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Abstract

A well-known problem in scheduling theory is to execute n
unit-length jobs subject to precedence constraints on two processors
in minimum finish time. Previous algorithms begin by finding the
transitive closure of the precedence dag, and so use time

2‘61)). An O(etna(n)) algorithm is presented. It is based

O(min(en,n
on the idea of a "highest-level-first" (HLF) schedule. Such a
schedule always executes nodes on the longest paths of the
precedence dag. An HLF schedule is guaranteed to be optimum, and can

be constructed efficiently.



1. Introduction

A classic problem in scheduling theory is to find a minimum
makespan, nonpreemptive schedule for a collection of unit length jobs
subject to precedence constraints [C]. In other words, we are given
n jobs to be executed on m processors. Each job requires exactly one
unit of execution time and can run on any processor. A directed
acyclic graph (dag) specifies the precedence constraints: an edge from
X to y means job x must be completed before job y begins. A schedule
with the smallest overall finish time is sought. (In a more succinct
notation, this problem is P/prec, pj = 1/Cmax [GLLRK]).

When the number of processors m is arbitrary, this problem is
NP-complete [U]. For any fixed m = 3, the complexity is open [GJ1].
Here we study the tractable case m = 2.

For two processors a number of efficient algorithms have been
given. A common aspect of these algorithms is that they require the
dag to be transitively closed (or in one case, transitively reduced).
Otherwise the dag must be put into transitively closed form (or
transitively reduced form). The best known algorithms for this use

time O(min(en,n2'61))

, Where e is the number of edges of the dag.
(The transitive closure can be computed in time O(en) by n depth-first
searches. Alternatively it can be reduced to matrix multiplication
[AHU], which is O(n2‘61) [P]1. The transitive reduction requires
basically the same time [AGU].) As we see below, this first step
of putting the dag into a specialized form dominates the run time.

The two-processor algorithm of Fujii, Kasami and Ninomiya [FKN]

is based on matching techniques. Excluding transitive closure time,

it requires the time to find a maximum matching, which in this case



is O(n2‘5) [MV,K]. Coffman and Graham [CG] give another algorithm
based on a lexicographic numbering scheme. It works on a transitively
closed or transitively reduced dag. Sethi [S] shows that the lexicographic
numbering can be done in time O(e+ncx(n)).* Garey and Johnson [GJ2] give
a third algorithm, that allows individual job deadlines in addition to
precedence constraints. It can be used to solve our problem. The |
algorithm uses time O(n2) to compute "modified deadlines." It works
on a transitively closed dag.

Time bounds for these algorithms often assume that the transitive
closure of the dag (or transitive reduction) is given. In practice this
is unlikely. On general dags the transitive closure step dominates, and

2.61)) (O(n2‘61

the algorithms use time O(min(en,n ) for [FKN]).

We present an algorithm that does not use the transitive closure
and runs in time O(e+no (n)) on an arbitrary dag. It is based on the
idea of a "highest-Tevel-first" (HLF) schedule. Such a schedule always
executes nodes on the longest paths of the dag. An HLF schedule is
guaranteed to be optimum, and can be constructed efficiently.

Section 2 gives a precise definition of an HLF schedule. Section
3 gives the algorithm and its analysis. Section 4 briefly discusses

applications of the algorithm to other scheduling problems.

* a(n) is an inverse of Ackermann's function and is very slow-growing. [T]



2. HLF Schedules

This section gives some basic terminology and introduces the notion
of HLF schedules.

A scheduling problem is defined by a dag (directed acyclic graph).
n and e denote the number of nodes and edges, respectively. If there

is an edge from node x to node y, then x is an immediate predecessor

of y and we write x » y; if there is a directed path (of 0 or more edges)
from x to y, then x is a predecessor of y, y is a successor of x and we
write 5ﬁ§ﬁz, A dag can be partitioned into levels i, L =1 = 1: TJevel i
consists of all nodes x that start paths with i nodes but not paths with
i + 1 nodes; we write Tevel(x) = i. L denotes the highest level of the
dag. Figure 1 gives an example dag.

A (two-processor) schedule is an assignment of the nodes of the

dag to time units 1, 2, ..., w, SO that each node is assigned to exactly
one time unit, at most two nodes are assigned to the same time unit, and
x >y implies x is assigned to a Tower time unit than y. The

schedule executes (or schedules) node x during time unit i if

x is assigned to i. w is the finish time or makespan of the schedule.

An optimum schedule minimizes w. Such a schedule has the fewest possible

number of idle time units, i.e., time units assigned only one node.

Figure 1 gives a schedule as a Gantt chart (the 1th column shows the

nodes executed in time unit i).

We define HLF schedules in two steps. First, a level schedule

"executes levels" in the order L, L-1, ..., 1 (recall L is the highest
Tevel). More precisely, suppose levels L, ..., i+l have already been
executed, and level i contains u unexecuted nodes. Then level i is

executed in the next f%]time units, as follows: The first k%j units



each execute two nodes of i. If u is even this completes the execution
df level i. Otherwise u is odd, and the[ %]nd unit executes the last
node x of i, and possibly (but not necessarily) a node y of a lower
level. This completes the execution of Tevel i. Figure 1 shows a
level schedule.

It is convenient to introduce some auxiliary terms for level
schedules. If for a level i, the above quantity u is odd, then i is
a 1-level. 1In this case (x,y), the ordered pair formed from the two
nodes executed in the last time unit for i, is a jump. (Note
Tevel(x) = 1 and Tevel(y) < i.) We say the jump goes from x to y.
(Alternatively, the jump goes from level(x) to Tevel(y), or level(x)
Jumps y.) Note that since there can be jumps to level i, the number
u can be less than the number of nodes originally on level 1.

In case i is a 1-level and the node y does not exist (i.e., the
{%]nd time unit executes only a node x on level i), then y is taken
to be a dummy node 0. So (x,0) is the jump from i. Node O is on a
fictitious Tevel 0. As such it is below all other nodes. By convention
a level schedule can make an arbitrary number of jumps to node 0.

An optimum schedule that is Tlevel always exists. This is a
consequence of the fact that the Coffman-Graham algorithm produces such a
schedule [CG]. Alternatively one can prove this directly by trans-
forming an arbitrary optimum schedule to be level. For example, suppose
in some optimum schedule, for i =1, 2, Xy is scheduled with yi, where
X is a node on the highest level L but Y; is not. Then X and X, can
be scheduled together. ¥y and Yoo and other nodes, can each be scheduled
with a successor of x, or x,. The basic principle is that if

1 2
*)
Tevel(x) > Tevel(y) and x # y, then x has a successor z on



Tevel(y), z # y; z and y can be scheduled together. Proceeding this

1 and x2.

Repeating this transformation gives an optimum, level schedule. Details

way we get an optimum schedule that begins by executing x

of this proof are in [G1].

Loosely speaking, we wish to define an HLF schedule as a level
schedule that always jumps to the highest level possible. This seems
like a desirable characteristic, since it is consistent with the
critical path heuristic, i.e., always execute nodes on the longest
path of the dag. This heuristic guarantees an optimum schedule when
there are m processors and the dag is a tree [H].

To give a rigorous definition of HLF, first consider an arbitrary
level schedule. Let the 1-levels be fl > fze.. > fk, and let Tevel
fi Jjump to level ti (recall ti = 0 if no real node is jumped from fi)'

The jump sequence of the schedule is the ordered k-tuple (t .t

1,t2,.. k).

The jump sequence for Figure 1 is (6,3,3,2,1). Note the levels fi can

be deduced from the jump sequence and the dag (a level f is a 1-level
if the number of nodes on f, minus the number of occurrences of f in
the jump sequence, is odd.) Note also the jump sequence determines w.
(The number of 0's in the jump sequence is the number of idle time
units.)

Jump sequences are compared using lexicographic order. Thus
(tl,...,tk) > (Sl”"’sr) if for some j, 1 < j < min(k,r), t, = 5.
for 1 <1 < j and tj > Sj' (Note that Texicographic order allows the
possibility that (tl""’tk) > (Sl""’sr) if t. = s, for 1 <1 < r and

k > r. However this cannot occur with jump sequences: If ti =S,

for 1 <i < v, then k = r and (tl"“"tk) = (Sl”"’sr)')



Now define a highest-Tevel-first (HLF) schedule as a level schedule

whose jump sequence is as large as possible. Such a schedule always
jumps to the highest Tevel possible; when there is a choice of nodes
to jump on that level, it jumps the node that allows subsequent jumps
to be highest. Figure 1 shows an HLF schedule.

Any HLF schedule is optimum. This is proved in Section 3 in the
analysis of the algorithm. However to motivate the algorithm, we
indicate here why HLF schedules are optimum.

First, this fact can be proved directly, by transforming an
arbitrary optimum level schedule to be HLF. This elaborates on the
transformation mentioned above, of an optimum schedule to a level
schedule. Details are in [G1].

Second, we can make a simple plausibility argument. Suppose
f is a 1-level that can conceivably jump nodes Yiseee oYy Then each
y; can be jumped from any 1-level g, f =g > 1eve1(y1). If f jumps
the highest Yy it preserves the greatest number of other nodes yj for
lower 1-levels g. For example, suppose f can jump Yy and Yoo where
1eve1(y1) > 1eve7(y2). Jumping y, from f allows a Tevel g, g > Teve}(yz),
to jump Yo On the other hand, jumping Yo from f destroys this option.
Since a 1-level g with level(yl) > g cannot jump Y1 this choice may
lead to a sub-optimum schedule. Figure 1 illustrates this: Level 7 can
jump nodes 15 and 10. Jumping node 10, which is not the highest, forces
levels 6 and 5 to have idle jumps, giving a sub-optimum schedule.

This reasoning also shows that when there is a choice of nodes
to jump on the highest level, the choice should be made so subsequent

jumps can be highest. In other words, the schedule should be HLF.



Before moving on to the algorithm, note that our remarks on level
and HLF schedules apply only to two-processor scheduling. For three or
more processors there are dags that admit no optimum, Tevel schedule.
Consequently it is not clear how the notion of an HLF schedule can be

generalized. We return to this issue in Section 4.



3. The Algorithm

This section presents an algorithm that finds an optimum, HLF
schedule, in time O(etna (n)).

We begin with some informal reasoning. The difficulty in
constructing an HLF schedule arises when there is a choice of nodes to
Jump. For instance in Figure 1, level 4 can jump a number of nodes on
level 3, e.g., 6, 7, 9 and 10. In general terms, suppose that the
highest level some 1-level f can jump to is t. If a number of nodes
on t can be jumped, which one should be chosen? The HLF definition
implies the choice should be made to allow subsequent jumps to be
highest. So consider a subsequent jump, from a 1-Tevel g, g < f. We
first claim that, surprisingly, the choice of node for f has no affect
on the jump from g, if g > t.

To see this, suppose that Tevel f can jump any of the nodes
YooYy on level t; further?choosing ¥y makes some Tevel s the highest
Tevel that g can jump to. If s > t, it is clear that g can jump to
S when any arbitrary Yy is chosen. If s = t, choosing Yi instead of Yy
makes Y1 available, and again g can jump to s. Finally suppose s < t.
g cannot jump to any level above s, so g cannot jump to t. This implies
node Y; must have been jumped from a level above g, for 1 < i < k.
Clearly the levels above g will jump all nodes Yis regardless of the
choice Y1 for f. So in all cases, the choice of node to jump for f
has no affect on g, for g > t.

Thus the highest level affected by f's jump to t is t itself.

The HLF definition implies that f should jump a node on t that allows

t's jump to be as high as possible.
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To understand what this means, observe that the nodes on t (or on
any level) are of two types: those that must be Jumped, called

1

"non-free," and those that need not be jumped, called "free." In
Figure 1, node 10 is non-free; node 9 is free, since level 4 can Jjump
node 6 (or 7) instead of 9. (A rigorous definition of "free" is given
below.)

The jump from Tlevel t can conceivably be made from any free node
of t. So to insure that the jump from t is as high as possible, there is
a simple choice rule: Level f should not jump the free node on t that
is in the highest jump from t. For example in Figure 1, for f = 4,

t = 3, node 6 should not be jumped: it can jump to (node 5 of) level 2,
while the other free nodes of level 3 cannot jump to level 2. (Recall
node 10 is non-free.) This single rule guarantees an HLF schedule!

Now we can describea two-pass procedure that finds an HLF schedule.
Pass I computes the jump from each 1-level f, for f =1L, ..., 1: It
finds the highest Tevel t that f can jump to. If level t has several
nodes that can be jumped, it guesses one arbitrarily. The guesses may
be incorrect (i.e., they may violate the above choice rule.) However
they allow Pass I to keep track of the non-free and free nodes. Pass I
always finds the best jump from a free node x of f. Pass II alters the
schedule so that free nodes x that were incorrectly jumped do not get
Jjumped.

This approach has a (very slight) drawback in terms of efficiency.
The difficulty is in finding the highest level t to jump to. t changes
arbitrarily with successive 1-Tevels. The priority queues of [E] can
be used to find t. This gives an O(e+nlog logn) algorithm. This

algorithm finds use in some related problems [G2].
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For greater efficiency the computation can be restructured. Pass I
computes the jumps to level t, for t =L, ..., 1: For each node y
on level t, it finds the highest 1-Tevel f that has not been assigned
a jump but can jump to y. It guesses that f jumps to y. As above,
Pass T keeps track of the non-free and free nodes, and always computes
jumps from free nodes. Pass II fixes bad guesses.

This second approach has the advantage of a simpler "highest
Tevel" computation. The first approach computes the highest level t
to jump to; a given t may be highest at various, arbitrary times. The
second approach computes the highest 1-Tevel f to jump from; a given
f is highest only once. (After its jump has been found, level f is
no Tonger a candidate.) This allows the use of set merging techniques,
giving an O(etna (n)) algorithm.

It remains to give some details about how Pass I computes free
nodes and how Pass II fixes bad guesses. In Pass I consider a level t.
Let the 1-Tevels that jump to t be fl > f2 > ... > fk. Choose r maximum,
0 < r <k, so that the set of nodes on level t that are jumped from
fl, ey fr cannot change (i.e., although it may be possible to vary
f

1° " Tp

must jump a fixed set of r nodes on Tevel t.) If r < k, then it is not

the node jumped from a particular fi’ i< r, the Tevels f

hard to see that there is a choice of node to jump for each fi, i>r.
More precisely, the nodes on t jumped from fr+1’ cees fk are chosen
from a set of more than k-r nodes; furthermore any node in that set
need not be jumped. Thus the nodes jumped from fl’ cees fr are the
non-free nodes of level t, and the remaining nodes are free.

Pass I computes the non-free nodes by finding the Tevels

fl, cees fr‘ Note the jumps that Pass I guesses for these levels



-12-

do not change in Pass II. Pass I guesses the jumps for levels

f s fk in a way that makes it particularly easy for Pass II to

r+l1° 7
fix bad guesses: It chooses a node z on level t that can be jumped

from f .., and guesses jumps so z is not jumped. (This can be done by

r+l
the definition of fr)' Note that any level fi’ r<i =<k, can jump z.
Now suppose it turns out that Pass I makes a bad guess. In other words,
the best jump from t is (x,y), and Pass I guesses that some level fos

r < i<k, jumps node x. Pass II fixes this by rerouting the jump from
fi so it goes to z instead of to x.

Node z is called a "substitute node." For each Tevel, Pass I
computes the free and non-free nodes, and a substitute node. Pass II
fixes the bad guesses of Pass I by changing jumps to go to substitute
nodes. These changes may in turn cause further substitutions in Pass II.

Now we give a detailed description of the algorithm, beginning with
the data structures. The schedule is specified in arrays FROM and TO.
For L = f > 1, (FROM(f), TO(f)) is the jump from Tevel f. (So FROM(f)
and TO(f) are nodes, with level (FROM(f)) = f, level (TO(f)) < f). There
are two special cases: 1if TO(f) = -1, f is not a 1-level, and there is
no jump from f; if TO(f) = 0, node FROM(f) is scheduled with an idle
processor. Clearly these arrays give enough information to deduce the
entire schedule (in Tinear time), if desired.

The FROM and TO arrays can be used to store both the jumps that
Pass I guesses and the final jumps that Pass II computes. In an actual
implementation this should be done. However in the proof of correctness
it is desirable to distinguish between guesses and final values. For
this reason an array T is used to hold guessed TO-values. Pass I guesses

the to nodes of jumps and stores them in T. Pass II copies T to TO, and
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then modifies TO to the final jumps.

Pass I partitions the levels of the dag into sets, as follows. A
Tevel f is called "open" if its jump has not been found. More precisely,
when level t is being processed, level f is open if f < t or if f > t
and the jumps to f make it a 1-level but T(f) = 0 (Pass I initializes

T-values to 0). Each open level f has a set of levels,

I

LSET(f) = {g|L = g = f and f is the highest open level with g = f}.
LSETs are manipulated by the operations FIND(g) (which returns the
open level f with g e LSET(f)) and UNION(f,g) (which does a destructive
merge of LSET(f) into LSET(g)) [AHU].

In processing Tevel t, Pass I finds when each node y on level t
is ready to be jumped, i.e., it computes

R(y) = the highest open level that can jump to y.
It also finds which nodes may be jumped from a given open level f, i.e.,
it computes the list

RLIST(f) = {y|y is on level t and R(y) = f}.
(These interpretations for R and RLIST are valid immediately before
1ine 6 of the algorithm.)

Pass I computes the substitute node on Tevel t, SUB(t). SUB(t)
is not jumped in Pass I, but is ready as early as possible (i.e.,
R(SUB(t)) is as large as possible). Any level f < R(SUB(t)) can jump
SUB(t) instead of T(f). So Pass II can use SUB(t) to dinsure that
FROM(t) is not jumped, thus fixing bad guesses. This motivates the
following definition.

Definition 1: A node y on level t is free if y = T(f) implies

f < R(SUB(t)), i.e., either y is not jumped in Pass I, or y is jumped
from R(SUB(t)) or below.
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This definition is consistent with the earlier intuitive description
of "free."

Note the special case where SUB(t) = 0. Since the algorithm
sets R(0) = 0, the only free nodes on such a level t are those that
are not jumped. Also note that, at least intuitively, any level has
free nodes, because not every node of a level can be jumped.

The algorithm works as follows. Pass I processes levels t in
decreasing order, t = L, ..., 1. For each t, R and RLIST values are
computed (Tlines 2-5). Then RLISTs are used to guess jumps, i.e.,
T-values (Tines 6-9). The node with highest R-value that need not be
jumped does not get jumped; instead it is made SUB(t) (line 10). The
method for finding SUB(t) relies on merging RLISTs so nodes with higher
R-values are at the end (Tine 9).

Pass Il processes levels f in increasing order, f =1, ..., L.
For each f, a correct node FROM(f) is found. If FROM(f) happens to be
jumped by Pass I, the jump is switched to go to SUB(f) instead of
FROM(f).

Now we give the algorithm in pseudo-Algol.
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EﬁgﬁgﬁﬁﬁQ,HS comment this procedure finds the jumps of an HLF

schedule for a given dag;

begin
Initialization:
partition the nodes of the dag into Tevels L,...,1; set SUB(t) = 0, T(t) = 0,
LSET(t) = {t}, RLIST(t) = ¢, for L = t = 1; set LSET(0) = {0}, R(0) = 03

Pass I:
for t«Lto1by -1 dobegin
for each node y on Tevel t do Qggig
r < min {L+1, £|an immediate predecessor x of y is "executed
at level 2", i.e., x = T(£) or x-is on level £ and is not

a T-valuel;

if r <L, T(r) = 0, and some free node on level r does not
mmed1ate1y preceaﬁwy comment the test for "free" is in Definition 1;

then R(y) < r
else R(y) « FIND(r-1);
add y to RLIST (R(y));
end;
gﬂilg‘RLIST(f) = ¢ for some f > t do begin_
remove the first node y from RLIST(f); T(f) < y;
g < FIND(f-1); UNION(F,q);
add RLIST(f) to the end of RLIST(g); comment now RLIST(f) = ¢;
Eﬁﬁé
z < the last node of RLIST(t); RLIST(t) <« ¢;
if R(z) > t then SUB(t) <« z3

if Tevel t is not a 1l-Tevel (i.e., the number of nodes that are

A

not T-values is even) then begin T(t) « -1; UNION(t,t-1) end;

end Pass I;
p~
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14.

15.
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Pass II:
Tet T0(g) = T(g) for 1 < g =< L comment TO and T can be the same array;
for T < 1 o L do begin

iﬁ TO(f) = 0 then 95212»

Tet FROM(f) be a free node on level f, that does not immediately
precede TO(f) if TO(f) > 0;

1£'FROM(f) = T0(g) for some g then TO(g) <« SUB(f);

end end end H.
AAAAA  fanmr A
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Table 1 gives the values calculated by the algorithm for Figure 1.
In Table I (a), substitute nodes have asterisks, i.e., y* means
y = SUB(level(y)), and non-free nodes are parenthesized, (y). The jumps of
Table I(b) correspond to the schedule of Figure 1.

Now we prove that the algorithm is correct. Let the H schedule
be the one computed by the algorithm, i.e., the level schedule with
jumps (FROM(f), TO(f)), L = f = 1. The proof is organized as follows:
Lemmas 1-4 give the basic properties of Pass I. Lemma 5 shows how Pass II
modifies jumps to get the H schedule. Corollaries 1-4 give properties of
the H schedule that are analogous to Lemmas 1-4. These properties include
the facts that H is a valid schedule (Corollary 3), and H has an HLF-Tike
property (Corollary 4). The latter is used to prove that H is optimum
(Lemmas 6-8).

The proof assumes in its organization that the algorithm runs to
the end of Pass II. [Inspection reveals two places where the algorithm
could conceivably halt prematurely: 1In line 10, node z might not exist if
RLIST(t) is empty; in line 14, a node FROM(f) with the desired properties
might not exist. We assume at the outset of the proof that in both cases
if a node does not exist, the algorithm skips to the next line and
continues execution. We will see that actually the nodes always exist:

Corollary 2 shows FROM(f) exists, and a remark following Corollary 3 shows

Zz exists.

The proof treats O as a dummy node on a fictitious level 0. Thus
a Tevel £ with TO(£) = 0 jumps to node 0. Similarly an assertion like
"Tevel(TO(L)) > f" means TO(L) is a real node, above level f.

To start, note the LSETs are maintained (by Tines 0, 8 and 11) in

accordance with their definition above.
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The first property of Pass I says that if a level f jumps a free node
of a level t, then no subsequent Jump from above t goes below t.
Lemma 1: Let f be a 1l-level where T(f) is free; let £ be a 1-leve]l
where f > £ > Tevel(T(f)). Then Tevel (T(£)) = Tevel(T(f)); if equality
holds, then node T(£) is free.
Proof: In Pass I, let y be a node that is in RLIST(t) in Tine 10. It
is easy to see that after the loop of lines 6-9, no level £ with

R(y) = £ > t is open.

Now consider Pass I when t =Tevel (T(f)). The hypotheses of the
Lemma imply R(SUB(t)) = f = £ > t. So the above remark shows £ is not open
after t is processed. This means Tevel (T(£)) > Tevel (T(f)), as desired.
Further if equality holds, then T(£) is a node on level t, and
R(SUB(t)) = £ shows that T(&) is free. d

The next Lemma will be used to show that FROM nodes exist.
Lemma 2: Let y be a node with R(y) = f for some 1-level f. Then f

contains a free node x, x # V.

%
-—h

Proof: Let r be the value computed in line 3 for y. So r = R(y)
If r = f, then R(y) = r and the Lemma holds by line 4. Otherwise r > f.
Since f is a 1-level, it contains a node x that is not a T-value. x is

clearly free; x Ay since r > f. O

The next Lemma will be used to show that H respects precedence. It
says that Pass I executes any immediate predecessor of a node y at level

R(y) or earlier.

Lemma 3: If x - y then either level(x) > R(y) or x = T(f) for some Tevel

f > R(y).
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Proof: Line 3 sets r so that any immediate predecessor x of y is executed

at level r or earlier, i.e., Tevel(x) = r or x = T(f) for some f 2 r.

it

Further, r > R(y). So the Lemma holds unless f = r = R(y) and x = T(r).
But this cannot be, since Tine 4 shows that r = R(y) implies T(r) is not

a predecessor of y. 0

The next Lemma essentially shows the HLF property for Pass I. To
motivate its statement, let £ be a 1-level and let z = T(£). The HLF
property implies that any node y above level(z) cannot be jumped from £.
Thus if level(y) > level(z) and y is scheduled after £, then all free nodes
of £ precede y. This is Lemma 4 (a). Lemma 4 (b) shows the related
fact, that all non-free nodes must indeed be jumped, or equivalently,

a free node cannot be substituted for a non-free node.

Lemma 4: Let £ be a 1-level. Let y be a node executed after £ by Pass I,
i.e., £ > level(y) and y = T(f) for any f = £. Let z = T(£), and suppose
either

(a) level(y) > level(z)

or (b) level (y) = level(z), y is free but z is not

Then all free nodes of £ precede y.

Proof: First note that without loss of generality, y has no predecessors
executed after £. For let x be such a predecessor. It is easy to see
that x satisfies the hypotheses of the Lemma (in particular, alternative
(a)), and the conclusion for x gives the conclusion for y.

So all predecessors of y are executed before or at level £. This
implies line 3 for y sets r > £. Now it suffices to show £ > R(y). For

alternatives (a) and (b) both imply Tlevel £ is open when R(y) is computed.
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To get £ > R(y), Tine 4 must set R(y) = FIND(r-1). Thus £ > FIND(r-1),
whence r = £. And since the Elggvbranch of line 4 is taken (and T(r)=T(£)=0),
all free nodes on level £ precede y. This is the Lemma's conclusion.

We show £ > R(y) by contradiction. Recall y = T(f) for f = £. So
lines 5-9 with R(y) = £ show that £ is assigned a jump. Thus level(y) =
level(z) and alternative (b) holds. If y is free then R(SUB(t)) = R(y),
by lines 5-10. Thus R(SUB(t)) = £, whence z is free. But this contradicts

(b). 0

Now we examine how Pass II computes TO-values.

Lemma 5: For any 1-level g, TO(g) is either T(g) or SUB(Tevel(T(g))).
In the latter case, T(g) is free. In both cases R(TO(g)) = g.
Proof: At the start of Pass II any value TO(g) is T(g). Line 15 may
change TO(g) from T(g) to SUB(f) where f = level(T(g)). This is doneonlyif T(g)
is free (by line 14). Further TO(g) is not changed again, since the new
value is still on Tevel(T(g)).
It remains only to show R(TO(g)) = g. Lines 5-9 show R(T(g)) > g.
And if T(g) is free, Definition 1 shows R(SUB(Tevel(T(g))) = g. 0

Corollary 1: Forany 1-level g, Tevel(T(g)) = level(T0(g)). T(g) is free
iff T0(g) is free. If T(g) is non-free, T(g) = TO(g). O

Now we can show that the H schedule is well-defined, i.e., the
FROM and TO arrays specify the jumps of a level schedule. This means first
that the FROM nodes, calculated in Tine 14, actually exist. Second, no
FROM node is itself jumped.
Corollary 2: For any l-Tevel f, node FROM(f) exists and is not jumped
(i.e., FROM(f) = TO(g) for any g).
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Proof: When Tlines 13-15 are executed for level f, TO(f) has its final
value. By Lemma 5 R(TO(f)) = f. So in line 14 node FROM{(f) exists, by

Lemma 2. Line 15 insures that FROM(f) is not jumped. | 0
The next result shows that the H schedule is a valid schedule, i.e.,

it respects the precedence constraints.

Corollary 3: If x » y then the H schedule executes node x before node y.

Proof: Since H is a level schedule, the conclusion is obvious if y is not
jumped. So suppose y = TO(f) for some 1l-level f.

Lemma 5 shows R(y) = f. So from Lemma 3, either Tevel(x) = f or

x = T(g) for some Tevel g > f.

First suppose Tevel(x) = f. Then x is executed before ¥y, unless -
x = FROM(f). But the latter is impossible by Tine 14.

So suppose level(x) < f and x = T(g) for g > f. It suffices to show
x = T0(g), since Tevel g jumps before f. To do this assume the contrary.

Thus T(g) = TO(g). So T(g) is free (Corollary 1). Now Lemma 1 applied to
g shows Tevel(T(f)) = Tevel(T(g)). In other words, Tevel(y) = level(x).
But this contradicts x - y. 0

Corollary 3 shows that H is a valid Tevel schedule. One consequence
of this fact is that in line 10, node z always exists, i.e., RLIST(t) is
not empty. For if RLIST(t) is empty, all nodes of t are jumped in Pass I.
This impTlies all nodes of t are Jumped in the H schedule. But this is
impossible since in a Tevel schedule, any Tevel t has a node that is not
Jjumped. (The last node above t to be executed precedes a node on t that
is not jumped.)

Finally we show a version of the HLF property for H. This version,

analogous to Lemma 4, is not the HLF property itself. Rather it is tailored
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to prove that the H schedule is optimum. We return to this point below in
Lemma 10, which shows that that this version actually implies the HLF

property.

Corollary 4: Let £ be a 1-level. Let y be a node executed after level 2
in the H schedule. Let z = TO(£) be the node jumped by £, where either
(a) Tevel(y) > Tevel(z)
or (b) level(y) = level(z), y is free but z is not.

Then all free nodes of £ precede y.

Proof: It suffices to show that the hypotheses of Lemma 4 hold for y,
since Lemma 4 has the desired conclusion.

We first show that y is executed after £ by Pass I. Since this holds
for the H schedule, £ > level(y) and y = TO(f) for f = £. So it suffices
to show y = T(f) for any f = £. Suppose on the contrary that y = T(f).
This means Pass II changes TO(f). So y is free. Lemma 1 (and Corollary 1)
show level(z) = level(y). So alternative (b) holds. Now Lemma 1 (and
Corollary 1) show that z is free. But this contradicts (b).

It remains to show that alternatives (a) or (b) of Lemma 4 hold. Each

is implied by its counterpart in Corollary 4, by Corollary 1. (1

The next two Lemmas show the H schedule has the same structure that
guarantees optimality as the Coffman-Graham algorithm [CG]: The H schedule
partitions into "blocks." Any schedule executes blocks in the same
order as H. Further, H is optimum on individual blocks. This implies
that H is optimum - '

The blocks Xi are defined by boundary leveils ﬂi:

Definition 2: The Tevels Zi, 1 <9 <B+ 1, are defined as follows:

£, = 1. Fori>1, £; 1s the Towest 1-Tevel such that £; > L5 4
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and either

(a) Ki jumps below Ki—l’ i.e., level (TO(Ki)) < Ki«l’

or (b) Ki jumps to a non-free node on Ki-l’ i.e.,

1eve1(TO(£i)) = £,

io1 and R(SUB(Zi_l)) < L,.

;
Let ZB be the last value defined using the above criteria, and set

£ =L+ 1.

B+1
For 1 < i < B, block Xi consists of all nodes scheduled after level

£i+1’ up to and including Ki, except for the node jumped from Ki'

Equivalently, Xi = {xllii+1 > Jevel(x) = Ei and x is not jumped from

£i+1 or above }.

Note that any Tevel £ with an idle jump (TO(£) = 0) is a boundary
Tevel Kj. (This follows from the convention that 0 is a dummy node on
level 0). Also, any node is in exactly one block, except for a node jumped
from a boundary level (which is in no block). Figure 2 shows the blocks for

the schedule of Figure 1. The nodes of each block are enclosed in heavy Tlines.

The next two Lemmas show that any schedule processes blocks in

order.

Lemma 6: For a block Xi’ 1 <1 <B, any node x ¢ Xi on level Ki precedes

. *
all nodes of X, ;, 1.e., x > X, ;.

Proof: First note that for any block X13 1 <i =< B, any node x € Xi on level

Zi is free. For suppose on the contrary that x is non-free. So x is jumped

from some 1-level £. Since x is on level 21, Definition 2 implies £ > £i+1’

But then x ¢ Xi’ a contradiction,

To show the Lemma take any x ¢ Xi on level 21 and any y € Xi—l' X is

free by the above remark; similarly if y is on Ki«l’ it too is free. This

shows the hypotheses of Corollary 4 are satisfied for level 21 and node y.

*
Thus x - y. 0
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Lemma 7: For a block Xi’l <i <B, Xi - Xi—l'

Proof: Consider any node x & Xi‘ By Lemma 6 it suffices to show that x

has a successor z on Tlevel £1,w1th z e Xi'

By Definition 2, Tevel(x) =2 £;. Clearly we can assume Tevel(x) > Ki'
So x has a successor z on level Kj. z must be executed after x, whence

after level £1+1. So z & Xi as desired. 0

Now we prove H has minimum length.
Lemma 8: The H schedule is optimum.
Proof: Let w(X;) (respectively w*(X;)) denote the number of time units in
the H schedule (optimum schedule) in which some node of block Xi is

executed. First note
B B
(1) Yooowr(X.) 2 ) w(X,).
i=1 =

This is true because in H, every time unit counted in w(Xi), except the
last, executes two nodes of Xi' (Note any 1-level £ of a block Xi’ £ > 21,
Jjumps a node of Xi') The Tast time unit executes at least one node of Xi‘
(It can execute two nodes of Xi ifi=1). 56 Xi has at Teast 2w(Xi) -1
nodes. This implies m*(Xi) > w(Xi). (1) follows.

Now observe that the length of the optimum schedule is at least the
left-hand side of (1). (Lemma 7 implies that any time unit is counted in at
most one term w*(Xi) ). The length of the H schedule is the right-hand

side of (1), by Definition 2. So (1) implies that H is optimum.

We turn our attention to the efficiency of the algorithm. We will
show that the set merging operations use time O(na(n)) while the remainder
of the algorithm is O(e+n).

First we describe some additional data structures. The dag is stored
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in an adjacency structure: each node has a list of its immediate predecessors.
Level information is stored in two ways: An array LEVEL gives the level

of each node, i.e., node x is on LEVEL(x). Also each level has a list

of the nodes on that Tevel. This data structure for level information is
constructed in line 0 when levels are found, in 0(n) additional time.

Another array T' indicates when each node is jumped in Pass I. More
precisely, for each node x, T'(x) = £ iff x = T(&); if x is not a T-value,
T'(x) = -1. T' is initialized to -1 in line 0, and values are assigned
to T' when T is assigned, in line 7. Clearly the total time spent computing
T' is 0(n). Note T' allows us to check if a given node x is free in time
0(1), since x is free iff T'(x) =< R(SUB(LEVEL(x))).

With these data structures, it is easy to see that lines 0-3 and
11-15 are O(e+n), because 0(1) time is spent on each edge, node, or level:
Line O finds the levels of the dag by using predecessor lists in a modified
topological sort [Kn]. Line 2 loops through the nodes y on Tlevel t using
the Tist of nodes on level t. Line 3 calculates r using the T' and LEVEL
arrays. Line 11 checks if t is a 1-level using the 1list of nodes on Tevel
t and T. Line 14 finds node FROM(f) by flagging the immediate predecessors
of TO(f) that are on level f, and finding a free, unflagged node on the
1ist of nodes on level f. Finally for line 15, note that FROM(f) = T0(g)
iff FROM(f) = T(g). So line 15 uses T' to find level g.

Now we discuss the remaining lines, 4-10. The on]y‘non-trivia1 part
of 1ine 4 is the test that some free node on level r does not immediately
precede y. To do this the algorithm stores, for each level r, a count of
the free nodes on r. This count is computed after level r is processed
(Tine 11); a total of O(n) time for all levels is used for this computation.

Line 4 computes the number of free immediate predecessors of y on level r.
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This number is Tess than the count for r iff the test has an affirmative
answer. So the total time spent in the test in Tine 4 is 0(e+n).

For Tines 5-10, the following data structure is used for RLISTs.
For each level f, RLIST(f) is a singly-Tinked 1list with pointers to the
first and last elements. There is also a Tinked 1ist of levels f that
have RLIST(f) non-empty. With this data structure, each operation involving
RLISTs in lines 5-10 is 0(1). (This includes finding Tevel f in line 6).
Further, observe that line 5 is executed once for each node y; lines 7-9
are executed at most once for each level f (a value T(f) is assigned only
once); Tine 10 is executed once for each level t. So the total time in
Tines 5-10 is 0(n).
Lemma 9: Algorithm H uses time O0(etna(n)) and space O(e+n).
Proof: The above discussion shows that aside from the set merging operations
UNION and FIND, the algorithm uses time O(e+n). Line 4 does at most one
FIND for each node y, and line 8 does at most one FIND for each level f.
So there are at most 2n FINDs. Lines 8 and 11 do at most one UNION for
each level, so there are at most n UNIONs. Hence the total time for
set merging operations is O(na(n)) [T]. The time bound follows.

For the space bound, note that all data structures use 0(1) space for

each node, edge or level. 0

We summarize Lemmas 8-9 in our first main result.
Theorem 1: Algorithm H finds an optimum schedule in time O(e+na(n)) and

space O(et+n). 0

We conclude the analysis by showing that the HLF property guarantees
optimality. This justifies the intuitive discussion of Section 2. The

main step is to prove that algorithm H finds an HLF schedule.
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Lemma 10: The H schedule is an HLF schedule.

Proof: Let the H schedule have jump sequence (tl,...,tk). Let S be an
arbitrary level schedule with jump sequence (Sl""’sr)' We wish to show
that (tl,...xk) > (51""’Sr)’ where > denotes lexicographic order. We

do this by proving inductively that for all i, 1 < i < min(k,r),

(1) (tl,.."ti) = (Sl,...,S.);

(ii) if equality holds in (i), then in each of the first i
jumps of H and S, H jumps a free node iff S does.
Note that for any index i, if inequality holds in (i) then the induction is
completed trivially and the desired conclusion follows. On the other hand
if (i) holds with equality for i = min(k,r), then it is easy to see that

k =r, (tl,...,tk) = (51”"’Sr) and again the desired conclusion follows.

So assume that (i)-(ii) hold for indices strictly less than i. We
prove (i)-(ii) for i as follows. As mentioned above we can assume

(tyseees ) = (sy5...,85_q) if 1 > 1. This implies that the ith 1-Tevel

t1'--1
is the same in both schedules, call it £. Let the jump from £ be from
node x in schedule S and to node z in schedule H. (Thus z = TO(£) and
level(z) = ti‘) We will show (i) and (ii) are both consequences of
Corollary 4.

First observe two properties that hold for both S and H:

(1) A11 non-free nodes of £ are jumped from above £.

(2) A11 non-free nodes of level(z) are jumped from above £, if z is free.
(1) is obvious for H. (2) holds for H because of Lemma 1 and Corollary 1.
Furthermore, (1) and (2) for H imply their counterparts for S, because of
(i1).

Next observe thatnode x is free. For x is not jumped in S and so it

is free by (1).
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To prove (i) we must show that in S, £ jumps to level(z) or below.
Equivalently if g is a level with £ > g > level(z), S does not jump to g.
To see this, suppose H executes b nodes of g before £, and a nodes of g
after £. (Of course H does not execute any nodes of g at Tevel £). S
executes b nodes of g before £, since (i) holds with equality. Further
if y is a node on level g that H executes after £, then by Corollary 4(a),
x precedes y. (Recall x is a free node of £). So S executes y after £.
Thus S executes a nodes of g after £. No nodes of g remain for S to jump
from £. This proves (1i).

For (ii) we must show that z is free iff S jumps a free node of
level(z). If z is free, (2) implies that S can only jump a free node of
level(z), as desired.

On the other hand suppose z is non-free. Let y be a free node
of Tevel(z). H executes y after £ (by Lemma 1 and Corollary 1). So x
precedes y by Corollary 4(b). Thus S can only jump a non-free node of

Tevel(z), as desired.

This completes the formal justification for the HLF definition:
Theorem 2: Any HLF schedule is optimum.
Proof: Any HLF schedule has the same jump sequence as H. Thus it has

the same length as H. So Lemma 10 implies the Theorem.

4. Conclusions

We have shown that for two-processor systems, HLF schedules are
optimum and can be constructed efficiently. It is natural to ask how
these schedules fare on various extensions of the model.

For example, consider the case of m > 2 processors. If the dag

is a tree, Hu's algorithm [H] finds an optimum schedule for arbitrary m;
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further, the schedule is HLF. Unfortunately this is not true in general:
for any m > 2 there are dags that admit no optimum, Tevel schedule. 1In
fact there are dags where any level schedule is a factor 2 - %— greater
than optimum [LS]. Among level schedules, however, the HLF strategy

is best: 2 - %. is an upper bound on the accuracy, and the time to find
an HLF schedule is almost Tinear.

Other extensions of the basic model include tasks with arbitrary
integer lengths, uniform processors (i.e., processors whose speeds differ
by a constant factor) and scheduling with resources other than processors.
In each case the results are similar: the HLF strategy achieves the best
possible accuracy bound for a Tevel schedule, and the time is O(e+na(n))
or O(etnlog Togn). These results are presented in detail in [G2]. These
problems and others illustrate the usefulness of the highest-level-first

scheduling method.
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y 116 1 (15) 114 113 J12 111 1(10)f 9* 1817 16](5)

R(y) 7 7 6 6 5 4 5 4 3

f 71 61 5 14 {3 1

T(f) | 15[-1]10 |6 |5 |3{-1
(a)

f1 746] 5§ 41 3 2] 1

FROM(f) J16 |- {12}11] 6 14] -

TO(f) |15 |-1{10} 9] 5 [3|=~1
(b)

Table I

(a) Pass I values. ( ) = non-free, * = SUB.

(b) Pass II values.
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Figure 1. Example dag and schedule
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Figure 2

Schedule with blocks.




