
G=<{a,b,cl h,ac> where h{a)=ab h(b)=0b and h(c)=be. Here
L(G) = ab*c and each word in L(&) — {ac} is ambiguous in . Notice that this
languege is not inherently ambiguous. We can generate it unambiguously by sim-
ply meodifying h so that A(c) = ¢ or h{a) = a {but not both). On the other hand,

it is clear that the DOS language L = o’ is inherently ambiguous, since the only

L 4

J



DOS system which generates 7 is the system & = < {a}, 2, @ > where A(a) = aa,

and the word oaao is ambiguous in G.

To investigate ambiguity in DOS systems, we will need a simple method of
describing specific cuts in a given D-forest and of determining whether or not

they are minimal.

Definition. Given a DOS system G = < I, h, w> and x € £* a deriwation for
x in & is an  ordered sequence D= <w,, ..., w> where
k=1, diden{w,) =w, w =z and for each 1 <4 <k there exist w;'w;" € 1* and
gk such that wy = wy'Gw,” and iden (w; 1) = w;'h(a)w"
iden (D) = <iden(w,), ..., iden (w,)> The cut for the i* word in D, written

¢ (i, D), is defined inductively as follows,
1. (1, D) is the ordered sequence of root nodes in the D-forest for 6.

2. For all 1=i=<k, if the n'” letter of w; is the barred letter, then
¢(i + 1, D) is obtained from ¢ {i, D) by replacing the n** node of ¢ (i, D) with the
ordered sequence of its successors in the D-forest of (.

The cut for the last word of D, ¢ {k, D), will be abbreviated as ¢ (D). We will

say that D is a derivation for the cut ¢ (D).

Lemma 1.1, For any DOS system &
(i) For any w € £* w € L(G) if and only if there is a derivation of w in G.
(if) For any derivation D in G, ¢ (D) is a cut in the D-forest of & and conversely,
for any cut ¢ in the D-forest of & there is a derivation for ¢ in G.

Proof. This is obvious. =

In the present investigation, we will concentrate on the special subclass of
DOS systems known as APDOS systems, more extensively studied in [EHRZ]. (A
formal definition appears in the previous section.) Both of the examples of ambi-

guous systems given above were in fact APDOS systems. For this basic subclass
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of the DOS systems, we have a simple characterization of the derivations which

produce minimal cuts in the D-forest.

Definition. A derivation <w,, ..., w, > is elementory if and only if

iden (wy) #iden (wyy) forall 1 =1 <k,

Lemma 1.2, Let D be a derivation in an APDOS system G. Then ¢ (D) is

minimal if and only if D is elementary.

Proof Let &G = <X, A, w>andlet D = <w,, ..., w, > If D is not elementary
then al some step in D, a letter o € ¥ is replaced with itself, so A{a) = a. It is
obvious that none of the cuts for any succeeding step of the derivation will be
minimal since each will contain some successor of this node generated when a is
replaced by a and each such successor is simply another node labeled a. In

particular, ¢ (D) will not be minimal.

On the other hand, suppose that ¢ (D) is not minimal. Then there exists a
cut ¢ <c{D) such that L{c) = w,. In this case it is clear that we can find a
derivation D'=<wuy, ..., Uy, ..., Uy > in G such that c(P') =c¢(D) and
¢{n, D) =c. Since G is propagating, |u;|= |u;| for all 1<4 <j=<m. Hence
since iden (U, ) = Uy, |u;| = |u;| for all n <4, 7 <m. This implies that in each
step of the derivation of u, from iden(w,) in D' a single letter replacement
cccurs., Hence we can find =z, ¢ € 3* and g €% for n<i<m such that

Up = Zp Gy, and dden(u;) = 2oy for all n <i<m and |z;| = |x;| for all
- 0] * * . -
n<i, j=m, Since a, = a, and g; :(:‘; i+ for all m =1 < m, the fact that G is

acyclic implies that @; = a; foralln <1, j £ m. We conclude that there exists a
letter o € ¥ such that ¢ (D) contains a node labeled ¢ which is a properidescen-
dant of another node labeled a. Thus any derivation for the cut C(D)‘ must
involve some step where a replaced by @. Thus there exists 1 <1 < k such that

iden (wy) = iden (w;,) and hence D is not elementary. =

bt A
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in the remainder of this paper, we present several undecidability results
for problems concerned with ambiguity in APDOS systems. The first two results
will utilize reductions to some form of the following problem, a variant of the
“two way' Post Correspondence Problermn which is defined and proven undecid-

able in [GRE].

Definition. The K-substifution problem is defined as follows. Givenn, k € N,
a finite alphabet £ and a substitution $:{1, .. n}*»>P(E") such that
card (S{i)) =k for all 1 <4 =n, does there exist a word w € {1, ..., n}* such
that card(S{w)) <k!™!? Such a word w is called a solution to the given k-

substitution problem.
Proposition 1.3. The 2-substitution problem is undecidable.

Proof. The 2-substitution problem ig obvicusly equivalent to the two-way
correspondence problem defined in [GRE] if we restrict our attention to
w el ...,n}". On the other hand, if w =x then S(w)={A{, and thus
card (S(w)) =1 = 2wl Hence A is never a solution to the 2-substitution prob-
lem and can safely be ignored. Thus the result follows from the undecidability of

the two-way correspondence problem, established in [GRE], =

It is obvious that given a single word, or a finite set of words, we can decide
if any of these words are ambiguous in a given APDOS systemn, However this is
not the case if we are given an arbitrary regular set, as is shown in our next

theorem.

Theorem 1.4, It is undecidable whether or not there exists a word in a given

regular set ¥ which is ambiguous in a given APDOS system.
Proaf. We will transform an instance of the 2-substitufion problem into an
equivalent instance of the above problem. Assume that 5 : {1, ..., n{*>P(L*) is

an instance of the 2-substitution problem with S(i) = {z;, yyi forall 1=d < n.

e T
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Let the alphabets A4 ={a), .., a,}, B ={b, ..., b,} and N ={1, .., n} be
given such that 4, B, N and ¥ are pairwise disjoint. Let A=A \J B {J N |J % and
leta=a; - a,b; by
Let f, g : (2UN)*+A* be the homomorphisms defined by

J{a)=oaa and

g{a)=aafora € LN,
Let h . A»A* be defined by

h(a)=0; - apby - byg(@)ia; - - o and

h(b)=b; - bugy)a, - o,b, - byforall=<is=n, and

h{c)=rc forc € L{N. |
Obviously h is propagating and acyclic. Let & be the APDOS system <A, b, a>
and let R be the regular set (aZf)*a(Na)*. We claim that there exists
z € RNL(G) such that z is ambiguous in & if and only if there exists w € N*
such that card(S(w)) < 2!®! When this claim is established, our result will fol-

low directly, using Proposition 1.3,

Examining the system G it is apparent that given a word = = pag, where
P. g €A% any of the words in {pf(z;)ag (7)q, pf (y;)eg(f)g : 1 = j =n}i can be
derived from 7 in one step. To derive the word pf (z;)ag (7)g we replace the a;

in the substring o of pag and to derive pf (y;)ag (j)g we replace b;.

Let D = <wy, ..., w, > be an elementary derivation in G of a word w, € R.
We claim that for each i:1=4 <k, there exist w;' € (aZ)* w" e (Na)*
o'y 0" € (AUB)* and ¢; € A{JFB such that o = oy'cye" and wy = wy' o 'Troq " w;".

Since iden {w,) = a, the claim is true for i = 1.

Assume that the claim holds for some 4 <k ~1. Hence iden (w;,,) € . Let
us say that given any word » € &, the "middle «" of r is that occurrence of o in
7 such that 7 = ryarg where 7, € (aZ)* and rp € (Na)*. Since D is elementary,

in any step of D a letter from A\ JF is rewritten. If any letter in any occurrence

vou
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of o which is not the middle « of iden(w;,,) is rewritten, the result is a word
which has a letter from N occurring before a letter from L. It is impossible to
derive a word in £ from such a word, hence it must be the case that the barred
letter in w;,, occurs in the middle «. Thus by induction on 4, our claim holds for

alli 1= <k,

it follows from the above observations that for each elementary derivation
Din G of awordin R, there exists k =0, z,, ..., 2, €5* 4, ..., % € N such that
iden (D) = <o, fz)ag @), ..., f(z; - 2)og(E - 1,)> where 2, € S{i;) for
all 1=j=<k. Hence LIG)NR = {f(x)ag(w®)  we N* z €2* and z ¢ S{w)i

using lemma 1.1

Now, let us assume that we are given w such that card(S{w)) <z!¥!
Hence there exist &k >0, 1y, ....% € N and 2z, 1y, ..., ¥, vy, ..., Up € L* such that
fyrc oy TW, 2 E Uy Uy Y where fwpud CS(d;) for all 17 <k
and u; # vy for at least one 1 = j < k.

Consider the word t = f(2)ag(wf) e R, We can find
Qg .o g1, Ag', .., Oy Where iden(oy) =iden(o;) =aforeall0<i =<k—1and

Dy = <ag, fudeag (@), . F{uy W) 0 g (1 0 ), £> and

Dp = <og', f(we'g (@), o Fwr o U)oy g (g - 10), £>
are elementary derivations of £ in &. Let § be the smallest integer such that
u; #v;. Hencec(i, D) =c(i, D) fori<yj, butc(j+1, D)) # c(§+1, D). Since
all further replacements in either derivation occur in descendants of the middle
a's introduced in the j™ step, it is apparent that c(i, D) # ¢ (i, Dy) for all
j+l=<i<k+1l Hence c{D;)# c{D;). Since both derivations are elementary, ¢

is ambiguous in & by lemma 1.2.

On the other hand, let us assume that there exists t € (\L{G) such that ¢
is ambiguous in &. Then by the above observations we can find k > 0, uy, ..., Ug,

Vi . Yy €5, 4, ..., 4% € N and elementary derivations D, and D, as given above

JoU
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such that for some i, 04 < k-1, o # o;'. This implies that wg,; # v;,, since a
different letter is replaced at this point in the derivation. Thus since
fuj v;} ©S() forall 1<j <k, 4, -1 is a solution to the 2-substitution prob-

lem. This establishes cur claim, and completes the proof. =

In [ER3] it was shown that by using DOS languages, along with the opera-
tions of intersection and weak identity, oﬁe obtains a hierarchy of classes of
languages, at the bottom of which is the class of images of DOS languages under
weak identity mappings and at the top of which is the class of recursively enu-
merable languages. Hence it is natural to consider the "ambiguities” created by
the application of a weak identity to the words of a DOS system. We will show
that for an arbitrary APDOS system G and weak identity ¢, it is undecidable in
general whether or not there exist distinet words w;,w, € L{F) such that
@(w,) = p(wg). To do this, we will need a slightly sitronger result concerning the
undecidability of the 2-substitution problem.

Definition. An  instance of the R-substitution problem  with
S0l L, nl*PEY) is  exfension-free  if  S{w) ) S(wz)=¢ and

S{w) M S{zw) = ¢toranyw € L*and xz € I+,

Lemma 1.5, The R2-substitution problem is undecidable in. general for

extension-free instances,

Proof. We need only verify that Greibach's encoding of the Post Correspon~
dence Problem in the proof of the undecidability of the "two way" correspon-
dence problem in [GRE] always yields an extension-free instance of the 2-
substitution problem. This encoding, given as a 2-substitution problem, can be

given as follows,

Let P =<z, y,>,.. <z, ¥,> be an instance of the Post Correspondence
Problem with words from L* and let "«", "#" and "&" be letters not appearing in

L Let f,g:¥*-(Z U {#)* be homomorphisms given by f(a)=a% and

- O
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gla) = xa. Let S: {1, .., 4n] > P({Z (U I+ &, #])*) be the 2-substitution given
by
S(i) =1g(=m) Fly) 3,

S +mn) = xdyg(z:), *&f (y:) 3,
St +Rn) = {g(z) s+ Fy)f ) and
S +3n) =§ w&g(z) s %, x&xf (g )+ fori:1<i<n.

Greibach's arguments show that the R-substitution problem for S has a
non-null solution if and only if £ has a solution. Since there is never a null solu-
tion to the 2-substitution problem (see the proof of Proposition 1.3), we need
only show that S(w) N S(wz), S(w) N S(zw) # ¢ for any w € {1,...,4n}* and
z € {1,..,4n{" (irrespective of F). Let us fix P arbitrarily as above and assume
that S{w) M S(wz) #¢ for some w,z as above. Let w =i, -4 and
Z =gy 0y where 1<=i;=<4n for 1<p=<l. Then there exist

B Uppe Uy Vg o, Yy sUCh that 2 =y oy, =, 0

‘) vy, where wy, € S{ds)

for l=7 <k and vy, € S(i;) for 1= j =1 . We may assume that the length of w is
chosen as small as possible, and thus k is as small as possible. Clearly, w cannot
be null, so k£ > 0. Since k is minimal, u , # vi,. By examnining 5, it is clear that
this implies that n+1 <4, < 2n or 3n+1 <4, < 4n. In the latter case however,
the "#" symbols must appear aligned in u;, and vy, forcing these words to be
equal. Thus n+1 <, < 2n, which implies that Wix] = v, | = 1 mod 2. Hence it
is not possible thati; = n for all® < j < [, because both words in S (i;) have even
length for any i; = n. Hence there must either be a first occurrence of the sym-
bol "#", or a second occurrence of the symbol "&" (counting from the left) in 2.
Let i; be the index in ug, g, where the first (leftmost) of these events
“oceurs. If the first event is a second occurrence of "&" in Uiy then because the
second "&'"'s must be aligned in Uy, 0wy and vy 00 v, 1t is clear by examin-

ing 5 that we must have w; -y,

e T
g -1 ®

L Vi contradicting the minimality

LouU
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of £. Similarly, if the first of the above events is an occurrence of "#"' in Uy

then 2y - wy =v; -

. o g again contradicling our assumption. Thus
S(w) N S(wz) = ¢. Assuming S(w) N S(zw) # ¢, the argument is similar, due
to the symmmetry in §. =

Theorem 1.6. Given an APDOS system  and a weak identity g, it is undecid-
able whether or not there exist distinet words w,w; € L{G) such that
p(wi) = p(wy).

Froaf. We will transform an extension-free instance of the 2-substitution
problem into an equivalent instance of the above problem. Let
n,S, A B, N L A« and x;, y; for all 1<i<mn be as given in the proof of
Theorem 1.4

Let h : A»A* be defined by
higy =ay -+ a,b, - byzaie, - g and
h(by) =b, - byyseda, - ayby 0 by fori: 1<4i<n, and
hic) =c forc € NI,
Obviously k is propagating and acyclic. Let & be the APDOS system <A, A, o>.
Let ¢ : A= (N be the weak identity defined by
gla) =Aifa c AUB
¢{a) = a otherwise.
We claim that there exist w,, wy € L(G) such that w, # w, but p(w,) = ¢lwy) if

and only if there exists w € N* such that card (S {(w)) < 2%, When this claim is

established, our result will follow directly, using Lermnma 1.5.

Let & be the alphabet {(;, );. [, i : 1 =i =n{ and let 7 be the semi-Dyck
language generated from the context free grammar <@{S{, @, p, S> where
p =S SkS|SkS  1=si=n] U S-AL

Let f, g : @*~A* be the homomorphisms defined by

[sIReIRY)
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S = oz, FUL) = ay,.

FO)=f(})=edfori:1<i=<n and

g(l)=zon g( i) = ma,

g()%)=9g{})=iafori:1=i=<n.
We will establish that L{G) = f (7« First, observe that a = f (\)a € L{G). Now,
assume that f{(wwg)a = f(w))og (we) € L(G), where wyw, € T. This implies

that P = {f (w)expiag (wy), f(woygaiog(wy) @ 1=i<n] = {f (w ;) w)e,

the alphabet £, it is easily established by induction that f (T)a € L{G).

On the other hand, it is clear that «, the axiom of G, is in f(T)a. Now
assume that w € L{G) is also an element of f{7)a. For any w' derived from w
in one step we can find w;, wp€ §* such that w'= f{w)ag(w) and
w' € P Jtw] where P is as above. Hence L(G) ¢ f(T)o. Thus L(G) = f(T)e.

Now let us assume that there exists w € N such that cerd(S{w)) < 2/»!,
Hence there exists & > 0,4y, ..., % € Nand 2z, u,, ..., 4, v, ..., v € 5* such that

iy d =w, 2 =g =Y v where fuy, v ©S(F) for all 17 <k

Since L(G) = f{(Ta, w, = f( Gy (iy i) = cug - ool - - ol
and we = F ([, [o ks, hJa=av, o owpadp - - adia are both in L(G).
Since u; # v; for some 1 <4 <k, w; # wy. However, since w, - - U =vU; - - Vg,
w(w,) = p{wg). Thus the "if" part of our claim is established.

New assume thal there exist w, and w; € L(G) such that w; # wp but
@(w,) = p(wy). Choose w, and w, such that the minimum of |w,| and |w,| is as
- small as possible. Since L(G) = f(T)a, w; # wg and p(w,) = p(wy), we can find
g=l k=2qg m=0, 74, ... 0m. %1, ... % €N, Ug, ooy Ui, Vo oon, Uy € LF and

Py, Pe € A* such that

Vol
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W, E Py o el a0y W, o and

Wy = PplUyg ** ~ Uy~ &0 & (or vice versa) where
(i) fori {1, 2} either p; = A or p; ends with a letter from N and
(i) 4, € S@G) forl 1<l <k andw, € S(4) forl g <l <k,

Since ¢(w,) = ¢{wy), (i) implies that 1w, - 1y = Vg -+ U and
¢(P1) = ¢(p2). Thus because S is extension-free, we must have g = 1. If u; = v
for all 1 =4 =k then we must have p; # pp. However, then since L(G) = f (T)a,
Wy =piady o aip o and wy' = peatdy - ¢ - afpa are both in L(G). This would
imply that w;" and wp' are words shorter than w,; and w; with w;" # wy but
p(w,) = p(wy), contradicting our assumption of the minimality of the lesser of
|w;| and |wg|. Hence there exists 1 <7 <k where u; # vy, Using (il) with

Jiy 4

g = 1, this implies that card(S(i, ))<=z "I, which establishes the

"only if" part of our claim, and completes the proof. =

In defining our notion of ambiguity in DOS systems, we have restricted our
attention to words represented by distinct cuts in the D-forest of the system. A
natural refinement of his notion of ambiguity is to insist that the cuts be com-
pletely distinct, in that they do not share the same node for any letter in the

word,

Definition. Given a DOS system G, a word w € L(G') is strongly ambiguous
in G if and only if there exist distinet minimal cuts ¢; and ¢y for w such that for
each letter of w, the node for this letter in ¢, is distinct from the node for this
letter in c, A DOS system is strongly ambiguous if its language contains a

strongly ambiguous word.

We show that strong ambiguity is an undecidable property of APDOS Sys-
tems. In obtaining this result, we will use the undecidability of the ernptiness of

intersection problem for cofunctional DOS systems, demonstrated in [ERI]‘.

Uou
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Definition. Two DOS systems G, = <Z;, by, w;> and Gy = <Zy, hy, wy> are
cofunctional if and only if 2, = 2y and h, = hg,
Lemma 1.7. The emptiness of intersection problermn is undecidable for

cofunctional APDOS éystemsv

FPragf. This follows directly from the reasoning in [ER1] since all the DOS

systems used there are in fact APDOS systems, =

Theorem 1.4 It is undecidable whether or not a given APDOS system is

strongly ambiguous.

Proaf. Let {7, = <X, h,‘ wy> and Gg = <X, A, we> be two cofunctional APDOS
systems. Let A ={e,b,¢c} be a new alphabet such that INA=¢. Let
J i (BU4)» (ZUd)* be defined by f(b)=b, fa) =abwb, fc) = bwsbe and
J(d) = h(d) for any d € & Obviously f is propagating and acyclic.

Let ¢ be the APDOS system <Z(JA, [, ac>.
We cla:im that there exists a word w € (&) which is strongly ambiguous in G if
and only if L(G,)\L(Gz) # ¢. Establishing this claim, our result follows directly

from lemma 1.7.

First, suppose that there exists w € L(G))ML(Gz). Then we can find

w)' €idenHw,), wy €idenHw,) D, = <ac, ebw'be, ..., cbwbc>  and

Dy = <at, abwy'be, ..., ebwhe > such that D, and D; are two distinet derivations

of abwbe in G where € never appears in G; and @ never appears in Gy This

implies that the set of nodes appearing in ¢ (D)) is disjoint from the set of nodes
appearing in ¢ (D), which establishes the "if” part of our claim.

On the other hand assume that there exists a word w which is strongly

ambiguous in G. It is readily verified that L{G) C a(bZ*b)*c, thus we can find

| k €N and u,, ..., uy €Z% such that w = abu;b - - bugbe. In any derivation of

w, the subwords of the form bX*h must be created by first rewriting the letter

a or the letter ¢ and then rewriting letters from ¥ zero or more times. Thus in

oL

cu



19

any derivation of w, the total number of times the letter o or the letter ¢ is
rewritten is k. In deriving an instance of w with any given minimal cut ¢, we
may assume that in the derivation all replacements of @ appear before replace-
ments of ¢ which in turn appear before all replacements of letters in ¥ and no

replacements of & with & occur. Since w is strongly ambiguous, we must have
k>0,

Let

Dy = <gvie, ..., Guge, ax, ..., ax;0, ay,c, ..., ayyc > and

Dy =<avyc, - ay'c, ax,'c, ..., 0z, 'C, ay'c, ..., ay,'c>
be two derivations of w in the style described above, such that the first node of
e (D)) is distinct from the first node of ¢ (D,). Hence i # {. Without loss of gen-
erality, we may assume that i <l <k. This implies that in D;, the substring u;,,
is derived from the word w; using replacements given by h and in D, u;yy i
derived [romn w; using replacements given by h. Thus L{(G)ML(Gg) # ¢. This
establishes the "only if" part of our claim, and completes the proof. ®

Since the class of APDOS systems is contained within the class of DOS sys-

tems, the following is an immediate corollary of Theorems 1.4, 1.6 and 1.8,

Coraliary 1.9. The following problems are undecidable for an arbitrary DOS

system G.

1. Is there a word in an arbitrary regular language which is ambiguous in

G?

2. Are there two distinet words w, and wg in L(G) such that ¢(w,) = g(ws)

for an arbitrary weak identity ¢?
3. Is G strongly ambiguous? =

In view of these results, it would be somewhat surprising if there were an

algorithm to decide whether or not an arbitrary DOS system is ambiguous. How-

« OuU
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ever, we have not been able to show that no such algorithm exists, hence this

remains the primary open problem in this area.
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