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ABSTRACT

An EOL system G is called ambiguous if its language contains a
word with (at least) two different derivations in G. An EOL language
is called inherently EOL-ambiguous if every EOL system generating it is
ambiguous. It is demonstrated that there exist inherently ambiguous

EOL Tlanguages and that in particular that the language

m 2" . m2 Zn. s .
{a’b” : l<sm<n} u{a b~ :1<ms<n} 1is inherently EOL-ambiguous.



INTRODUCTION

The class of EOL languages forms a very natural extension of the
class of context-free languages and it is a very central class in the
theory of parallel rewriting systems (see, e.g., [RS] and the references
there). Quite a number of results are available concerning the

combinatorial structure of EOL languages (see e.g., [RS]).

A particularily interesting topic concerned with the combinatorial
structure of EOL languages is that of ambiguity. An EOL system G is
called ambiguous if its language contains a word with (at least) two
different derivation trees in G. An EOL language is called
inherently EOL-ambiguous if every EOL system that generates it is
ambiguous. The topic of ambiguity of EOL systems and languages is
investigated in [MSW], [ReS] and [ER2]. In particular in [ER2] it is
demonstrated that the degree of ambiguity of a context free language K
in the class of EOL systems is not larger than the degree of ambiguity
of K in the class of context free grammars. Perhaps the most natural
question concerning ambiguity of EOL systems and Tanguages that was open
until now is whether or not there exist EOL languages
that are inherently EOL-ambiguous. The analogous question concerning
inherently "(context free)-ambiguous" context free languages was settled
at the beginning stage of the development of the theory of cdntext free

languages (see e.g., [H] and [S]).

In this paper we demonstrate that there exist inherently ambiguous

EOL languages, settling in this way the open problem from [MSW].



0. PRELIMINARIES

We assume the reader to be familiar with the basic theory of EOL
systems, e.g., in the scope of [RS]; with the exception of some minor
changes we follow the notation and terminology from [RS]. To facilitate
the reading of this paper we recall now some basic notation and

terminology.

We use N, NT and RT to denote the set of natural numbers, the set
of positive integers and the set of positivereals respectively. @denotes the
empty set and for sets A and B, A\B denotes their difference. We often
identify a singleton set with its element. A set Z ¢ N is called
numerically dispersed if for every r e N there exists n. € N such that
for every My, My € 7 if N, <mp<m then Mo - my > 7. For a real vr,
Lr| denotes the biggest integer n such that n < r.

For a word x, |x| denotes its length and alph(x) denotes the set
of all symbols that occur in x. If I is an alphabet and A ¢ I then
preoy , is the homomorphism of 2" defined by: for b e I, preoy ,(b) = b
if b e A and presZ,A(b) = A if b e I\A. We will write pres, rather than

press , whenever the alphabet @ is understood.

3

An EOL system is specified in the form G = (£, h,w,A) where L is
1ts‘a1phabet, h its finite substitution, w its axiom and A its terminal
alphabet. If z ¢ Z+ and z =§>'y1t)yz where YisYp€ X* and b e T then we
say that b is reachable from z and we write z < b. If b <b then we say
that b is recursive. We assume that G is reduced, i.e., w < b for
every b ¢ ©. If G is synchronized then F is the synchronization symbol
of Gs if additionally w e Z\A then we use W(G) to denote the set

s\(Au{F,w}) and S(G) to denote the set of all sentential forms z such



that alph(z) < W(G) u {S}. If G is a DOL system then E(G) denotes its sequence.
Since problems considered in this paper become trivial otherwise, we

consider only infinite EOL systems and languages. Also, we deal with

propagating EOL systems only.
We recall now from [ER1] the notion of a DOL system with rank.

This notion forms a very essential tool in the proof of our main result.

We assume the reader to be familiar with the topic of DOL systems with rank.
Definition 1. Let G = (Z,h,w) be a DOL system where w e I.

(1). For a letter b e ¥ the rank of b in G, denoted ranke(b), is

defined inductively as follows.

(i). If L(Gb) is finite, then rankG(b) =0, where G_ = (Z,h,b).

b

.) = Z\{a € L: I’Cénke(a) < .i} and let f('i)

(ii). Let, for i =1, 2(1

be the homomorphism of 2* defined by:
f(i)(a) = a for a e Z(i) and f(i)(a) = ) for a e Z\Z(i)‘ Then let
h(i) be the homomorphism of Z?i) defined by h(i)(a) = f(i)(h(a)).
If b is such that the Tanguage of the DOL system (Z(i)’ h(i)’ b) is
finite then rankG(b) = 9.
(2). We say that G is a DOL system with rank if every b e I reachable
from w has a rank. The rank of G is the highest of the ranks of
letters reachable from w. [

We define now the basic notion of this paper.

Definition 2.
(1). Let G = (Z,h,w,A) be an EOL system such that w ¢ £ A. We say that
G is unambiguous is every word in L(G) possesses precisely one derivation
tree in G. Otherwise G is ambiguous.
(2). Let K be an EOL Tanguage. We say that K is inherently EOL-ambiguous
if every EOL system generating K is ambiguous. Otherwise we say that K

is EOL-unambiguous. [



In the sequel we say simply "inherently ambiguous" and "unambiguous"

rather than "inherently EOL-ambiguous" and "EOL-unambiguous" respectively.

Lemma 1. Let G be an unambiguous EOL system. There exists a constant

+
o e R" such that, for every derivation D in G of a word w, |w| = o |D],
where |D| is the Tength of D.

Proof.

This Temma follows directly from the following well-known result
(see,e.g., [RS]):
Let G = (£,h,S,A) be an EOL system with S ¢ Z\A. There exists a positive
integer q such that for every word w in L(G) there exists a derivation of winG

r

with the trace D = (S=X;sX;5...5X =Ww) such that ]Xii < q(|w| + 1)

for every i ¢ {0,...,r}. 0O

We define now a subclass of the class of EOL systems.

Definition 3. An EOL system G = (Z,h,S,A) is clean if it satisfies
the following properties.
(1). S e I\A and, for each b e %, B « h(b), S ¢ alph(B).

(2). If ach(s)andae (WE))T then |of = 2.

(3). G is propagating.

(4). G is reduced.

(5). G is synchronized.

(6). If b e W(G) then for every n ¢ N* there exists a word B e (W(G))+
such that B ¢ h"(b).

(7). If b < W(G) then the set {BeS(G): bealph(R)} is infinite.

(8). Ifb e W(G) then h(b) n A" = g. O

The usefulness of clean EOL systems for our considerations stems from the
following result. Its proof is standard (using the speed-up technique)

and so we leave it to the reader.



Lemma 2. For every unambiguous EOL language K there exists an

unambiguous EOL system G such that L(G) = K and G is clean. [J



I. THE MAIN RESULT

In this section we prove that there exist inherently ambiguous
EOL Tanguages.
Theorem. There exist inherently ambiguous EOL languages.

Proof.
n 2 AN
Let KO = {amb2 : l<ms<n}, K1 = {a" b2 : 1<m<n} and K2 0

We will prove that K2 is an inherently ambiguous EOL language.

= K, U K

1

To see that K2 is an EOL language consider the following EOL system

G, = (22, hos S, {a,b}) where
z

H

{S,X,Y,U,X,A,B,C,D,$,F,a, b}

2
and h2 is defined as follows:
ho(S) = (XY2, ABY, hy(X) = X, UK, ab, hy(Y) = (¥2,b3,
h,(X) = (U, a}, hy(U) = {U, a}, hy(A) = 1A, D7 C§, al,
hp(B) = (8%, b}, h,y($) = (07C$,al, hy(c) = Pc, al,
hZ(D) = {D, al, hz(a) = {F}, hz(b) = {F} and hz(F) = {F}.
It is rather easy to see that L(GZ) = K.
To prove that K2 is an inherently ambiguous EOL language we proceed
as follows.

Assume that G = (I, h,S,A) is an unambiguous FOL system generating
Kz;by Lemma 2 we can assume that G is clean. We need now some additional

terminology and notation.

In the sequel we identify derivations with their traces; that is a
derivation in G is a sequence (xo,xl, ...,xk), k 2 1, such that xi'x> X541
for 0 < 1 <k -1. (This will not lead to a confusion, because we have

defined ambiguity through derivation trees!). Given a derivation



D= (xG,...,xk),its Tength, denoted |[D|, is equal k and its result,

denoted res(D), is equal to X - We also say that D is a derivation of

Xis D is a derivation from X0 and for 0 < i < k, X; is the i'th level of D.
D is called complete if Xg = S and Xy € At ue use 56 to denote the set

of all derivations in G and DG to denote the set of all complete derivations
in G. Correspondingly, we use fG to denote the set of all derivation

trees (forests) in G and TG to denote the set of all complete derivation

trees in G (that is trees corresponding to complete derivations in G).

Given a tree (forest)in TG we call it deterministic if the nodes
with the same labels are rewritten in the same way; otherwise the tree

is called nondeterministic.

Given a letter X ¢ W(G) we say that

- X is directly t-nondeterministic if h(X) contains two different
+

words 81,82 e A,

- X is divectly nt-nondeterministic if h(X) contains two different words
+

We say that X is t-nondeterministic (nt-nondeterministic) if there

exist a directly t-nondeterministic (directly nt-nondeterministic)

letter Y such that X < Y. We say that X is nondeterministic if it is

either t-nondeterministic or nt-nondeterministicy; otherwise X is deterministic.

Now through a (long) sequence of Temmas we will demonstrate that

the assumption that G is unambiguous leads to a contradiction.



Lemma 3. Let 0 be a finite alphabet and Tet b be a symbol not
in 8. Let K¢ 6" b" be an unambiguous EOL language such that
(i). there exists a growing function f: N > N such that, for every
z e K, [prese(z)[ < f(lpresbzl) and
(i1). {[presb(z)]: ze K} is numerically dispersed.
There exists an unambiguous EOL system M = (Z,h,S,A) such that A =6u{b},
L(M) = K, M is clean and if a e h(S) then either o « AT or @ = AB where

A, B e W(M) are such that L(M,) < 6" and LMg) < bf.

Proof of Lemma 3.

Let H be an unambiquous EOL system such that L(H) = K; Tet
H=(Z,h,S,A). We assume that H is clean. Consider a symbol C e W(H)
such that L(HC) n ®+b+ # 0. Since H is clean for every n ¢ N+ there
exists a D ¢ D, such that ID| =m + 1, for some m = n, and C appears
on the m-th level of D. Then Lemma 1 and the assumptions of the lemma

imply that C is b-defermined meaning that:

for every m ¢ N there exists a r e N such that if z ¢ (W'(C)n bt

then z = br.

Hence we have just proved the following result (which we will use in

the sequel).
Claitm 1. If C e W(H) is such that L(HC) ne'b = @, thenC is b-determined.

Consider now all derivation trees in TH’ Given a derivation tree
T ¢ TH of a word z ¢ K we relabel all the nodes of it (except for its root
and its leafs) in such a way that if the label of a node e is E and e
contributes to z a subword in e* then we change E to E@; if e contributes

to z a subword in b* then we change E to Eb; if e constitutes to z a
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subword containing an occurrence of a letter from 6 and an occurrence of

b then we change E to Ee'b'

After we relabel all derivation trees in TH » Wwe get (in the obvious
way) the set of (indexed) productions Pin corresponding to the way that
indexed nodes of relabelled trees are rewritten. The productions in Pin

are over the alphabet V = {S} v A v Ve°b U V8 U Vb u {F} where
Ve;b = {Eegb: Ee N(H)},Vé = {Eez EcW(H)T, Vb = {Eb: E cl(H) Y.
Now let V.=V u V

P V} where Vk = {[Y, £]: Ye:Ve;b} and
{[Y,r]:VYe Ve;b]'

=7
1

Based on Pin we construct two sets of productions R and R as follows.
If S+ o P, s such that either o c 47 or o c Vj V) then S + o c R,

IfTY»>ace Pin where Y ¢ Ve U Vb then Y - o ¢ R.

*
e V

*
IfS~—>ace Pin where o = aq U Qs with a; € Ve, U e Ve;b and cy b

then S - al[U,K] [U,r]<x2 e R.
If Y »a e Py where Y e Vo and o = aja, with oy e v'g, o, ¢ vg or

ag € 9+, Gy € b+ then [Y,£] ~ ap € R and [Y,r] > ay € R.

*

*
IfY~—+>oce Pin where Y € VG;b and a = all}az with ay € Ve, U e Ve;b’ Gy € Vb

then [Y,2] » o [U,2] € R and [Y,r] -~ [U,r]<x25'§.

Now for each letter X ¢ V} we choose one fixed (but arbitrary)
production Ty from R of the form X - o with o « b* and one fixed (but
arbitrary) production %& from R of the form X - o with o ¢ b . Both
productions (ﬂx and %%) are added to R; we also add to R productions of
the form x ~ F where x ¢ A. Moreover, the only productions in R are the

productions specified as above.

Now we change R to the set of productions R1 as follows.
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(1). IfS >0 0y € R where o « Vg and o, € Vg,then we replace this
production by three productions S - AB, A » al,B > s where A, B are

two new symbols. We take care that the sets of symbols {A,B} used for
different productions are pairwise disjoint.

(2). If S » o [U,J[U,rT oy € R where oy Vg, o, < VY, [U,2] € T,

and [U,r] ¢ V},then we replace this production by three new productions
S+ AB, A~ al[U,ZJ and B > [U,r]oc2 where A, B are two new symbols.

We take care that the sets of symbols {A,B} used for different productions
(accounting also for productions from (1) above) are pairwise disjoint.

(3). A11 other productions from R go unchanged to Ry

Finally we set M = (Z,h,S,A) where £ =V and h is the finite
substitution corresponding to productions in Rl. Clearly M satisfies
the conclusion of the lemma. The equality L(H) = L(M) is guaranteed by
the construction of R1 and by Claim 1 above. It is easily seen that M
is unambiguous.

Thus Lemma 3 holds. [

Recall that G = (Z, h, S, A) is an unambiguous EOL system such that
L(G) = K2' By Lemma 3 we can assume that G satisfies the conclusion of
Lemma 3 where 6 = {a}. Let S -~ AB be a production in G where A,

B ¢ W(G) are such that L(GA) = a’ and L(GB) = b

Lemma 4. let z e S(GB)\L(GB) and let X e alph(z). Then X is
deterministic.

Proof of Lemma 4.

Assume to the contrary that X is nondeterministic. Hence for some

directly nondeterministic Tetter Y we have X < V.
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(1). Assume that Y is t-nondeterministic.

Hence b" ¢ h(Y) and b> ¢ h(Y) for some 1 <r < s. Since G is clean,
for every m ¢ N+ there exists a n ¢ N+, n >m, such that

abzn e K and Bb2n+(snr) e K where a, B « {a}+. This clearly yields a
contradiction.

(ii). Assume that Y is nt-nondeterministic.

Hence o, B h(Y), where o # B8, o, B ¢ (W(E))*. Since G is clean,

for every n e N+ there exists a m ¢ N+, m > n,and a derivation D e DG of a
word w of length (m+2) such that on the level m of this derivation (at Teast
one) Y occurs and it is rewritten by a. Since G is unambiguous, if we

pow. change D in such a way that this one fixed occurrence of Y is rewritten
by g (and on the level (m+l) Tetters from B are rewritten into a word from

bﬁ with all other Tetters on the (m+1’)th Tevel being rewritten as in D)

then we get a derivation of a different word w' such that presb(w) = presb(w ).

s
Thus for each r ¢ N+ there exists a s ¢ N+, s > r, such that<1b2 e K

S
andcxb2 9 e K where o € a+ and g is a constant dependent on G only. This

clearly yields a contradiction.

From (i) and (i1) it follows that X must be a deterministic letter. 0

If S > AB 1is a production in G where A, B ¢ W(G) then we call B a
right letter and A a left letter; RG denotes the set of right Tetters in G

and LG denotes the set of left letters in G.

Thus Lemma 4 tells us that with each right Tetter B we can associate
A
the DOL system G(B) and the HDOL systems G(B) as follows. G(B) includes
all letters in W(G) that are reachable from B; if C is such a letter then

the production for it in G(B) is C » vy where v ¢ h(C) and v (W(G))+.
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A
The HDOL system G(B) has G(B) as its underlying DOL system and the
homomorphism g mapping L(G(B)) is defined by g(C) = v' if and only if

] A
v' e b* and v e h(C). By Lemma 4 both G(B) and G(B) are well defined.

The following result is very crucial in our further considerations.
It establishes a lower and an upper bound on the length of a complete

derivation D in terms of the Tength of presb(res(D)).

Lemma 5. There exist constants n, ¢ N+ and €., €, ¢ R+, e, <e,<1,
0 1’ 72 1 72
such that if (wO =S, w1==AB, ...,WK+1) js a derivation in G where k = 1,
n
A is a left letter, B is a right letter and Wigp = y’bz for some y ¢ a+

and n = Ny then eln < k < egn.

Proof of Lemma 5.

First of all we note that for each B ¢ R, L(G(B)) g‘{bzn: nx1}
and consequently (within G(B)) B is a letter without rank. Consequently
we can assume that: if E(G(B)) = Wys Wys = then there exist
QlB’ QZB € R+, QlB > Qop 2 2 such that for each i = 1 we have

Qg < lusl = Qyp- Let Qp = min{Qyy : B e Rg} and Q; = maxiQpp ¢ B « Rg?-

Let(wO =S, w; = AB, ’°'awk+1)J(21’ be a derivation in G such that

—- 2 +
A e LG’ B e RG and wk+1~“>'yb for some y ¢ a and n =z 1. By the above

. +
argument, there exist constants r, s e N', 1 < r < s, such that

A

k n k
rQ2 <2 < sQ1
and consequently
logzr + k1og2Q2 <n < 1ogzs-+klongl.
Since ]092Q2 > 0 and 1092Q1 > 0 we get

n—]ogzs nm1ogzr
109,80, 109,08,
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Consequently there exist constants Ny € N+ and Eps Ep € R+,

= < gy < 1 such that for every n = Ngs €1 N < k < €, M. N

Remark 1. We will often apply Lemma 5 in the sequel. To avoid
unnecessary technicalities (i.e., always using an additional quantifier
"for every n = no“) we will assume that ng = 1. Since the number of
words z ¢ L(G) such that ]presb(z)] < 2"0 s finite, it is easily seen
that such a simplifying assumption does not effect the validity of our

proof of the theorem. 0O

We will analyze now EOL systems GA where A ¢ L.. So Tet A ¢ L

G G

and let Y e W(G) be such that A <.

If Y is a deterministic letter then for every Y' such that Y < Y'
there is precisely one production of the form Y' -+ o where o « (W(G))+
and one production of the form Y' > 8 where B ¢ a+. Thus, once again,
we can associate with Y the (unique) DOL system G(Y) and the (unique) HDOL
system ﬁ(Y).

Lemma 6. G(Y) is a DOL system with rank and moreover rank(G(Y)) < 2.

Proof of Lemma 6.

From the form of words in K2 it follows that G(Y) is a DOL system
with rank.

Assume that rank(G(Y)) = 3.

Thus there exist constants p, q ¢ R, p > 0 such that if Y derives

in G(Y) a word a in k steps, then |a| = pk3 + q.

£ k
Let £ be an integer such that we have S =>AB=>y Y'Y2 B =>

n
! [ 2 i 1 t *
Y1 @Yo B =>vyb~ for some A ¢ LG’ B e RG’ Y12YpsY1 oY BB %,

+
nz1andvyea.
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Thus by Lemma 5, SRUE L+ k < €50, where €15 €y € R are constants

dependent on G only. Hence k = €4 n -£ and consequently

3
ly| 2 p(eln 2 I o (1)
But from the definition of K2 it follows that
2
|y[ S £ O (2)

Since (1) and (2) must hold for arbitrary long v's, we get a
contradiction. Consequently it must be that rank(G(Y)) < 2 and the lemma

holds. [

Hence all deterministic nonterminals reachable from nonterminals
in LG have associated DOL systems either of rank O or of rank 1 or of

rank 2.

Remark 2. Notice that the above conclusion also holds if we consider
a nondeterministic nonterminal (reachable from a Tetter in LG),where we
choose for it, and for each nonterminal reachable from it, one arbitrary
but fixed production with its right-hand side consisting of nonterminals.

In this way we have "selected" a DOL system for the nonterminal considered.

We will analyze now nondeterministic nonterminals reachable from

letters in LG‘

Lemma 7. Let T be a nondeterministic letter reachable from a letter
in LG' If z ¢ S(G) is such that T € alph(z) then z contains exactly one

occurrence of T.

Proof of Lemma 7.
Assume to the contrary that there exists a word z ¢ S(G) such that

z contains two occurrences of T. Let X be a directly nondeterministic
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letter reachable from T. Hence there exists a word z' ¢ S(G) such that

z' contains two occurrences of X.

We consider separately two cases.
e . +
(i). X 1is directly t-nondeterministic. Hence there exist A Gy € a,

Ay # O, such that X =>a, and X =>0y. We consider then two ways of

1
rewriting z' in a termfnal word. In one way the leftmost occurrence

of X in z' is rewritten by aq and the rightmost occurrence of X in z' s
rewritten by Gl in the other way the leftmost occurrence of X in z' is
rewritten by Gy and the rightmost occurrence of X in z' is rewritten by

ags all other occurrences of all letters are rewritten in the same way in

both cases.

Consequently we get two different derivation trees of the same
word in L(G); this contradicts the fact that G is unambiguous.
(ii). X is directly nt-nondeterministic. The reasoning is analogous
to the one above except that there is a step in-between z' and a

terminal word.

Thus the temma holds. [

We will demonstrate now that one can assume that G satisfies also
the following condition:
each element of S(G) contains at most one occurrence of one letter that is

NONAEEErMINT S a0 vttt it ittt ettt et ettt eeen e cnaeneienanns (3)

From Lemma 7 we know that if z ¢ S(G) contains an occurrence of a
nondeterministic letter then z contains precisely one occurrence of this
letter; consequently z contains no more than a bounded number of occurrences

of nondeterministic letters. Each of these occurrences is reachable from



-17-

(an occurrence of) a Tetter in Le and (consequently) each of them will
(eventually) contribute a (sub) word from a’ if z is considered to be a word
in a specific derivation. The key observation now is that z can be

written in the form z = z, 2, where Z4 consists of (occurrences of) Tetters
reachable from a letter in LG and Z, consists of (occurrences of) letters
reachable from a letter in RG‘ But if we consider z to be a word used in

a specific derivation of a word in L(G) then permuting (occurrences of)
letters in z4 with the fixed application of productions attached to
(occurrences of) letters being permuted (and to their descendants) does

not affect the final result of a derivation (which is a word in L(G))!!!

Formally this observation leads us to the following transformation

of G.

For z ¢ S(G) we define its type, denoted type(z), to be the subset
of alph(z) consisting of all nondeterministic Tetters in alph(z). Clearly
the number of different types of words in S(G) is finite. Let
TYPE = {WcZ : W=type(z) for a z e S(G)}
and let
1= {Zt : t e TYPE}
be a new set of letters.

Let A ¢ LG'

Each production from G of the form

A—»oaONl cxlNz...Nmocm
*

wherem = 1, Nl”"’ Nm are nondeterministic letters and Qs G s ...,&mesz

do not include nondeterministic letters is replaced by the production

A - Qp i v ocmZt where t = {Nl,...,Nm}.

A11 other productions from G are not changed.
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For symbols in I we add the following productions.

If t = {N .., N_are nondeterministic letters and,

y ey Nq},where Nl’ . q

1
for 1 <1 <q,

Ni > o5 Nypagp Nyp oo Nimi “im,

*
is a production in G, where m, =2 0, ¢:n, ..., &:. € & do not contain
i i0 m

nondeterministic letters and Nil’ s Nim are nondeterministic letters,
.i

then we add the production

Zt O e O Qog e o uqO - aqm Zf
1 2 q

where t = {Nll,...,Nlml,...,qu, .,quq}

(and we set formally Z—= A if T = p).

t
Lemma 7 and the "permutational property" discussed above guarantee
that the so obtained EOL system is equivalent to G. Obviously the so
constructed EOL system has all the properties that we have required so

far from G and additionally it has the property (3).

To avoid a cumbersome notation, rather than to consider the new
system constructed above, we simply go on analyszing G but we assume from

now on that G satisfies (3).

Let M be a nondeterministic recursive letter. A M-derivation
(YO =M, Yo oo ym)such that m= 1, M ¢ ath(Yi) for 1 < i < m-1 and

M e ath(Ym) is called elementary.

Lemma 8. Let M be a nondeterministic recursive letter. There exists
precisely one elementary M-derivation

Proof of Lemma 8.

We prove the lemma by contradiction.
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Assume that there exist two different elementary M-derivations:

(YO = M,yi, ...,yml) and (YO = M, Yl,...,ymz).
Let us consider the derivation

(6 :5361562,...’

0 6k§1’6@2’ ”.,6%«+ﬁ

i<k

IA

where kO >0, M¢ alph(Gj) for 1

2" +
and 6k6k+1 =>+yb~ for somen =1, vy ea.

0° M e ath(s%fl)’ k >m = max{ml,mz}

k

Thus there exist at least 2™ different derivations in G of words
n
of the form ybz , Where v ¢ a+. But Lemma 5 implies that k0‘+ k = g4 N

where €y € R™ is a constant dependent on G only. Consequently there are

lien-xy)
at least Zm 1 0
n

form ybz , where v ¢ a+. Since K2 contains no more than 2n different

words x. with the property presb(x) = 2n, for n big enough we get several

different derivations in G words of words of the

different derivation trees of the same word, which contradicts the

fact that G is unambiguous.

Consequently, there exists precisely one elementary M-derivation. 0

Let M be a nondeterministic recursive letter and Tet us consider
the unique elementary M-derivation, (M,yl,...,ym), denoted elem(M). We
know that Yo & Vi1 M Yo where Ym1® Y2 do not contain nondeterministic

letters. Then we can write v, _, = Y(m—l)le~1 Ym-1)2> m-2 ~ Y(m-2)1

Mn-2 Y(m-2)22 *++2 Y17 Y11 My Yqps Where M, is the ancestor of M in
Ym» Mm_2 is the ancestor of Mm_1 iy gs e e , Ml is the ancestor of

M2 in Yo The sequence MO = M, Ml’ c.o.s M is referred to as the

m-1
elementary cycle (of M).

The following result is obvious.
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Lemma 9. If M is a nt-nondeterministic recursive letter then the
elementary cycle of M contains a directly nt-nondeterministic recursive

Tetter. 0O

Let M be a nt-nondeterministic recursive letter and Tet

L N

such that Mi is a directly nt-nondeterministic recursive letter (by Lemma 9

.. M be the elementary cycle of M. Let 0 < i < m-1 be

we know that such an i exists). Thus Mi has at Teast two productions in G
with the right-hand sides consisting of nonterminals from W(G): one

of these is the production used in elem(M), it is of the form

M, o Mi+1Bi (where for i = m-1, 1 + 1 is set to 0) and the other one
is of the form M, > p for some §. ¢ (N(G))+. Let NT(Si) be the set

of nonterminal Tetters reachable from (the letters in) 85
Lemma 10, NT(éi) does not contain recursive nt-nondeterministic

letters.
Proof of Lemma 10.

Assume to the contrary that NT(éi) contains a recursive
nt-nondeterministic letter, say U. Let the elementary cycle of U be
UO’ Ul’ cees Urn1 and let 0 < j < r-1 be such that Uj is directly
nt-nondeterministic; let Uj > o be a production that is not used by Uj

in elem(U). Consider then a derivation depicted by the following derivation

tree,
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Part I of the derivation starts at the sentential form where M
is for the first time derived (in kO steps from A); it ends at the
sentential form containing Mi which will be rewritten (to get the next
sentential form) using production Mi »-Si. Part II of the derivation
starts at the sentential form where U is for the first time derived
(from 6i); it ends at the sentential form containing Uj which will be
rewritten (to get the next sentential form) using production Uj > Py

The whole derivation is of length kO + k + 2, where part I is of

Tength at Teast %-and part IT is of Tength at least %u

Now we can modify this derivation (within its subtree rooted at A)

as follows.

When the production Mi > 45 is used, we say that we exit the
elementary cycle of M and when the production Uj +~pj is used we say that
we exit the elementary cycle of U. Thus within the part I we can exit
the elementary cycle of M on the 1st or 2nd or ... or(tg%l)th occurrence
of Mi; similarly within part II we can exit the e]ementaf} cycle of U

on the 1st or 2nd or ... or(}%%J)th occurrence of Uj‘ (Within these

-

changes "the rest of the derivation" remains intact.)

) k| . s
In this way we get at least P%%J-[g?j different derivations
oN
(of the same length) of words x such that presb(x) = b" . By Lemma 5

we know that k2 > Ej? n2 for some constant €y € RY and consequently we
get at least s n2 different derivation trees of words x such that

n
res, (x) = b2 (where s is a constant dependent on G only). Since we
presy

may take n arbitrary large and since K2 contains at most 2n words x

n
such that presb(x) = b2 , G must be ambiguous; a contradiction.
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Consequently NT(éi) does not contain recursive nt-nondeterministic

letters.

Hence the lemma holds. [J

Let us summarize now what we know already about the structure of

derivations in G.

Consider a derivation D of a terminal word z from S where D is of

Tength at Teast two, D = (wg,wp,e.ouwiq)s k21, wy = S, w = 2.

Thus wy = AB where A e L, and B « R,. The last step of D (w

1
is a finite substitution into (subsets of) {a,b}+. In our classification

k=7 Yer)

of derivations in G we will ignore this final step and so we consider the

derivation D = (wo,...,wk).

Thus, except for the first step (S =>AB), D consists of two

derivations DL and DR

originating in A and 5@ is the derivation originating in B. The situation

"running in parallel"; BL is the derivation

may be illustrated as follows:
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&,

o
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ﬁk is a DOL derivation, it is a derivation in the DOL system G(B)

(without rank).

In considering DL we distinguish several cases.
(I). Only deterministic letters occur in (words of) EL. Then EL is a
derivation in a DOL system with rank and the rank of the system is not
bigger than 2. If the DOL system corresponding to EL is of rank 1,
0 <1 <2, then we say that D is of type I1i.
(IT). Nondeterministic letters occur in EL. We consider here separately
two cases.
(ITa). The derivation tree T(ﬁL) corresponding to BL is deterministic.
Then the situation is as in (I): 5L is a derivation in a DOL system with
rank and the rank of this system is not bigger than 2. If the DOL system
corresponding to BL‘is of rank i, 0 < i < 2, then we say that D is of
type 111,
(IIb). The derivation tree T(EL) is nondeterministic. Hence on a path
of T(EL) we have (possibly repeating) the elementary cycle of a recursive
nt-nondeterministic letter, say M, from which the exit is taken at some
point (that is a production leading out of the cycle is applied to a

directly nondeterministic Tetter from the cycle). From this moment on the

tree T(ﬁL) is deterministic. As a matter of fact we have the following

situation. BL is the"superposition"of two derivationslﬁfl) and 5{2>.
5{1) is a derivation in a DOL system with rank where the rank of the

system is not bigger than 2. Also ﬁfz) is a derivation in a (different)

DOL system with rank where the rank of the system is not bigger than 2.

[f the DOL system corresponding to ﬁél) is of rank i and the DOL system

corresponding to 5{2) is of rank j, 0 < i, j < 2, then we say that EL

(and also D) is of type (i.3).
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Clearly there is only a finite number of DOL systems that (either
directly or by their superposition) generate all (types of) derivations

discussed above.

We have classified now all complete derivations in G(for the sake of

completeness, let one step complete derivations be derivations of type 0).

Given a type X (of a derivation) we use C(X) to denote the set of

all words in L(G) that have a complete derivation of type X. Hence

L(6) = ¢(0) v &) e(1i) u&fiLC(IIi) oo gi%((fg e((i,3))).
ool 1:

=0 =05

We will also use the following notation:

kf) c(1i) = ¢(1) and {fj C(11i) = c(11);
i=0 i=0 .

also we write C(i,j) rather than C((i,j))

R

Since G is assumed to be unambiguous, C(X) n C(Y) = @ if X = V.
Also, it is clear that a derivation of type (2,0) cannot exist and so
€(2,0) = 9.

Lemma 11. There exist constants p, r ¢ N and g ¢ R such that

n
Z c C(0,1) v C(1,0), where Z = {amb2 :p<m<qgn and n = r}.
Proof of Lemma 11.

In considering how Z (which will be constructed "on line") is
generated by G we will eliminate systematically all C(X) except for

X e {(0,1),(1,0)}.

n
mb2 €

Clearly there exists p; < N* such that if a ¢(0) v ¢(10)

then m < Py
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m, 2"
If w=a b" e C(I1) u €(I2) and w is derived in (k+2) steps
in G then m > an where a € R+ is a constant dependent on G only. Thus,

by Lemma 5, m > a2!< for some constant a, € R+ dependent on G only.

Hence indeed, there exist Pys 1y € N* and qq € R* such that

3" 2" . =
a b”~ Py snlsq1x1and nzr} n (C(0) v C(I)) = p.

By similar arguments we eliminate C(II), €(0,0), C(1,1), ¢(1,2),
€(2,1) and C(2,2); that is we demonstrate that there exist p, r e N+
and @ e R" such that Z n E = @, where
N

7 ={a"b

:ps<ms<gn and n > r} and

C(0) v c(I) v Cc(IT) v €(0,0) v C(1,1) v c(1,2) v C(2,1) u c(2,2).

E

To eliminate C(0,2) we will demonstrate that if it is not true
that Z ¢ €(0,1) v €(1,0) then it is also not true that
Z ¢ €(0,1) v C(1,0) u c(0,2), To this aim we proceed as follows.

First of all we can assume that if it is not true that
Z ¢ ¢(0,1) u C(1,0) then it is not the case that 7\(C(0,1) v ¢(1,0))
is finite. (Otherwise we adjust parameters p, g and v and obtain Z such
that %:g c(0,1) v C(1,0). Consequently if it is not true that
Z ¢ €(0,1) u C(1,0), then M“\M' contains (at least one) infinite
arithmetic progression, where
M= {m: a"b2" ¢ 7 for some n} and

n
M= m:a"bl ¢ C(0,1) v ¢(1,0) for some n}.

+
Clearly, for every s ¢ R there exists a t ¢ R+ such that, for every

n=r,
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n
#{m: Snbz e C(0,2) and m< s} <t /;

and consequently, for every n z r,

fim: "2 e (0(0,2) u 0(2,0)) and m < Gn} < TV qn

for some t ¢ R+.

Thus on the one hand we know that, for each n = r, the number of

elements in the set

A

n n
Z=1{m:a"b? ¢ 71\ fm:a"b? e (c(0,1) v (1,0))}

is at least t’Efn for some positive real constant t' dependent on G only.

On the other hand we know that, for each n > r, the number of elements
in €(0,2) n % is not larger thanﬂfJﬁgz. Since for n large enough
t gn >'era::, we have proved that if it is not true that
Z < (C(0,1) v C(1,0)) then it is also not true that Z < (C(0,1) v C(1,0)u(0,2)).

Consequently we have "eliminated" €(0,2) and the Temma holds. [J

Lemma 12. L(G) n (C(0,2) v C(1,2) v C(2,1)) is infinite.

Proof of Lemma 12.

2!’)

(1). It is easily seen (using Lemma 5) that if z = a"b* and

z ¢ {(C(I0) v C(I1) v C(I10) v C(II1) v C(0,0) u C(0,1) ucC(1,0) u C(1,1)),

then m < pn for some constant p ¢ N+ dependent on G only.

V n v
(2). If z= a"b? C(I2) then within one fixed HDOL system generating

words of C(I2) m is uniquely determined by n. Thus,for each fixed n,C(I2)

n
contains a finite number of words of the form amb2 .

n
(3). If z=a"b® ¢ (C(112) v C(2,2)) then, again using Lemma 5 it is easily

seen that there exist n e N and 0 € R" such that for n > n, m= B'nz.



-29-

Thus if n>nand pn < <"5n2, then, with perhaps a finite number

of exceptions,

2
™ b2 (c(1)ue(I1) ue(0,0) uc (0,1) ue(1,0)ue(l,1) uc(2,2)).

Thus the lemma holds. [

Lemma 13. Each of the languages: €(0,2), ¢(1,2) and C(2,1) is finite.
Proof.
We will separately consider each of the three cases.

(1). c(0,2).

A derivation of type (0,2) looks as follows

the first step is S =>AB where A ¢ LG and B ¢ RG’

then in the part of the derivation originating in A we have

=k1

v

1 steps of rewriting in a DOL system 81 of rank 0,

- k

v

5 1 steps of rewriting in a DOL system 62 of rank 2, and

2"0

m
the final derivation step yielding a word a O b in L(G).

By Lemma 11 we know that there exist constants p, r e N+ and q € R

such that
m, 2"
Z={a b” : p<m=zgnand nzr} ¢ €(0,1) v C(1,0).
But for n big enough, gn-p is also big enough so that by taking kl
m n
big enough we can generate a word a ! b2 1 where p <m, < gn. Then

=
ny on1

m m ,
however, a * b2 e €(0,2) and a 1b° "« €(0,1) v €(1,0); a contradiction

to our assumption that G is unambiguous.

Hence C(0,2) must be finite.
(2). c(1,2).

A derivation of type (1,2) Tooks as follows
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- the first step is S =>AB where A ¢ L. and B ¢ R

G G’
then in the part of the derivation originating in A we have

-k

v

1 1 steps of rewriting in a DOL system G, of rank 1,

1

-k 1 steps of rewriting in a DOL system 62 of rank 2, and

|\

2
n
the final derivation step yielding the word amb2 for some m, n > 1.

H

Clearly, by Lemma 5, if k2 is big enough then m = t2 for some t < n.
We assume that k1 is big enough so that on a path of the corresponding
derivation tree we have a repetition of a (recursive) letter of rank 1,

say M.

Repeating such a cycle (with the rest of the derivation remaining

"the same") once again,then twice and then three times we get three new

n n n
1 2\1 m2 5 2 m 3

m 3,2
b ,a b and a ”b respectively.

derivations in G deriving words a
Since we have repeated one cycle of M each time, there exists a
positive integer constant s such that ng =N <s,n, -ng<s and

N3 - Ny, < s. Consequently if we have chosen our initial derivation
in such a way that m > n + 4s, then (from the form of KZ) it
follows that mys My and my are squares, i.e., there exist tl, t2 and

_ 42 _ .2 _ .2
t3 such that my = tl, m, = t2 and my = t3.

Thus on the one hand m, Mys Mo, My form an arithmetic progression
and on the other hand they are all squares. This, however, contradicts
the well known fact from number theory (see, e.g., [D] p. 404) that in the

set of squares there is no arithmetic progression of length Targer than 3.

Consequently C(1,2) must be finite. [J
(3). c(2,1).

This case is proved analogously to case (2).

Hence the Temma holds. [J



-31-

However, Lemma 13 contradicts Lemma 12 and consequently our assumption

that there exists an unambiguous EOL system G generating K2 is false.

Thus K2 is inherently unambiguous and the theorem holds. []
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