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A way to understand the structure of a language is to investigate the set of all
subwords that occur in the (words of the) language. A natural first step in such an
investigation is simply to count the number of subviords of a given length in the
language. Let for a language K, sub(K) denote the set of subwords of K, EEEn(K)
denote the number of subwords of length n occurring in K and Tet "K(n) denote . the
cardinality of_gggn(K). Thu54wK is a function of positive integers assigning to each
n the number of subwords of length n that occur in K; we refer to My as the subviord
complexity function of K. One can say that investigating the subword complexity of
a language K forms a numerical approach to the investigation of the subwords of K.

In the first part of this paper we investigate the subword complexity of arbi-
trary languages. In particular we investigate to what extent a homomornhic manping
can influence the number of subwords.

Rather soon it becomes evident that to get a theory of subword complexity one
has to consider languages that have "some structure" (as opposed to arbitrary langua-
ges). We choose to consider the class of languages generated by TOL systems and its
subclasses. In the second part of this paper ve demonstrate how the subword complexi-
ty (which is a global property in the sense that it is defined on a language indepen-
dently of a system that generates it) of an TOL language is'inf1uenced by local
restrictions (that is restrictions concerning the set of productions available) on
an 'TOL system that generates it.

In the last part of this paper we consider global structural restrictions on
the set of subwords of a given DOL language. For example we consider (following [81)
the restriction that no subword of a lanquage is of the form xx where x is a non-
empty word; such a language .is called square-free. It turns out that the square-free
cpndition on a DOL Tanguage restricts the number of possible subwords (of any length)
quite considerably. In this way we see how a structural global restriction influences
the g]obé] numerical measure. o |

- This paper surveys results concerning subword complexity of formal languages
obtained in the last few years; The proofs are not given, they can be‘found in the
cited references. ' -



PRELIMINARIES

We assume the reader to be familiar with the basic formal language theory. We
use standard language theoretic notation and terminology. Perhans the following points
require an additional explanation. In this paper we consider finite alphabets only.
On the other hand, since the problems considered become trivial otherwise, ve consider
infinite languages only (and consequently rewriting systems which generate infinite

languages). For a finite set Z, #Z denotes its cardinality. For a word a, alph(a)
denotes the set of all letters occurring in a and |a| denotes the length of a;
A denotes the empty word. A word o is a subword of a vord 8 if B = va5 for some words
v,6. For a language K, sub(K) denotes the set of all subwords (occurring in the words)
of K and gggn(K) denotes the set of subwords of K of length n.

The following is the central notion of this paper. For a language K its subword
complexity, denoted Mo is the function of positive integers such that ﬁK(n) = #gggn(K)
for each positive integer n.

1. ARBITRARY LANGUAGES

In this section we investigate the subword complexity of arbitrary languages.
First of all ve establish the lower bound on the subword comnlexity of a language;
we notice that there do not exist sublinear (but not constant) subword complexities.
Theorem 1. ([3]). Let K be a language. Either
(1). wK(n) > n+l for every positive integer n, or
(2). there exists a positive integer C such that nK(n) < C for every positive integer
n. o
Then we turn to the investigation of the effect that a homomorphic manning can
have on a subword complexity. That is we investigate the relationshin between h(K)
and Ty for a language K and a homomorphism h. It turns out that in general nothing
meaningful can be said about this relationship.
Theorem 2. ([3]). For every positive integer e there exist aiphaBets 5,2, @
_ positive integer C, a language K ¢ 4* and a homomorphism h : 4% - 2% such that
#2 = e and nK(n) < Cn, "h(K)(n) = e" for every positiye integer n. o
Even if we restrict ourselves to a-free homomorphisms the situation is "quite

"h(K)(n) .

bad": no.polynomial-upper bound exists for the ratio
| mp(n)
K
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Theorem 3. ([3]). There exists a language K and a A-free homomorphism h such
}that for no polynomjal f, "h(K)(n) < f(n)nK(n) for all positive integers n. o
; ‘To get a reasonable upper bound one has, to put some structure on a language K.‘
1A natural first step in this direction is to require that L is a nondecreasing ‘
“function. ! - S o I ‘ |
, Theorem 4. ({3]). Let K c A¥ be a language such that Ty is a nondecreasing func-
‘tion and let h be a A-free homomorphism on A*. Then there exists a positive integer
‘constant C such that, for every positive integer n, “h(K)(n) = CnnK(n). o

We would Tike to remark here that the above result is not true for arbitrary

(not necessarily A-free) homomorphisms.

IT. LANGUAGES GENERATED BY GRAMMARS; THE EFFECT OF LOCAL RESTRICTIONS

! In this section we investigate the subword complexity of Tanguages generated by:
'grammars; we have “chosen to investigate languages generated by TOL systems (see, e.q.,
71). /
A TOL system is a triple G = (A,H,0) where 3 is an alphabet, H is a nonempty fi-
nite set of finite substitutions (called tables) on A (into the subsets of A*)and 0,
the axicm, is an element of z*. If for h € Hand a € 4, a ¢ h(a) then we say that
a » a is a production in G. The language of G, denoted L(G), is defined by
L(G) = {x € 8" : x = wor x ¢ hj...h () vhere k = 1 and hy,...,h € H}; L(G) is cal-
led a TOL language. We say that G is a deterministic TOL system, abbreviated DTOL Sys-
tem, if for every h ¢ H and every a € 4, gh(a) = 1; accordingly L(G) is called a DTOL
language.
Clearly, the setof all woyds over an alphabet A is a TOL language, so nothing
specific can be said about the subword complexity of TOL Tanguages in general. How-
~ever, it turns out that the subword complexity (which is a global feature of a lan--
guage) is sensitive to various local restrictions (that is restrictions on the sets of P
productions available in TOL systems). First of all it turns out that the (effect of
the) deterministic restriction on TOL systems can be "detected by" looking at the sub-
word complexity of generated languages.

Theorem 5. ([11). Let A be a finite alphabet such that #Ao =m > 2. If K is a
— ‘ S S m,{n) :
DTOL language, K ¢ A" then Tim K =0
N M
If G = (s,H,0) is a DTOL system such that #H = 1 then we say that G is a DOL sys-

tem (and L(G) is a DOL language). In this case if H = {h} then we specify G in the

0

form (a,h,w). : .
Again, the restriction of DTOL systems to systems with one table only has an ef-
fect on the subword complexity of generated languages.
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Theorem 6. ([2], [6]). Let K be a DOL language. There exists a positive 1nteger

constant C such that nK( ) = Cng for every posxtwve integer n. o
’ The above resu]t yields the best upper bound because there exist DOL 1anguages
‘W1th a subword complexity of. order n ([2), [61).

‘A natural local restriction on a poL system is a. restr1ct10n on the length of
(the r1ght hand side of) product1ons A DOL system G 7 (A,h,0) is called groving,
-abbreviated as a GDOL ‘s system, if a = h(a) for a ¢ A implies that |a| = 2; L(G) is
referred to as a GDOL language. A DOL system G = (8,h,w) is called uniformly grow-
ing, abbreviated as a UGDOL system , if there exists a t = 2 such that if ¢ = h(a)

fora ¢ a imp]iesuthat la] = t3 L(G) is referred to as a UGDOL Janguage.

‘Theorem 7. ([2), [6]). Let K be a DOL language, ; ,

(i). If K is a GDOL Tanguage then there ex1sts a p051t1ve 1nteger C such that

"K( ) <Cn ]ogzn for every pos1t1ve 1nteger n.
(ii). If Kis a UGDOL language then there exists a positive integer C such that
nK(n) < Cn for every positive integer n. o f

Also the above results ((i) and (ii)) yield the best upper bounds for the sub- i
word complexity of GDOL and UGDOL languages ([2], [6]). |

As far as the effect of homomorphisms on the subword complexity is concerned ve
have the following results.

Theorem 8. ([3}). Let K ¢ A% be a DOL language and let h be a homomorphism of a*.
There exists a positive integer constant C such that “h(K)(n) < an for every positi—’
ve integer n. o ‘

Theorem 9. ([3]). There exists a UGDOL Tanguage K - 2*, a nositive real C and a
homomorphism h of A* such that "h@om)f an for every positive integer n. o

The situation looks quite different if one considers a-free homomorphisms.

Theorem 10. ([3]). Let K ¢ A" be a DOL Tanguage and let h be a A-free homomor-
phism of a*. |
(i). If Kis a GDOL language then there exists.a positive integer C such that
"h(K)(n) < Cn 1092n for every positive integer n.

(i1). If K 1is a UGDOL language then there exists a positive integer C such that
"h(K)(n) = Cn for every positive integer n. o

£

~III. LANGUAGES GENERATED BY GRAMMARS; THE EFFECT OF GLOBAL RESTRICTIONS

i
In this section we consider "structural" restrictions on the distribution of sub-
words in a DOL language.

; Following [8] we say that a word is square-free if it does not have a subword

‘of the form xx where X is a nonempty word. A language is called sguare—free,if it



‘consisis of square-free words only. We will consider square-free DOL Tanguages now.
Clear]y, the square-free restriction is a global restriction (its formulation i% in-
‘depengnt on a DOL system that generates the DOL Tanguage under consideration). It is .
‘also-a structural restriction inthe sense that it talks about the structure of (the
‘distribution of) subwords in vords of. a language. Aga1n also this restriction can be
detected by the subword comp]ex1ty function.

Theorem 11. ([4]). Let K be a square-free DOL language. There exists a positive
“integer C such that nK(n) = Cn ]ogzn for eveny‘positive‘integer n. o

Theorem 12. ([4]). There exist a square-free DOL language K and a positive in-
iteger constant D such that nK(n) > Dn 1092n for every positive integer n. o
{ To put the above results in '@ proper perspective ve report also the fo]1ow1ng
two results (the first of which is stated for arbitrary languages).

Theorem 13. ([4]). If K is a square-free language then nK( ) =z n for every posi-
txve 1nteger n. o

—

f Theorem 14. ([4]). There exists alsquare~free DOL Tanguage K and a positive inte-
1ger constant C such that nK(n) = Cn for every positive integer n. o
Another type of a global structural restriction is the following one. We say that
a language K has a constant distribution if there exist an alphabet 4 and a positive-
integer constant C such .that alph(a) = A for every word in EEEC(K)' Also this struc-
tural global restriction is detectable by the subword complexity function. !
Theorem 15. ([5]). Let K be a DOL language that has a constant distribution.
There exists a positive integer constant C such that = (n) =< Cn for every positive
integer n. o
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