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ABSTRACT

Given a finite alphabet ¥ and a set of words S C X%, I is the relation on Z*
defined by z /gy if and only if there exist z;,z, ¢ X* and w ¢ 5 such that
z = x,2 and y = z,wzs. The partial order =g on £* is defined as the reflexive
transitive closure of /g. In the special case where S = I, <g is the subsequence
relation on X* Higman has shown that <y is a well partial order on Z* for any
finite alphabet £. We generalize this result by showing that for arbitrary S C I+,
<g is a well partial order on £* if and only if there exists a kg such that for each
word z & 2* of length greater than kg there exist z,,z, ¢ * and w ¢ S such that

T = Z W,



INTRODUCTION

Graham Higman's paper [Hig, 58] contains the following corollary. If we let
2* be the free monoid generated by the finite alphabet £ and let < be the subse-
quence relation on I* ie, for z,y eXL* z <y if and only if there exist
o, eX  and Uy, U, e n* such that z=ga; - --g, and
Y T UG UgLs U Op Uy, then < is a well partial order on £¥, that is, every set
of words in L* has a finite and nonempty subset of minimal words with respect to
<. This implies of course that any set of words in £* which is pairwise incompar-
able with respect to < is finite. This result has been rediscovered [HAI 69] and
generalized [KRU 80, 72], [LAU 78] repeatedly in the ensuing years as the theory

of well partial orders (or more generally, well quasi orders) has developed.

Let us define a more general class of partial orders on £* which includes the
subsequence relation. We begin by defining the relation of simple insertion as
follows. For any set § C¥* and z,y £ £* z is related to y by an insertion from
& if and only if z = z,2, and y = z,wz, for some z,,z; ¢ Z* and w ¢ S. For a
given set S, this relation is denoted /g. By taking the reflexive and transitive
closure of /g, we obtain a partial order on X* which we will denote <g. Thus

x =g y whenever y can be obtained from z by repeated insertions of words from

S,

Taking S to be ¥ we obtain the subsequence relation on Z*, hence <j is a
well partial order on £* This is not true for arbitrary S € £* For instance, if
welet 2=§( ), [,]3 and S =§(),[]} then z =g v if and only if ¥ is obtained
from z by inserting strings of well balanced parenthesis of type () and [] {with
arbitrary nesting) between the letters of z. (Here A, the empty string, is con-
sidered well balanced). It is easily verified that g is not a well partial order on
L* by observing that all of the strings in the set (* are pairwise incomparable

with respect to =g, On the other hand, ¥ is by no means the only set which
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defines a well partial order on £* via repeated insertion. If we let & = {a, b} and
S =taa, ab, ba, bb] then z <z y if and only if y is obtained from z by inserting
strings of even length between the letters of xz. In this case it is not hard to
show that <g is a well partial order on £* It is somewhat more difficult to show
that <g remains a well partial order on £* if we omit either the string ab or the

siring ba from 5.

In this paper we characterize those sets S C 2* such that <g is a well par-
tial order on L* The property which characterizes these sets is called "subword
unavoidability” and is defined as follows. A set S C T* — {A] is subword unavoid-
able in X* if and only if there exists a finite kg such that for each word y & L* of
length greater than kg, ¥ has a subword in 5, i.e. z /g v for some z ¢ 1* Since
2 is obviously subword unavoidable in £* Higman's result follows directly from

this characterization theorem.

This result can be used in conjunction with a result from [HAU1 B1] to show
that certain languages generated by repeated insertions are regular languages.
Let us say that a partial order < on 2* is monotone whenever z <z’ andy < y'
implies that zy < z'y'. Given any set T C ¥ and partial order <, we define the
closure of T under < as {w : z < w for some z ¢ T}, From the main theorem of
[HAU1 81] it follows that for any monotone well partial order = on I* and set
T C 2* the closure of 7 under < is a regular language. Since <g is a monotone
partial order for any S & Z*, the results of this paper imply that the closure of T
under =g is a regular language for any 7 C¥* and subword unavoidable
S cZ*—§{A. It is not difficult to show that the closure of any finite set of
nonempty words under =g will not be a regular language unless S is subword
unavoidable (see [HAUR B1]), hence the property of subword unavoidability can
be used to characterize those sets which generate regular langauges from finite

bases via repeated insertion.



BABSICS

Higman gives following definitions of a well quasi order (among others) and

proves them equivalent [HIG 52].

Definition: A quasi order is a reflexive and transitive relation, Given a quasi
order < on a set S, < is a well guasi order on S (or a well partial order if < is a
partial order) if and only if any of the following hold:

i) = is well founded on S, i.e., there exist no infinite strictly descending
sequences of elements in S, and each set of pairwise incomparable elements is
finite.

ii) For each infinite sequence {z;} of elements in S there exist i<j such that
Ty = x;.

iif) Each infinite sequence of elements in S contains an infinite ascending subse-
guence,

An obvious property of well quasi orders which will be useful later is the fol-
lowing.

Proposition 1. If <; is a well quasi order on the set 5 and < is an extension

of =; which is also a quasi order, then <, is a well quasi order on 5.

Definition. Given sets 5; and 5 and relations /; and Ky on 5, and S
respectively, the relation R;XFp on 5XS; is defined by <a,b> FxFy <c,d> if

and onlyifa B, ¢ and & Ky d.
Another easy consequence of the above definitions of a well quasi order is

the following proposition.

Proposition 2. Given sets §;, Sp and well quasi orders <; and <; on S, and
Sg respectively, the transitive closure of =, =<; is a well quasi order on 5;S»

and =,X<, is a well quasi order on §,x55.
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One of the earliest results of the theory of well quasi orders is the following,
apparently discovered independently by Higman, Neumann and Erdos and Rado

around 1950. (See note at the end of [Erd and Rad 52]).

Definition. For any set S, §<¥ is the set of finite sequences of elements of
S. Given a set S and a quasi order < on S, the ordering =¥ on S< is defined by
<sy, s> <F <ty g;> if and only if there exists a subsequence

<t; by, > of <Ey, -+ - f;> such that 55 < tij forl=j<k.

I
Proposition 3. 1f < is a well quasi order on .S then <% is a well quasi order on

5<w,

See [LAV 78] for a very short proof of this result.

Definition. Throughout this paper £* will denote the free monoid with null
word A generated by the finite alphabet X, Tt = X* —{A]. We will extend the
operation of concatenation to subsets of ¥* in the natural manner, for
S8 CZ* 5185 ={xy :z &£ S;and ¥ ¢ Sz}, In the case that one of the sets is a

gingleton, say S, = {z}, then 5,5, may be denoted zS.

Definition. A relation K on X* is monofone if and only if for all
zx' Yy el* xz Rz andy R y' implies thatzy R z'y'.

Lemma 1. Given §,,5; C ¥* and a monotone quasi order < on X% if =x< is a

well quasi order on S;xSp then < is a well quasi order on 5,55

Proof. Let {z;y;] be an infinite sequence of words in 5,5z where for all
i,z ¢S and y; ¢ S, Since X< is a well quasi order on §;xS,, we can find €,7
such that i <j and <z;¥;> <X< <z;,y;>, ie., 2; =z; and y; <y;. Since < is

monotone, this implies that z;y; < x;y;. Thus < is a well quasi order on 5,55.

Lemma 2. Given § C I* and a monotone quasi order < on * where A < z for

all z £ S, if =¥ is a well quasi order on S<“ then < is a well quasi order on S*.



-

Proof. Let {u;,' - ui.lc,;; be an infinite sequence of words in S* where
U, &S foralliandalln, 1<n <k, Since <% is a well quasi order on S<, we
can find 4,7 such that 4 <7 and <uy, - - Ui e, > <F <Ujp,c U Hence
there exists a subsequence <Ujpg, ,uj,;kf of <uyq, - U ey > such that
Uip Sujy  for l=n<k; Since A<z for all x¢&S5, this implies that
Uiy Uik T UL Uy by monotonicity. Hence = is a well quasi order on
S*,

Since the subsequence relation < on £* is monotone and for alla £ £, A = a,

the Higman result cited in the introduction can easily be derived from Proposi-

tion 3 using Lemma 2.



MAIN RESULT

In this section we define the partial orders on X* generated by repeated
insertion and characterize those insertion sets which generate well partial ord-

ers on &*

Definition. Given S C Xt and z,y ¢ Z* =z Isy if and only if there exist
z;,zpe8* and we S such that z =z,z; and ¥y = x,wr, <g denotes the
reflexive transitive closure of g, Forw,v & ¥* a derivation of v fromu by <g
is a finite sequence of words <z, ' 2> where k = 1 such that z; =u, 2, = v

and for 1 =1 <k, z; Ig Z;41.

Lemma 3. Given S C £ and u,v & 5*
i) <5 is a partial order and

ii) there exists a derivation of v from u by =g if and only if u <g v,
Proof. This is obvious.

Definition. Given a set S C £*, S is subword unavoidable in %* if and only if
there exists a kg such that for all words z £ £* longer than kg there exist
xy,xzg £ L% and w ¢ § such that z = z,wxs The smallest such kg is called the

subword avoidence bound for S.

Lemma 4. If § ¢ I* is subword unavoidable in &* with subword avoidance
bound kg then there exists a finite ' € S such that F is subword unavoidable in

* with subword aveidance bound kg,

Proof. let S ¢ Z* be subword unavoidable in ©* and kg be the subword
avoidance bound for S. Then any word of length ky+1 has a subword in S, and
this subword must have length ko+1 or less. Thus any word longer than kg has a
subword in the subset of S of words of length k¢+1 or less. Thus this set is sub-

word unavoidable in £* with subword avoidance bound k.
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Lemma 6. Given S C %, if S is not subword unavoidable in 2* then <g is not

a well partial order on Z*.

Proof. If S is not subword unavoidable in £* then there exists an infinite set
of words T C Z* such that for any = ¢ 7 there exist no z;,2z ¢ Z* and w £ S such
that z = z,wr, Hence for no z,y ¢ T can there be a derivation of y from z by
=g. Thus the words in 7 are pairwise incomparable under <g and hence <g is

not a well partial order on Z*,

Definition. For each § € &% let
SQ = S*

*

and Sp =] U Sp005p0p 0 Sum S,
@y g & SUA

Lemma 6. For any set S ¢ &' and » = 0,
i) ifuv & S, andw & S thenuwv & Sp 41,
it) if uw £ S,, where the number of letters in u is less than or equal to n, and
w g S then uwv & 5, and

iii) if S is finite then <g is a well partial order on S,,.
Proaf.
ad. (i). This is obvious.

ad. (ii). Here we use induction on n. If n = 0 then we need only consider
the case u = A and the statement follows from the fact that 5 = §* Now let us

assume that the statement holds for some n =0 If wweS,,, then

UV T WG Wally © 0 Wy OpWy g Where w8 Sy for 1<i=<k+1 and a; - g £ 5%
Hence for some i, l=disk+], W T Wy Wy Oy W and
v = w'ey o W OpWe s Where wy', w;" g L* and w;'w" = w;. For any w e S,

wy'ww;" € Spyp by part (i), Thus if 4 =1, then wwv e S,y Dbecause
0)Wg * ' OpWgeiy & Spy1 ad Spy; is closed under concatenation. On the other

hand, it is apparent that if 7 > 1 and « has at most n + 1 letters, w;' has at most
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n letters. Thus by the inductive hypothesis, for any w & 5, w;'ww;" £ .5,. But
this implies that vwv ¢ S,a, - - S, S, thus vwv &£ 5, ;. Thus the statement

holds for » +1 and the result follows by induction.

ad. (iii). Again we use induction on n. Since S is a finite set, <g is a well
| partial order on §. Hence by Proposition 3, <% is a well partial order on S<¢.
Now since =g is a monotone partial order on 2* and A< w forallw £ §, <g is a
well partial order on S* by Lemma 2 Thus the statement holds for the case
n = 0. Let us suppose this statement holds for some n = 0. Using Proposition 2
part (ii) and Lemma 1 we have that <g is a well partial order on Spa; - - S, S,
for any e, o gX* Furthermore, if o, - o &S U {M then for any
weSpar SpeySy, A<g w. Also, since S is finite, =g is a well partial order

on T, = ] Spty - S,y S, using Proposition 2 part (i). Thus using
al”‘(H ESUIM

Proposition 3, <§ is a well quasi order on 7,3% and hence by Lemma 2 <g is a well

partial order on T¥. Furthermore, A<z for all z £ T} Since T = S, we

have shown that the statement holds for n+1. The result follows by induction.
Definition, Given S C L', foreachn ¢ N

let H(Sn) = \, Sn@1Sn s Spay Sy,

Q.G £X, k=R

Lemma 7, For any S C &%,

(i) if S is finite then <g is a well partial order on R(S,) for all n,
(ii) {2 (S,)} is an ascending sequence of sets such that £* = C} R(S,) and
n=1

(iii) If S is subword unavoidable in L* and kg is the subword avoidance bound for
S, then¥* = R(S; ).
Proaf.

ad. (i). This follows from Proposition 2 and Lemma 1 using Lemma 6 part

(iii).



ad, (ii). This is obvious.
ad. (iii). Assume to the contrary that &% — R(S,) # ¢. Let z be among the
shortest words in I* — R(S; ). Since F(S;) contains all words of length k4 or

less, z must be longer than kg letters. Since kg is the subword avoidance bound
for 5, we can find among the first kg+1 letters of z a subword in S. Thus

z = vwv where w & S and u has kg or fewer letters. Since z was of minimal

length, uv & R(S,co), Hence ww =wa; - - wpopwy,, where g, ¢ 2 for 1=<i<k
and w; &5, for 1=i=<k+l  Find 4 such that w=wa, - w/
U= Wty W Wy and  wy'wy" =w;. Now by Lemma 6 part (ii)

wy'wey' g S,cg, since the number of letters in w;' is less than or equal to kq.

Hence z = wawwv isin R(Sko) contrary to hypothesis,

Theorem 1. Given a set § C X* =g is a well partial order on Z* if and only if

S — {A} is subword unavoidable in Z*,

FProof. Obviously <s5_y = <g. Thus by Lemma 5, if <5 is a well partial order
on X* then S — {A} is subword unavoidable in £* On the other hand, given any
S < Z* which is subword unavoidable in £* with subword avoidance bound kg, by
Lemma 4 there exists a finite 7 € S such that F is subword unavoidable in Z*
with subword avoidance bound kg . By Lemma 7 parts (i) and (iii), <z is a well

partial order on R(cmo) = ¥* Thus since =5 is an extension of <z, <¢ is a well

partial order on £* by Proposition 1.
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