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Abstract: The use of nonlinear methods in the classifica~-
tion of mRNA gene initiation sites has two important
aspects: (1) the realization of weight vector W separating

gene and nongene sites not linearly separable, and (2) in-
sights into combinations of mRNA nucleotides which are im-
portant in the start site selection process. The present
paper addresses each of these areas and gives results obta-
ined from experiments in nonlinear classification of trans—
lational initiation sites.
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1.0 Introduction

In February, 1981, the author used a nonlinear application
of F. Rosenblatt’s Perceptron [1] to separate won and lost
positions from a "dot" game called SIM. The work produced
three important results: (1) that very large sets of won
and lost signals could be separated by wusing higher order
training algorithms, (2) significant generalization abili-
ties were "learned” leading to correct placement of a high
percentage of new (not in the original training set), posi-
tions, and (3) that additional heuristic information was ga-
ined by examining the weight coefficients of the higher
order terms in the nonlinear space. It is believed that
these results also apply to the recognition of separable
patterns not of game space origin.

The present paper will examine some of these rtesults with
respect to & well known problem in molecular biology. In
Sections 2 and 3 a statement of this problem is given and
some background information provided. Section 4 will exam-
ine the computational framework for nonlinear methods in
Perceptron learning. Finally, Section 5 will present some
experimental results.

2.0 Statement of the Problem

In the field of genetic biology, considerable effort has
been applied to how protein is synthesized in the cell and
the relation this process has with genetic material in DNA.
In particular, there is interest in the determination of
translational initiation sites on strands of messenger RNA
(mRNA) where the protein is built during an interaction with
cellular ribosomes, These mRNA sites are thought to possess
certain genetic signals that are somehow recognized by the
ribosome before the protein initiation is begun (hence
translational initiation site). The genetic information is
contained in linear strings of mRNA wunits called nucleo~
tides. A ribosome begins at a specific site and then makes
a protein (a string of amino acids) specified by the se~-
quence of nucleotides, which are read three at a time (in
"codons"}, The problem is to determine what arrangement of
nucleotides specifies the initiation sites. (The preceding
taken from discussions with G. Stormo:)

NMucleotides are of four types, called bases: thymidine, cy-—
tosine, adenine, and guanine designated T, C, A, and €, res—
pectively. A specific arrangement of these bases consti-

tutes a message sent (via mRNA) from the genetic DNA to the
ribosome designating the particular region of mRNA as a
translational initiation site [2]. Estimates have been
given that the selection of an initiation site is made on
the basis of 35 or 40 mRNA nucleotides. In particular, a
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centrally located ATG codon (or less commonly GTG) has been
shown to be an almost necessary condition for a gene initia-
tion site. The centrality has lead to a convention that the
ATG codon occupy the O-2 elements of a mRNA site having des—
cription of, say, (~30,+20) which is 51 nucleotides C[31.

Using the same frame of reference, Shine and Dalgarno found
that the ATG codon was preceded by filler and all or part of
the following string:

TAAGGAGET

This leads to an idealized gene initiation site description:

Shine and 3-9

Dalgarno Bases End
Filler Sequence Filler O-2 Filler Codon

TAAGGAGET ATG TAA

where TAA is one of three end codons.

Since many non-initiation sites may have similar Shine and
Dalgarno sequences, in addition to the central ATG codon,
greater insights into the interaction of bases are needed
before the problem of translational initiation is solved.

3.0 Background

The first study using a Perceptron in gene initiation site
determination was carried out by 6. Stormo at the University
of Colorado, Boulder [3]. Stormo and collegues built a data
base of known gene and nongene sites (or more precisely, ri-
bosome binding sites and not), and a language compiler ("DE~-
LILA")Y to aid in accessing specified strands. With this
system, Stormo used a linear model of the Perceptron against
124 known gene initiation sites and increasingly large
numbers of nongene sites. His procedure was to realize 1li-
near separation between the 124 gene sites and a small set
of nongene sites and then to "check" the separating hyper-—
plane against the remaining 75000+ nongene sites in the data
base. Nongene sequences that were incorrectly classified
were added to the training set and the process repeated
until complete linear separation was achieved.

For longer strands of mRNA (101 bases), the convergence upon
@ linear separation functional was routine. This is not too
surprising with training signals of such high dimension. in
general, the necessary convexity requirements for linear
separation are more likely to be satisfied when the dimen-
sion is great. As the mRNA strand lengths were shortened,
Stormo found linear separation successively more difficult
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to achieve. Finally, a training set comprised of 51 base
strands (-30, +20) yielded no separating functional after a
very large number of training passes.

At first, this may seem to contradict the notion that ribo-
some binding site selection is based on 40 or 50 nucleo-
tides. However, the linear model is very limited and takes
no consideration of interactions between the individual
bases in a given strand. Since ribosomes probably consider
such higher order relationships in making the selection., it
is not surprising that the 51 base strands were not linearly
separable.

This lead to the present work: to use higher order applica-
tions of the linear Perceptron to achieve separation of suc-—
cessively shorter gene and nongene sites. By doing this,
additional information concerning the importance of combina—
tions of nucleotides is provided., As will be seen, such
combinations as those in the Shine and Dalgarno sequence are
very important in gene initiation site classification.

4.0 Nonlinear Methods in Perceptron Learning
The linear Perceptron model is an iterative procedure where

a vector W is sought separating two sets A and B such that
for signal Xn:

Wn—-1 + Xn if (Wn=1,Xn) <= 0 and Xn in A
Wn—1 iﬁ (Wn—-1,Xn) > O and Xh in A
wn= Qn~1 - Xn if (Wn—-1,Xn) 2= 0 and Xn in B
Wn—1 if (Wn-1,Xn) < O and Xn in B

where (W, X) is notation for the scaler product of weight
vector W and training set signal X. It has been shown that
this "error corrvection” procedure will converge upon W in a
finite number of passes through the training set provided
the two sets to be separated are suitably convex [4].

The usuval method of applying this algorithm is to store only
the indices of ones (1’s) for each of many binary patterns
in the training set. In this manner, & scaler product
between W and any signal may be taken merely by summing the
elements of W corresponding to the nonzero elements in the
training signal. The error correction that may follow is
done in a similar manner. This simple technique becomes
critical when attempting to store huge patterns resulting
from nonlinear applications.

The nonlinear algorithm itself is just an extension of the
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linear procedure. Instead of training on simple binary re-—
presentations of training signals, an extended binary repre-
sentation is employed reflecting combinations of elements in
the linear signal. For example, second order separation
might employ the mapping:

(x1, x2,...,xn) =2
Cxdlxdl, x1x2,. .., %81%n,: X222, ..., 42%%, .. .+ X17400)

where each xi is the ith element of the linear representa-—
tion. From this transformation we have a new pattern con-
taining the original linear terms (e.g. xixi, i=1,n) as well
as &nd order terms of all combinations of elements taken two
at a time. The nonlinear algorithm is jJust the normal error
correction procedure applied against the transformed sig-
nals.,

From a resource standpoint, it is difficult to first trans-
form the entire training set and then to store and operate
on the expanded signals. In the second order example, the
transformed signals have dimension increasing approximately
by the square of the linear dimension (D) over two (D¥#2/2).
Higher order dimensions increase even faster (at least by
D##n/n! for n the order of separation required). In one ex—
periment, discussed in Section 5.2, the training signals
were each mapped into a space having a dimension exceeding
100, 000!

Even with machines having virtual memory capabilities, pat-
terns of such enormous size will soon exhaust available re-

souUTCeSs. The alternative is to store the expanded patterns
on disk which is then accessed with each successive pass
through the training set. This wunfortunately leaves the

training program "I0 Bound" and is therefore not reasonable
for separations requiring a large amount of training.

The solution to this problem is to store only the linear
patterns (more precisely, the location of "ones" in the li-
near patterns)., and to use a mapping to calculate the loca-
tion of elements in the transformed space. The execution of
this mapping for each signal during each pass exercises the
host computer computationally and therefore does not involve
excessive disk IO.

The nth order mapping for linear patterns of dimension D is

a function Fnlcl,c2,...,en: D) where C=(cl,c2,...:cn) is a
matrix of indices defining valid combinations in the trans-
formed space and cld{=¢2d= .. {=cn. The transformed index (Z)

of any such combination is:



INITIATION SITES - WWB

n—1 D-1i D-c(n—-i)
Z = Fn(C,D) = E [ E Fi(8i,s) — E Fi(Si,s) 1 + ¢cn (n>x1)
i=1 g=1 g=1

F1(C, D) = Fi(cl,D}) = ¢1i

where 8i is 2 matrix of dimension i (1 <= i <= n-1) with all
@lements a dummy variable s:

Si = (8,8,....,8) (1 <= ¢ <= D=-1).
This general expression follows from the combinatorial na-
ture of the problem at hand. Note that it is a recursive
formula: the next higher order of F is defined by a summa-—
tion of all previous. For example, for the second order

problem mentioned earlier, we have for cl<=c2I=D:

D~-1 D~ci
Z = Fa2{cl,ca,D) = E Fl(s,8) —~ E Fi(s,s8) + ¢c2
g=1 g=]
D-1 D-cl :
= E g8 -~ E 8§ + 2 = | 9#[~(ci##2)+((2%D+1¥%c 1)~ (2#D) J4+c2
s=1 g=1

where the last expression follows using the formula:

t
Ql(t) = E s = | S (tuu2+t)
g=1

We now turn to some experimental results in gene initiation
site classification.

9.0 Experiments in Classification of Translational Sites
3.1 Second Order Separation

To separate gene and nongene initiation sites,. each of the
four bases A, C, G, and T were given binary values 1000,
0100, 0010 and 0001l respectively. Since each base is wuni-—
quely represented in four characters, the dimension of the
linear pattern is always four times the number of nucleo—
tides. For these experiments, a positive scaler product
between W and a training set signal implied a gene initia-
tion site, a negative value, a nongene site.

The first experiment used the 2nd order algorithm to separ-
ate 31 nucleotide strands of mRNA (-30,+20) that were previ-
ously found not separable by Stormo’s linear model. A total
of 124 gene initiation sites were combined with 945 nongene
sites to form the training set. Each of these signals was
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mapped to a 204 element binary pattern (4 bases per nucleo—
tide times 51 nucleotides), which in turn was mapped to the
20911 element 2Znd order space.

Training terminated with the desired separation after 22
passes through the 1069 signal training set. The work con=-
sumed approximately 7 minutes of VAX 11/780 CPU time running
under the VMS operating system. With this, a separation had
been realized that had not been feasible wusing the linear
model.

Before going on to a more in-depth analysis of +the W that
resulted from training, the 2nd order algorithm was "pushed"
to train on a shorter 41 nucleotide region (-25,+15) of the
same training set signals. Again training was terminated
with the desired separation, but this time, 24 passes were
required taking 7.9 minutes of VAX 11/780 time. The incre—
ased work may be attributed to the lesser degree of freedom
given by the shorter signals.

When examined, the W matrix produced from region (-25,+15)
training showed heavy gene site correlation with the expect-
ed ATG codon in (+00, +02). To graphically display the ex—
tent of this correlation, a table of variances is provided
(zee Tables 5. 1-1la, 5. 1-1b and 5. 1-ic).

The statistical variance is a measure of deviation from mean
for a given sample. In this case, the variance is calculat-
ed using values from W (-25,+1%) corresponding to each base
(A, C. & and T) over each of the 41 nucleotide positions.
Where the numerical differences between bases are great, the
variance is a high positive value indicating that the pres-
ence of a base (or set of bases) at the given position is
important in the classification.

In Tables 5. 1-1, the rows and columns correspond to combina-
tions of 41 nucleotide positions taken ¢twe at a time
(e.g. 2,2; 2,3; etc.). Looking at Table 5. 1-1b, we see a
triangle of high variances formed by rows Q0-02 and columns
00-02 corresponding to the heavy weight given the ATG codon
in the classification. (An examination of W (-25,+15) con-
firms that the ATEG codon is important in classifying gene
sites; see Appendix A. ) Other regions of high variance are
marked and as expected, indicate the importance of the Shine
and Dalgarno sequences in the region (-15,~07). Note that
the variances do not tell us toward which set the region is
important, but only that the region is important in the
classification.

Before drawing further conclusions on the results of 2nd
order separation, the results of a final experiment in 3rd
order separation are presented.
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Table 5. 1-1a Variance for 2nd UOrder W (-25,+15)

c2 —=25-24-23-22-21-20-19-18-17-16~-15-14~13-12~11

-23 4 14 21 15 16 6 19 11 6 15 19 13 15 11 8
-24 5 18 7 15 16 20 8 20 14 13 17 21 12 29
-23 1 11 22 25 10 37#26 17 28 10 18 17 17
-22 4 20 8 7 12 30%#25 11 12 23 25 11
-21 10 8 20 15 21 17 27 21 13 11 10
-20 2 20 9 23 20 18 5 15 7 23
~-19 1120 5 7 2 15 11 20 16
-18 0 12 24 11 23 24 8 13
-17 7 21 23 9 16 11 11
-16 12 22 11 22 23 16
-15 i 14 9 25 12
~-14 8 5 24 22
-13 14 17 27
~-12 b 26
-11 7
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Table 5. 1-1b
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Table 5. 1-1c¢

cl
-5
-24
-~23
-22
-l
-20
-19
-18
~-17
-16
-19
-14
-13
-1i2
-11
-10
-9
-8
-7
-06b
-5
~04
-3
-0z
-01
00
01
02
03
04
03
0&
07
08
09
10
11
12
13
14
15

.._10...

WWEB

Variance for 2nd Order W (-25,+15) Continuved
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9.2 Third Order Separation

As discussed in Section &, the codon is the basic unit with-—
in mRNA strands from which protein is built by ribosomes.
This being the case, it makes sense to extend work done in
nonlinear methods to consider combinations of nucleotides
taken three at a time.

For this experiment, the rtegion (-15,+03%) was considered
using the same training set as in the 2nd order problem.
Each of the 21 nucleotide signals were represented as
102,341 element points in the 3rd order space. Convergence
vpon the desirved functional W was achieved in 13 passes
though the training set (10469 signals) taking about 10 mi-
nutes of VAX 11/780 CPU time. The greater amount of time
required for each pass is attributed to the greater complex-
ity of the 3rd order transformation derived from the equa-
tion given in Section 4.0,

The 3rd order variance table is considerably larger than
Table 5. 1-1. Only a relevant portion of this table is pre-
sented here (see Tahle 5. 2-~1). The table shows all combina-
tions arising from the ~11 strand position. The rows and
columns correspond to the remaining indices defining wvalid
combinations (e.g. (~11,-10,-08)).

Immediately apparent is the equality of values along the top
row and the diagonal. These variances are for the second
order terms and are equal because the existence of a diago-
nal combination (e.g. (~11, -10,-10)) necessarily implies
the existence of the corresponding top row combination
(e.g. (~11,-11,-10)). During training, each W location is
weighted exactly the same, and hence the resulting W values
{and their varTiances) are identical.

Also apparent is the generally higher values for variances
associated with the second order terms. This is because
these terms occur more frequently in the training set and
thus appear more frequently during error correction. This
leads to values of generally greater absolute. value which in
turn produces higher variances, To normalize this affect,
the mean of variance over the first, second and third order
terms was computed:

MVLI = 4.5

MvV2 = 9 0

MV3 = 4.0
Many of the variances in Table 5 2-1 are well above these
means. In fact, this tableau was selected because for each
order of terms, the highest variance was also the highest
variance over the remaining 20 tableaus. These values are

s0 indicated with a trailing asterisk.
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Table 5. 2-1 WVariance for 3rd Order W (~15, +05)

cl1 -11
c3 -15-14-13-12~11-10-09~-08-07-06-05
c2
-11 Fu2L%14 &
-10 2b6% & 4
-Q9 14 &
-08 )
-0Q7
~Qb
-0Q3 i
-Q4
-03
-0
-01
00
01
02
03
04
05

LUebbhb

cl

O
i

c3d -04-03-02-01 00 01 02 03 04
c2 ‘
-11
-10
~09
-08
Q7
-(é
-5
-04
-03
-02
-01
Q0
01
02
03
04
05

fory
[y

=R Uh OO
[y

7 16
7 10

= R OO 00 e

[y
PR L D

pot
Db rag

NWGUMNWWW=WSH
fars
CUWLWRPNPLWN AW
CUNWWR LU =RaNG
[y
=B DRADUNUD DU D

COoORNLBRUC bbb UDdDaD
BheUur bbb bd



INITIATION SITES ~-13- WWB

From this analysis the conclusion may be drawn that the ~11
tableau in general, and the combinations (~11,-11,-11),
(-11,~11,-10) and (-11,~10,+01) in particular, are somehow
very important in the classification of the training sites.
Also found to be important (with similar high variances),
are the tableaus associated with positions ~12, +00 and +01
(see Appendix B).

5.3 Conclusions

That the drd order -11 and ~12 tableaus proved to be impor-
tant is not surprising in that this region is the center of
the highly correlated Shine and Dalgarno sequence. What is
surprising is that the (+00,+02) region, so important in Znd
order classification, was given a relatively low 3rd order
score. An  explanation for the low variance is that many
nongene sites in the training set had the ATG codon in the
{(+00, +02) region. The question still remains as to why the
2nd order variances were not similarly low.

One explanation might be that the added degree of freedom in
Jdrd order separation allowed for the desirvred functional to
be realized taking into account only the Shine and Dalgarno
region (which also was important in the 2nd order case; see
Table 5. 1-1), ignoring the “less clear" (+00,+02) region
with the conflicting ATG presence. The more constrained 2nd
order separator made more passes through the training set
(24 against 13 in the 3rd order case), and perhaps in that
time had to give some added importance to the (+00Q.+02) re-—
gion in order to converge upon W. I+ this is the case, con-
straining the 3rd order separator by increasing the size of
the training set may well serve to settle the question.

It is interesting that the highest third order variance 1is
associated with the (-11,-10,~01) combination which happens
to define an interaction between the Shine and Dalgarno re-
gion and the central ATG codon. Why this combination alone
proved important (other interactions with the central Tegion
were notably low), is again probably a matter of degrees of
freedom. Nevertheless, that the combination was given the
highest wvariance over the 3rd order table suggests that the
presence of the central ATG codon by itself may not be as
important as its interaction with other specific regions on
the strand. In further support of +this congjecture, both
Tables 5.1-1 and 5 2-1 show very steep variance gradients
over the (+00,+02) region suggesting that the central Tegion
is important only when it interacts with other specific re-
gions (such as the Shine and Dalgarno area).
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Appendix B

The following is an additional portion of the 3rd oarder W
variance table. Included are tableaus which exhibit impor-
tance with regard to classification by virtue of the high
variance values (with asterisks).
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