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INTRODUCTION

The Post Correspondence Problem, considered first by E. Post in [P],
is perhaps the most useful problem as far as undecidable properties of formal

languages are concerned (see, e.g., [H], [HU] and [S1]).

It can be formulated as follows. Let z be an alphabet and let h,g be two
homomorphisms of z¥. The Post Correspondence Problem (PCP for short) is to
determine whether or not there exists a word w in 37 such that h(w) = g(w).
If #3 = n then we say that we deal with the Post Correspondence Problem of
Length n (PCP(n) for short).

The set of solutions of an instance of PCP (that is the set of all words
satisfying the equation h(w) = g(w)) is referred to as an equality language.
The "descriptional power" of PCP stems from the fact that it is able to
code computations by arbitrary Turing machines. This is reflected in the fact
that equality languages form a natural base in several characterizations of
the class of recursively enumerable languages and its various subclasses (see,
e.g., [BBJ], [C], [ER] and [S2]). '

One particular aspect of PCPattractedquite a lot of attention.
Since it is such a simply formulated problem of such a strong descriptional
power, it forms an excellent framework for an attempt to formulate a boundary
between "decidable" and "undecidable" ( or "computable" and "noncomputable").
In other words one would like to establish as small as possible u such that
PCP(u) is undecidable and as big as possible bound ¢ such that PCP(2) 1is
decidable. The smallest possible u so far is 10, which is derivable from a
result of Matijasevic (see [C1l]). As far as 2 is concerned the only available
(trivial) observation until now was the fact that PCP(1) is decidable. To
establish whether or not PCP(2) is decidable turned out to be a challenging
open problem.

There are also several results available which establish the decidabi-
Tity or undecidability of PCP not depending on the length but rather on other,
more structural properties of the homomorphisms involved. For example,
in [Le] it is proved that PCP remains undecidable when the involved homomor-
phisms are codes. Several interesting results related to PCP can be found in
[CK] and [KS]. ‘

In this paper we consider a more general version of PCP(2) which is
defined as follows. Let Z, A be alphabets, h, g be two homomorphisms from
2¥ into 2% and let al’bl’aZ’bZ be words over A. The Generalized Post Correspon—



dence Problem (GPCP for shortj is to determine whether or not there exists
a word w in 2" such that alh(w)b1 = azg(W)bz. If #2 = n then we say that we
deal with the Generalized Post Correspondence Problem of length n (GPCP(n)
~for short).

Note that if we set a; = a, = b, = b, = * then GPCP(n) reduces to
PCP(n).

In this paper we prove that GPCP(2) is decidable (and so PCP(2)
is decidable). Our proof involves several new techniques to deal with
homomorphisms. In particular the construct called the equality collector
(of two homomorphisms) plays a crucial role in this paper; we believe
that the theory of equality collectors is worth to be investigated on its
own.

Finally we want to remark that the solution of GPCP(2) that we

present in this paper is a simplified version of the solution presented
in [EhR].




2. PRELIMINARIES

In this paper only very basic notions of the formal language theory

are needed. To fix the notation we specify the following. For other
standard notions and notation we refer the reader to, e.g., [H] or [S].

We consider only finite alphabets, normally denoted by Z. Moreover,
in this paper 2 will be binary, say 2 = {0,1}, unless explicitly stated
otherwise. A free monoid generated by 2 is denoted by 2¥ and its identity,
the empty word, by A. Let st = A {X\}. Elements of z* are called words.
For the length of a word X we use the notation |X|. For an integer n,
In| denotes its absolute value. The number of occurrences of a letter ¢ in
a word x is denoted by #C(x). “For a finite set A, #A denotes

its cardinality. Let z = {al, cee at}. The Parikh-mapping v : A (L

is defined as usual: for 1 <i < t, the ith component of ¥(x) equals to #a_(x).
i

For two words xand:y,x-ly (resp. yx‘l) denotes the left (resp. right)

difference of y by x. Consequently, if Yy = xz then z = x"1

y, and if x is

not a prefix of y. then x—ly is undefined (or, using another formu-
Tation, is the empty set of words). Certainly, the notions of the differences
can be defined for languages as well. For instance, for languages L‘1 and
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o1
L2, L1 L2 = {X "y | x ¢ Ll’ y € LZ}.

If a word x is a prefix (resp. proper prefix) of a word y we write
x pref y (resp. x p-pref y). If either x pref y or y pref x (reps. x p-pref y
or Y E:E£§f x) then we write x Pref y (resp. x p-Pref y). The notation
pref(x) denotes the set of all prefixes of X, while the notation Eﬁﬁfn(x)is
used to specify the prefix of x of the length n. By definition, if
x| < n then_grgfn(x) = X. For a language L,pref(L) (resp. p - pref(L))
denotes the set of all prefixes (resp. proper prefixes) of words in L. A1l the
notions defined above for prefixes can be defined for suffixes as well.

Then the notations of pref or Pref are replaced by suf or Suf.




Ry
The notion of a homomorphism from ¥ into a* is central for this paﬁer.

With the exception of sections 2 and 4 we consider \-free homomorphisms only, 1i.€.

homomorphisms for which h(a) # , for all a in z. The following two classes

of homomorphisms over 3 = {0,1} are important for us. We call a homomorphism

h : z* + 2% periodic if there exists a word p such that h(z) c p*. By a
marked homomorphism we mean a \-free homomorphism h satisfying Eﬁﬁfl(h(o))'#

pref,(h(1)).

Certainly, the above notions can be defined for arbitrary alphabets
as well (provided that the cardinality of the range alphabet is at least
as large as that of the domain alphabet). It is well-known that a binary
homomorphism h is nonperiodic if and only if h(01) # h(10) 1if and only

if h is injective.

We state now the central problem studied in this paper. This problem
was introduced and first studied by Post [P]. Later on the problem has
turned out to be one of the most useful decision problems within the

formal language theory.

Definition 2.1. Let h and g be two homomorphisms from »* into »*

The Post Correspondence Problem (PCP for short) is to determine whether
or not there exists a word w in £* such that h(w) = g(w). If #2 =n

then we say that we deal with the Post Correspondence Problem of length n

(PCP(n) for short).

In this paper we shall show that PCP(2) is decidable. In fact, we shall
show that even a more general problem than PCP(2) is decidable. The general-
ization, for which the motivation becomes evident in the next section, is

as follows.

Definition 2.2. Let h and g be two homomorphisms from »* into a* and

let al,bl,az;b2 be = words over A. The Generalized Post Correspondence Problem
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(GPCP for short) is to determine whether or not there exists a word w in 5"
such that ah(w)by = a,g(w)by. If #3 = n then we say that we deal with the

Generalized Post Correspondence Problem of length n (GPCP(n) for short).

Let h,g,al,bl,a2 and b2 be as in Definition 2.2. Then I = (h,g,al,bl,az,bz)
is an instance of GPCP. We shall show that GPCP(2) is decidable, i.e.

that there exists an algorithm which decides for a given instance I of

GPCP(2) whether or not there exists a word w in 2" satisfying alh(w)bl': azg(w)b2
or, in other words, whether or not I has a solution. When studying the decidability
status of GPCP(n) we can certainly restrict the considerations to the case

when 3§ = A. Consequently, in the sequel z = A = {0,1}.

Let I be an instance of GPCP(2) as above. We say that I is periodic
if either h or g is periodic, and that I is marked if h and g are marked. It

will turn out that it suffices to show that the problem is decidable for

periodic and marked instances of GPCP(2).

Finally, we say that I, or a pair (h,g) of homomorphisms, is unbalanced
if either |h(i)| = |g(i)|, for i = 0,1, or |g(i)| = [h(i)], for i = 0,1.

Otherwise I or (h,g) is called balanced.




3. REDUCTION LEMMA

In this section we show thal in order to solve PCP(2) it suffices to

consider two kinds of homomorphisms: periodic and marked.

Reduction Lemma 3.1. For an instance I = (h,g,x\,2,%,%\) of PCP(2),

where h and g are nonperiodic, one can effectively construct a marked
instance I' = (h',g',ai,bi,aé,bé) of GPCP(2) such that I has a solution

if and only if I' has a solution.

Proof. Let cyey be a mapping {0,11* -+ {0,1}* defined as follows.
For words w = cu, with ¢ € {0,1} and u € {0,1}%, cycq(w) = uc and
cyei (M) = A Let cye = (glgl)k. Clearly, for any mapping

f: {0,13* > {0,13" and any word x in {0,1}"

(1) ey (F(x)) = (prefk1<f<x>}>‘1f<x> prefy (F(x)),

where 0 = k; < | f (x)| and ky = k mod (| £ (x)]).
Now we start constructing I'. Since h and g are nonperiodic h(01) # h(10)

and g(01) # g(10). Let z (resp. v) be the maximal common prefix of h(01)
and h(10) (resp. g(01) and g(10)). By symmetry, we may assume that |z| = |v].
We define

h' = cyepoh and o' = gyc 00,

2]
By the choice of z and v, h' and g' are homomorphisms and moreover they are
marked. Further we set

ay = sufyy v (2) = b s

a5 = A = bl,

Then, by (1), it is immediate that I has a solution if and only if I' has

a solution.
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The above gives a motivation to study the Genéralized Post Correspondence
Problem. Indeed, the replacement of arbitrary hofmomorphisms by marked ones,
which is very essential in our later considerations, can be done via this
generalization. The above reduction lemma can also be formulated for instances
of GPCP(2). The reason why we took a nongeneralized case separately is that

we want to have as simple as possible proof of the decicability of PCP(2).

Lemma 3.2. For an instance I = (h,g,al,bl,az,bz) of GPCP(2), where h and
g are nonperiodic, one can effectively construct a finite set MAR(I) of
marked instances of GPCP(2) and a constant q such that I has a solution of

the length at Tleast q if and only if some instance in MAR(I) has a solution.

Proof. We use the notations from the proof of Reduction Lemma. The

homomorphisms h' and g' are defined in the same way. The words ai and aé are now

ai = alz and aé = a,V.

To define the b-words Tet r be the minimal integer such that for every word
x € {0,1}, with x| = r, |h(x)] = |h(01)] and |g(x)| = |g(01)]|. Then,

for each u in {0,1}" with |u] = r, we define

bl

-1 . -1
1,u=¢ h(u)bl and bz,u =y g(u)bz.

Finally, let
MAR(L) = {(h',g",a3,b] »a5,by )|u € {0,137}
and

q = 2r.
Then the Temma follows. Indeed, for words w,u € {0,1}*,with |w| = r and |u| = r,

a].h(wu)b.i = ajh'(w)bi’u , for i =1,2,



4. PERIODIC INSTANCES

In this section we settle the case when at least one of the homomorphisms
involved in an instance of GPCP(2) is periodic. This also shows why we can
restrict our attention to \-free homomorphisms elsewhere. Indeed, a homomorphism
over a binary alphabet which is not -free is periodic. Basically, the solution

is similar to that presented in [KS] for PCP(n), see also [CK].

Theorem 4.7. It is decidable whether or not.an instance

I = (hsgsa7,bysa,,b,) of GPCP, with h periodic, has a solution.

Proof. Let h(z) ¢ p* . Define

-1 -1 -]
Ly =g (ay "app'byb, )
Ly = {x ¢ 2* ! th(x)| - lg(x)] = lasb, | - ]algli}_ i
\
and
L = Ll N L2 .
Then, clearly,
y €L j
iff |
-1, -1 % . -1 E
y€g (82 a;p byb, ) and [h(y)| - [g(y)| = |asbs| - |alblj |
iff
a,9(y)b, € a;p by and [a; h(y) by| = |a, g(y) by|
iff
*
529(Y)b2s a h{y) bl € a|p bl and lal h(y) bll = }az a(y) bg!
iff

Hence I has a solution if and only if L is nonempty.
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The emptiness of L is seen to be decidable as follows.

Let ¥ : 2* = N'Z be the Parikh-mapping. Then

Lynly,=piff y(Lynl,) =0 iff y(ly) ny(L,) =0,

where the Tast equality follows since Ly = w"l(w(LZ)).

Now observe that Ll is regular and hence w(Ll) is semi-linear in the sense of [G].
The set w(LZ), in turn, consists of nonnegative solutions of a linear equation
and so it is effectively semi-linear. Finally, the intersection of two semi-
linear sets is also effectively semi-linear. Hence the result follows. If

necessary, the reader may consult [G].

We want to emphasize that the assumption of a binary alphabet is not at

all needed in the above proof.
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5. SOME SPECIAL INSTANCES

In this section we deal with some relatively simple cases which turn
out to be important for the general solution and which we must settle sepa-
rately.

First we consider unbalanced instances of GPCP(2).

Theorem 5.7. It is decidable whether an unbalanced instance I of

GPCP(2) has a solution.

Proof. Let I = (h,g,a1,b;,2,,by) with [h(i)] = [g(i)], for i = 0,1. We

define recﬁrsive1y the sets Ui as follows:

-1

-1
U0 = {(32 al,h), (al

3,59)}

)-1

Uipg = {(h(C)'l xg(c)»9), ((xg(c)) = h(c), h)| (x,g) € U;, c € {0,1}}

U t(a(e) xh(c)s h),((xh(e)) 7 glc)s a)] (x3h) € Ui ¢ € 0,13}

By definition, (undefined,h) and (undefined,g) are undefined.

Intuitively, Ui gives all words u such that either ay hiy) = a5 g(y) u or
Ay h(y) u = 2, g(y) for some word y with the Tength i. Moreover, the second
component indicates which homomorphism is "ahead".

C1ear1y; I has a solution if and only if some Uj either contains an element
(u,h) such that b1 = ub2 or it contains an element (u,g) such that uby = bZ'
But, .by the form of (h,q) and by the recursive definition of the sets Ui’
for each natural number g,there effectively exists a constant nq such that

oo

any - (u,h) or (u,g), with |u| = q, occurs in W U, if and only if it
n i=0

occurs in L:? Ui'
i=0

So the theorem follows, since we must only check whether (blb'é1

(b,b71on) s in \J U, .
j=0 !

,g) or
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The instances of GPCP(2) considered in the following four lemmas are
called special. Our general techniques do not apply to them. The reader
may;skip these four lemmas now and return to them after getting a
motivation from section 7.

In what follows u denotes @ mapping of {0,1} onto {0,1} which

is either the identity or the cyclic permutation, i.e.

w(0) = 1 and p(1) = 0,

Lemma 5.1. It is decidable whether or not an instance I = (h,g,al,bl,az,bz) of
GPCP(2) with h and g of the form

h(i) € (J(-3N%F - gle(i)) € Ga-iN%
h(1-1) € ((1-3)3)*(1-3), a(u(1-1))e ((1-3)3)*(1-3) ,

for some i and j in {0,1}, has a solution.

Proof. Clearly, we may fix i and j, say i = 0 and j = 0. Then
h(0), g(u(0)) € (01)*0 and h(1), g(u(1)) € (10)1.

We start to "chase" a solution of I by generating the sequences

(al,az), (al h(il), ay g(il)),(a1 h(iliz), a, g(iliz))g -

and

such that 3y h(il e it) p-Pref a, g(il...it) and
h(js...jl)bl p-Suf g(js...jl)b2 : fpr t 2»1 and s = 1.‘
If for instance a; = az,then we actually generate two sequences from Teft to
right.
The basic observation is that as long as the sequences4can be generated,
0's and 1's occur alternatively, i.e. il...it and js...j1 are in
pref(01) * U pref(10)*. Hence, it can be decided whether or not at least one of these

sequences is infinite and does not go into a cycle, i.e. at least one of the sequen-

ces of the differences. ig unbounded T1F +hic 3¢ +he racn 1+ cffermae hy +ha aklnun
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periodicity, to check whether or not 3, h(il,..iq)b1 = a, g(il‘k.'q )
some q smaller than an-effectively computable constant.

In the other cases there are only a finite number of words to be
checked through (including the words which are obtained by continuing the

above sequences by one step in the case when both of the sequences terminate

because the proper prefix or suffix requirement'is not fulfilled).

Lemma 5.2. Let I = (h,g,al,bl,az,bz) be an arbitrary instance of GPCP(2)

such that h and g are of the form

h(i) e §* . ae(inedt s
h(1-1) € (1-3)%3% » (-1 e (=937

where i and j are in {0,1}, ke = 0 and if k # 0 (resp. ¢ # 0) then

lg(u(i))| > k (resp. h(i)] > ¢). It is decidable whether or not such an arbi-

trary I has a solution.

Proof. By symmetry, we may set j=0,j=0and ¢ =0. Consequently,
h(0) € 0%, h(1) € 1%0K, g(u(0)) € 0% and g(u(1)) € 1%, with |9(u(0))] > k.

By Theorem 5.1., we may further assume that I is balanced.
Again we start to ichase" a solution by generating the sequence

(31,32)» (alh(il)s ) g(il))s (al h(iliz)a a5 9(11i2))-"

such that a; h(il...it) Pref a, g(il...1t). In the case of a; = a, we actually

generate two such sequences and if in these sequences at some stage the
components are equal, then the sequence may branch into two sequences. Observe,
however, that because of the form of (h,g) the branching may happen only at

er of sequences obtained

the very beginning and so oOne can consider a finite numb

in the above way. Let us consider such a sequence.

TR e b

g g R

Fpen

T R
e o
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Now the following observation is crucial. Let (ay.f;) denote the

ith element in the above sequence. The number of change points, i.e. the

number of positions where the letter changes into another One in the words

g, or Binlai’ does not decrease. This is certainly true if [a;] = a, |

a5 Py
cince in that case every time when a change point is neaten up" (during the

generation of the sequence), @ new one js produced. And this fis also true in the

case la1\ < |a

process, i.e. when al-la2 is "eaten up". Here the inequality \g(u(O))l > k

is needed.
The above guarantees that we can effectively decide whether
of a solution leads to a solution.

Lemma 5.3. For an instance I = (h,g,al,bl,az,bz) of GPCP(2) with h and

g of the form

h(i) =73 , g(u(1)) = 3>

I

h(1-1) = ((1-)3MN(I-3)  glu(i-1)) = (1-3)3M" (-3

where i and j are in {0,1}, n = 1 and N # M, it is decidable whether or not it

has a solution.

If u is the identity,

Proof. As before we may set i=0andj=0.

then (h,g) is unbalanced and we are done. Consequently, h(0) = 0, h(1) = ¢(107)

g(0) = (10”) 1 and g(1) = 0. If uis a solution of I, then necessarily

#i(a1 h(u) bl) = #i(a2 g(u) bz), for i = 0,1, i.e.

{
Yy

(1-nM) #(u) + (nN-1) #,(u) =

(1)
-(M+1) #,(u) + (N+1) #,(u) =

!
=

where k. = #i(azbz) - #1(albl) for i = 0,1. Since

= (n+1) (N-M) # 0

1-nM  nN-1
D..»

- M-1 N+l

or not our chase

n,N

2\ vith the possible exceptions occurring at the very beginning of the

1,

TR T T R

e A TR B

e e Thie S R T ofd

AR BT

S

ER T R

s TR

G R
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the system (1) has a unique solution, which proves the Temma.

Lemma 5.4, Let I = (h,g,al,bl,az,bz) be an arbitrary instance of GPCP(2)
with h and g of the form
L.l
JJ s
(1-5)5%

h(i) =3i" g(u(i))
h(1-i) = (1-5)i" » g(u(1-1))

i
]

for some i and j in {0,1} and n,m,2,k = 1 with n+m # k+£. It is decidable

whether or not I has a solution.

Proof. We again set i = 0 and j = 0. The case when p is the identity
is clear. Indeed, when chasing a solutijon every time 1 js "eaten up" another
is created and this is the only way how 1 may appear. We leave the details

to the reader.

So assume that h(0) = 00", h(1) = 10", g(0) = 10X and g(1) = 00°. We use

the same argument as in the previous proof. Now we obtain

(n+1-k) #o(u)+(m-(£+l)) #l(u)=k0

(2)

~#O(u)+ #1(u)=k

where ki = #i(a2b2) - #i(albl)’ for i = 0,1. Now the determinant of (2) is

n+l-k m-£-1
= (n+m)-(k+¢) # 0

-1 1

Since D # 0, we are done: the possible solution can be found from the set

{u | u satisfies (2)}.
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6. ECOL CONSTRUCTION

Now we have come to the central point of our solution for GPCP(2). As
justified by results in section 3 we consider from now on marked homomorphisms
only. For these homomorphisms and for instances of GPCP(2) involving such
homomorphisms we present the transformation called the equality collector.

~ This is the fundamental notion of our solution.

%

We start by an intuitive description of the basic idea behind this construction.
Let h and g be marked homomorphisms and let a and p be two words for which
ap-Pref B, say a is a proper prefix of g. We are interested in finding two words

u and v such that ah(u) = pg(v). A natural way to start is as follows. Since B is

"ahead" we look at the first letter of the difference amlﬁ, and since his |
marked this letter defines uniquely a letter il from {0,1} such that (if

the required u and v exist at all) then u must start with il’ We iterate

the process until a‘word il...irl is found such that ejther o h(il"'irl) =p Or

B is a proper prefix of « h(il...irl). In the second case we continue by changing
the roles of h and g. Finally we get one of the fo]1owing_pos$ib11ities.

Either the process ends successfully, i.e. we find words il...ir and jl...js

such that « h(il...ir) = B g(jl...js), or it blocks (i.e. in some step the

continuation is not possible) or it continues "infinitely Tong".
We formalize the above in the following way.

Definition 6.1. Let h and g be marked homomorphisms of {O,l}* and Tet

a,B € {O,l}* with a Pref p.We define an (a,p)-sequence with respect

to h and g, in symbols (a,Bjh g’ inductively as follows:

() (@p) O = () .
h,g
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(i1) For 3 = 0
@ (i) 8 i (@p) < (e,

la'| < [B'] and a' h(i) Pref ' »
@et o) it @) - e,

la'| > |B'] and a' Pref B' g(i).

CRNS

Let (a,B)éj% = (QJ,B.) whenever it is defined. We say that (4,8)

J h,g

- is successful if,for some j ay = B. (i.e. the process terminates

i
for this reason), .
- blocks if for some j a p-pref Bj and it is not true that
a; h(i) Pref Bj, for i in {0,1}, or Bj p-pref o and it is not
true that oy Pref Bj g(i),for i in {0,1},

- is infinite if (aj,sj) is defined for all j.

I i write s{(a, = q.(=8.).
n the first case we (a B)h,g) aJ( BJ)
Clearly, the above classification is exhaustive. Observe also that

if (a,B)h g is successful, then for some words u and v
a h(u) = 5((“35)}1’9) =B g(v)

and, moreover, u and v are minimal, i.e. the above equation does not hold
for any pair (u',v'), where |u'| < |u] or |v'| < v. The following

Temma is also obvious.

Lemma 6.1. Given an arbitrary pair (h,g) of homomorphisms and words

a and g, it is decidable whether or not the sequence (a,B) is succesful,

h,g
infinite or blocks.

Before setting our central definition we need some notations.

Let (h,g) be an ordered pafr of marked homomorphisms. Then a mapping Mg
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(or p for short) of {0,1} onto {0,1} is defined by

=
-
—
N
]

i fori=0,1, if pref; (h(0)) = pref; (g(0))
1-i  for i = 0,1, if pref, (h(0)) # pref; (g(0)).

L]

-
—_—~
-t
g
]

Consequently, Erefl (h(i)) = Erefl g(u(i)), for i = 0,1. We call a pair (h,g)
of marked homomorphisms successful if both (h(0), g(p,(O)))h g and
(h(1), g(u(l)))h g are successful.

Definition 6.2. Let (h,g) be a successful pair of homomorphisms. Then

the equality collector of (h,g), denoted as ecol(h,g), is the pair (E;E)

of homomorphisms of {O,l}* defined by

R(0) = h7(s((h(0)> 9(u(0)))y o)) B(1) = W Hs((h(D), 5(u(1)))y o)

9(0) = 97 (s((0(0), g(u(0)))y o)) 9(1) = g7 (s((h(1), 9u(1))), ).

1

s9

The following remarks concerning the above definition are in order. Since
h and g are marked they are inonperiodic and hence injective. So the values
of'ﬁ(i) and g(i) are well-defined. Observe also that h and E'are marked.
Finally, we want to emphasize that the above definition can be described in
a very illustrative way. Indeed, since the pair (h,g) is successful we

have something as follows:

h(0) = h(i;) h(iy)
' 1 } : ~|
I } 4 4
9(1(0))=9(3;) 9(3,.)

and
h(1) = h(k;) h(k)
i ¥ 3 ;| 1‘_ i
! ’ ; 1 4
g9(1(1))=9(n;) g(n,)
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With these notations

h(0)

9(0)

i
. -de
—
.
.
o
o
=
—
—
S
i
-~

L}

()
[y
[ )
=
[{e]
o~
[
—
Hi
=
[y
=

Observe also that
h(h(i))= g(g(5)) , for i = 0,1

i.e. the pairs (F(O),'E(O)) and(ﬁ(l),'g(l)) are solutions of the
equation h(u) = g(w). Moreover, they are the only minimal solutions, i.e.

for any solution (u',w') either E(O) pref u' and 5{0) pref w' or F(l)_gﬁgf u'
and g(1) pref w'.

The " usefulness of the ecol construction relies on the fact that (E;E),
if it exists, is a"smaller"pair of homomorphisms than (h,g) (except for some
special cases).

To be able to show this we now define what we mean by "smaller".

Definition 6.3. Let (h,g) be a pair of homomorphisms of {0,1}*. We

define the size of (h,g), in symbols o(h,g), to be

o(h,g) = #p=sufth(0),h(1)} + #p-sufyg(0), g(1)3.

We first'show that the ecol construction never enlarges the size of a

pair of homomorphisms.

Lemma 6.2. Let (h,g) be a successful pair of homomorphisms and Tet

ecol (h,g) = (h,g); Then

o(h,9) = o(h,g).

Proof. Let us recall the figure following Definition 6.2, i.e.

]Et‘h(il"'it)-: 9(j1"‘jr) and h(kl"‘ks) = 9(“1"'nq)’ where ip =0,

ky =1 and "t,r,s and q are as small as possible, so that h(0) = il...ét,
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. We consider the sequences

=
—~
Yo
~—
i
>
o
=<
{72
-
(I
——
[ew)
N’
H

jl"‘jr and g(1) = nl...nq

21,...,Zt+r.}2 and yl"'°!ys+q;é

of nonempty labeled suffixes encountered in the step by step generation of
the successful sequences (h(0), g(;,L(O)))h,g and (h(1), 9(“(1)))h,g’ respectively.
The suffixes are labeled in the sense that each of them contains also infor-
mation whether it is obtained from {h(0), h(1)} or {g(0), g(1)} in the
construction.

We firstobserve that nejther the z-sequence nor the y-sequence can
contain repetitions. This is because h and g are marked and the sequences.
(h(0), g(u(O)))h’g and (h(1), 9(“(1)))h,g are successful., If the same holds
true for the combined sequence ZyseeesZi i os y,...,ys+q_2 we are done.

Indeed, in that case
olh,g) >t +r+s+q-4-= GGLE)

It remains the case when for some m

1A

t+r-2 and ¢ < s+g-2 20 =Y,
Let ¢ and m be minimal. Then

olhsyg) 2t +r-2+12 <

[
i
Q
—~
=
-
(o]
~

which completes the proof of the Temma.



-20-

7. DETAILED ANALYSIS OF ECOL(h,g).

In this section we sharpen Lemma 6.2. We analyse the implications of the
equality C(ELE) = o(h,g). It turns out that the equality is possible only

in some special cases.

Lemma 7.1. Let (h,g) be a balanced and successful pair of homomorphisms

and let ecol(h,g) = (h,g). If

o(h,g9) = o(h,g)

then either

(1) L = {h(0), h(1), g(0), g(1)} < pref (01)" Upref (10)*
or
(1) {h(i), g(u(i))y < 3* for some i and j in {0,1}.

Proof. The basic argument Of the proof goes as follows:

By the proof of Lemma 6.2, the equality means that all the suffixes from

{g(0), g(1)} and from {h(0), h(1)} are encountered in the construction of (h,q).
In particular, it follows that for any proper suffix « from {h(0), h(1)} (resp.
from {g(0), g(1)}) efther<;£§§j g(0) or a Préf g(1) (resp. a Pref h(0)oor

a Pref g(1)).

We have two cases.

I, p=m’in{§x}%X€ Ly > 1.
We assume that (i) is not satisfied, i.e. L contains a word 00 (or symmetri-

cally 11) as a subword, say
h(0) = %100x,, . for some words x; and XZ'

Then, by above, either g(0) Pref(xil h(0))or g(1) Pref(xil h(0)) Let this
be true for g(1). Then, since |g(1)| = 2,

g(1) = 00x, for some x, .
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Hence h(u(1)) starts with two 0's, say
h(u(l)) = Oqu for some Xg-

We apply our basic argument and conclude that the situation can be

illustrated as:

- hlu(1)) ;
0-0 v ’ all of these
gd 0 | S ~ are g(1)'s.
0o

A

i.e. h(p(l)) € 0% . Symmetrically g(1) 0%, and so (i) is satisfied.

I1. o= 1.
Let |g(0)] = 1, say g(0) = 0. If h(n(0)) € 0% we are done: (ii)iis satisfied.
So assume that

h(p(0)) = Ox51x6 for some Xg and X
Now the basic argument, applied to the suffixes X6 and 1—1h(u(1)) of {h(0),h(1)},
yieldé that -

9(1) € (107)*1

(remember that [g(1)|=>1, because |9(0)| = 1 and (h,g) is balanced).
FIf g(1)= x711x8,f0r some X and x8,then proceeding as in the case I
we ' conclude that either (ii) is satisfied or h(p(1)) = 1.

Assume first that h(u(l)) # 1. If (ii) is not satisfied, then
g(1) ¢ (107)*1.

Now we again apply our basic argument. To obtain all the suffixes of g(1),

necessarily

g(1) € (10)*1.
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This is because h(p(0)) = Ox51x6 and h(p(l)) = lxg,for some Xq. Moreover,

h(w(0)) must be of the form
h(p(0)) = lelO for some X100

Now we claim that h(u(0)) cannot contain two consecutive 0's or 1's.
This follows, adain by our basic argument, since a(0) = 0, g(1) ¢ (10)+1 and

_ngfz (h(n(0)) = 01. Consequently,
h(1(0)) € pref (01))".

Exactly the same argument shows that
h(i(1)) € pref (10)*

Now instead of pref, (h(pn(0))) = 01 we use the equality pref, (h(p(1))). = 1.
So (i) is satisfied in this subcase.

The remaining possibility-is -» h(p(1l)) = 1, i.e. we have altogether
g(0) =0 h(n(0)) € (01%)%0 ,
g(1) € (1091, h(u(1)) = 1 ,

where the formula for h(p(0)) follows by symmetry.
Again we apply our basic argument to g(1) : either h(n(0)) ¢ 0" or
(1) € 1" or g(1) is in (170)*1. The first two possibilities lead

to (ii). Hence, by symmetry, the remaining case is:

g(0) = 0 h(1(0)) € (0'1)%0
g(1) ¢ (170)"1 , h(p(1)) = 1

In this case our basic argument immediately yields that

g(1) ¢ (10)*1 and  h(u(0)) ¢ (01)*0 |

Hence, (i) is satisfied and our proof is complete.
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We will analyse now special cases of Lemma 7.1. In the case
(i) we have the following 7 possibilities (remaining cases are symmetric

versions of these):

I h(0) € (01)" g(u(0)) € (01)"
h(1) € (10)° g(1(1)) € (10)" .

11 h(0) € (01)"0 , g(p(0)) € (01)"
h(1) € (10)" g(1(1)) € (10)"

111 h(0) ¢ (01)°0 , a(u(0)) € (01)"
h(1) € (10)"1, 9(u(1)) € (10)"

IV h(0) € (01)"0 , 9(1(0)) € (01)°0 ,
h(1) € (10)° g(u(1)) € (10)°

v h(0) € (01)"0 , g(u(0)) € (01)"
h(1) € (10° , g(k(1)) € (10)"1 .

VI h(0) € (01)70 , 9(u(0)) € (01)"0 ,
h(1) € (10071 , 9(1(1)) € (10)"

VII h(0) € (01)"0 , 9(1:(0)) € (01)70 ,
h(1) € (10)°1 , 9(1(1)) € (10)1 ,

We must use different techniques in different cases.

First we show that the cases II and V are impossibie.

Lemma 7.2. For pairs of homomorphisms of the form II or V, the

sequence (h(0), g(“(O)))h,g is not successful.

Proof. In case II the relation h(0x) Pref g(u(0)y) implies that

x ¢ 1¥ and y ¢ (u(0))*. Hence the result follows because
sufy (h(1))# suf; (9(u(0))).

The case V is even simpler. Indeed, the relatijon sufy (h(0)) =sufy (h(1)) #
EEfl (g(u(0))) t'§gjd-(g(u(l))) guarantees the result.
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In cases I, IV and VI (h,q), if it exists, is strictly "smaller"

than (h,g).

Lemma 7.3. Let (h,g) be a balanced pair of homomorphisms of the form

I, IV or VI. If (h,g) is successful, then o(h,g) < o(h,g).

Proof. In case I suffixes (10*)1 are not encountered in the construction of

(h,g). In case IV the same holds true for the suffix 0 of h(1).

In case VI we first conclude that, because (h,g) is balanced, either h(0)
or h(1) is of the length not smaller than three. Consequently 0 or 01 is a
proper suffix in {h(0), h(1)} but it is not encountered in the construction of

(h,g). This is because §gfl(g(0)) = Esz(g(l)) = 0 while suf '1) =

-1

L(h(0)0

sufy (h(1)(01)7) = L.
Case III is dealt as follows.

Lemma 7.4. For pairs of homomoprhisms of the form III and VI either

(i) (H(O),"ﬁ(u(O)))ﬁ;g or (ﬁ(l),'g(u(l)))ﬁ;g is not successful,
or
(i1) 'h(i)] = Jq(i)] for i = 0,1

Proof. In this case the relation h(0x) = g(p(0)y), with x and y minimal,

implies that x ¢ (10)*1 and y ¢ (u(O))*. So by symmetry,

n(0) € (01)*, 3(0) € (u(o))",
F(1) € (10)", 9(1) € (u(1))"

Consequently, the result follows.

The case VII is one of our special cases from section 5 (cf. Lemma 5.1).

So our analysis of case (i) of Lemma 7.1 is finished.

Now we consider case (ii) of Lemma 7.1.
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Lemma 7.5. Let (h,g) be a successful and balanced pair of homomorphisms
such that {h(i), g(u(i))} < j* for some i and j in (0,13}, and Tet
ecol(h,g) = (h,g). If o(R,9) = o(h,g), then either the pair (F,g) is not

successful or h and g or h and g are in one of the following forms:

, h(i) € 5 9u(i)) € 3*
(1) . L F ok
h(1-i) € (1-3) J

b4

, 9(n(1-1) € (1-3)%5°,

where i and j are in {0,1}, k¢ = 0 and if k # 0 (resp. ¢ # 0) then

lg(n(i))] > k (resp. |h(i)] > ¢); or

(i) h(i) =3, g(u(i)) =3,
h(1-1) = ((1-3)3MN1-3) ,0(ua-1)) = ((2-5)5™M(1-5),
where i and j are in {0,1}, n> 0 and N # M; or
(11) h(i) = 3 3", g(n(i)) =3 3%,
h(1-1) = (1-3)i" | g(u(1-1)) = (1-5)5%,

where i and j are in {0,1}, and n,m,k,z > 1 with n+m # k+z.

Proof. By symmetry, we may set i=0 and j=0. Hence our starting

point is as follows:

h(0) € 0F | g(1(0)) € 0"
h(1) € 12% g(e(l)) € 1z* |

As in the proof of Lemma 7.1. we iteratively apply the basic argument

presented therein. We consider separatély  three djfferent cases.
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I. h(0) = 0 = g(u(0)).

Since (h,g) is balanced if h(1) or g(u(1)) contains 11 as a subword then

they are béth,in 1t (cf. case I of the proof of Lemma 7.1). Consequently,

(i) is satisfied or otherwise h(1), g(u(1)) ¢ Eﬁgﬁ (10")*. In the  latter

case the suffixes of 1"1h(1) and lmlg(u(l)) may be encountered in the
construction of (h,g) only if sufy (h(1)) = sufy(9(u(1))) =1. Consequently,
h(l), g(u(1)) ¢ (10+)+1. Further the number of 0's between any two occurrences
of 1 must be the sanie. Otherwise h(1) 6? Q(Q(l)).W§UTd céﬁtéin é(suffix

which is not met in contructing (h,g). Hence, h(1) = (IOn)Nl and g(p(l)) =
(10M™ for some n,N,M = 1. If N = i, then [F(i)] = 1 = ()| .for i = 0,1,

and hence the equality o(h,g) = o(h,g) does not hold.

IT. h(0) = 0 and g(u(0)) ¢ 00" (or symmetrically h(0) ¢ 00" and
g(pn(0)) = 0). Since (h,g) is balanced [h(1)] > 1. If g(u(1)) = 1, then
clearly h(1) = 170 and so (i) is satisfied. If, in turn, 19(u(1))] > 1
then either h(1) and g(x(1)) are in 1* or they are in pref (,10+)+ as in
case I. The first possibility leads to (i). In the second case we conclude,
by the fact g(u(0)) ¢ 00", that h(l) ¢ 10", Furthermore .the number of 0's in
h(1) is either 0 or 1. This is seen since h(0) = 0, g(u(Q)) ¢ oo* and
9(1(0)) ¢ pref (10")". Consequently, h(1) = 1 or h(1) = 10 and so (h,q) is

unbalanced, which completes the case II.

III. h(0) ¢ 00" and g(r(0)) ¢ 00*. If one of the h(1), g{u(1)) equals 1 then the
other one belongs to 170.say h(1) = 1 and g(u(1)) ¢ 170, 1f & > |g(u(0))]
then 08*l appears.in p-suf{g(0),g(1)} but is not encountered in the construction
of (h,g), because, |h(0)|=2 and h(1) = 1. Consequently, [g(Q(O))g = ¢ . Since -
(h,g) is balanced,[h(0)] > min{{g(rn(0))], lg(n(1))I} = 2. So (i) is
satisfied in this case.

We still haye to consider the case when |h(1)[=2 and‘[g(p(l))|£2.‘lnthat case both -

h(1) and g(u(1)) are in 1t or 10+. The first nossibilitv vielde (5
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The second possibility is handled as follows. If (h,g) does not satisfy
(iii), i.e. the length requirement is not fulfilled, then |h(01)| = |g(01)].
Consequentely, T(0) € 0', T(1) ¢ pref (10), G(0) € (n(0))" and
g(1) € pref (u(1) p(0)). If |R(1)| =1 or [g(1)] = 1 then we are done:

(h,g) is of the form (i). So let h(1) = 10 and g(1) = p(1) w(0). Now p must
be the identity; otherwise (h,g) is not successful. Finally we use the assump-
tion o(h,g) = o(h,g) to conclude that (h,g) is of the form (iii). Indeed, by
this assumption, [h(0)| = |g((0))| and [g(0)| = |h(0)| and

so [R(01)| # [3(01)].

Hence our proof of Lemma 7.5 is complete.

A pair (h,g) of homomorphisms is called special if it is either in one of
the forms (i)-(iii) from the statement of Lemma 7.5. or it is of the form VII
(see the listing of forms following Lemma 7.1).
An instance I of GPCP(2) is called special whenever the pair of homomorphisms

in 1 is special. Using these notions we combine now the results of this section.

Basic Lemma 7.6 . Let (h,g) be a pair of marked homomorphisms. Then at

least one of the following conditions holds true:

a) (h,g) is not successful,
b) (h,g) is unbalanced,
c) (h,g) is special,
d)  o(h,9) < o(h,q),
e) (h,g) is either special, unbalanced or not successful,
where in the last two cases (h,g) = ecol(h,q).

We conclude this section by observing that if I js a successful instance
of GPCP(2), then ecol(I), with few exceptions, is strictly smaller than I.
Moreover, in the exceptional cases either ecol(I) is not successful or either
I or ecol(I) is of the form dealt with in section 5. Consequently the base for

induction has been laid.
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8. BASIC INDUCTION STEP

In this section we show how to use the ecol construction in solving
GPCP(2). First we extend the notion of the ecol transformation to instances

of GPCP(2).

Definition 8.1. Let I = (h,g,al,bl,az,bz) be a marked instance of GPCP(2)

such that the sequence (al,éz)h g and the pair (h,g) of homomorphisms are
successful and the equation h(u)b1 = g(w)b2 has a solution. An equality
collector of I, in symbols ecol(I), is any instance J = (F;§;Ei,51,§é,52)

of GPCP(2) such that

(h,g) = ecol(h,q),
3 h~1

_ -1, -
=9 (3

i

(a1" s((apaap)y o))
1

i

S((al’aZ)h,g))’

and (51;52) is a minimal solution of the equation h(u)b1 = g(w)bz, i.e.

a solution such that the equation does not have any solution (u',w')
satisfying u'p-gref.gl or w'p-pref Eé, The set of all equality collectors
of I is denoted by ECOL(I).

Clearly, 31 and'52 are unique, while the pair (bl’gé) need not be unique.
Indeed, there may be one or two minimal solutions, one of the form
(Oul,u(O)wl) and the other of the form (1u2>u(l)W2)- Consequently, #ECOL(I) =< 2.

Observe also that since h and g are marked

IA

lai’s{szy max{|h(01)[,|g(01)|} + lalag[

and

byl Iby] = max{|h(01)],]g(01) |3 + [byb,].

A

Definition 8.2. Let I be a marked instance of GPCP(2) such that ECOL(I) # 9.

Then we say that I is successful. Otherwise-I is called unsuccessful.
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Basically because of Lemma 6.1., it is decidable whether a given
instance I is successful. )
The following result underlies the use of the ecol transformation

in solving GPCP(2).

Theorem 8.1. Llet I = (h’g’al’bl’aZ’bZ) be a successful instance of GPCP(2).
Then I has a solution if and only if it has a solution no longer than
k = 2 max{[h(01)],|g(01)[} + [ajasbib,| or for some J in ECOL(I) J has a

solution.

Proof. Assume first that I has a solution y with |y| = k, i.e.
alh(y)b1 = azg(y)bz. Since |y| = k and I s successful we may decompose y

in two ways

(1) Y= Yp,1 Y1,1 0t Y.l = 0,2 Y1,2 tt Ti,2 ° for some t = 1,
whére

alh(YO,l) = aZQ(YO,Z)’

h(’Y_i’l) = g(Yi’z) 3 for i = l,...,t“l,

h(Yt,l)bl = g(Yt,Z)bZ s

and moreover none of these equations holds true for a pair of words
where at least one of the components is a proper prefix of the given
one. Consequently, (Yt,l’Yt;Z) is a minimal solution in the sense of
Definition 8.1. Let J be tﬁe ecol version of ] associated with this

minimal solution and let

o= prefl(fl,l)"' prEfl(thl,l)'

Then, by the definition of J and by (1), we obtain

ap o) By =vg g v,p -s g1 7T

= Y0,2 Y1,2 +tr Yy,2 = 3 9(a) by
Hence, o is a solution of J.
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Conversely, assume that an ecol version J = (F;E;El;gl{gz;g ) has a
solution p, j.e.

Recalling the definition of the ecol version we see that
a; h(a; h(e) Bp)b; =
3y h(El) h(h(e)) h(B’l)b1
a 9(52) g(g(p)) 9(52)[32

i

a, g(Ez'g(p)Bz)bz .

Consequently, © = Ei h{p) bl =a, g(p) bz is a solution of-1T.
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9. UNSUCCESSFUL INSTANCES

Here we settle the case of unsuccessful instances of GPCP(2),

Theorem 9.1. It is decidable whether or not an unsuccessful instance

I-= (h,g,al,bl,az,bz) of GPCP(2) has a solution.

Proof. We have to consider quite a large number of different cases

depending on the way‘in which I is unsuccessful.

I. (al,az)h’g blocks.
Now the equation alh(xl) Pref azh(xz) holds true for a finite number of
pairs (Xl’x2) only, and consequently if I has a solution then it is found by

checking through a finite set of words.

I1. (al’aZ)h;g is infinite.

In this case we first search words tl,tz,pl and Py such that the equation
alh(xl) Pref azg(xz)
implies
* s
X5 € pref (tipi ) ,  for i =1,2.

Clearly, possible solutions of I are among the common prefixes of tlpl*
and tzpz*. If pref (t;p;*) # pref (t,p,*), then there are only a finite
number of candidates to be checked and hence we are done. So let t and

p be words such that
(1) pref (t;p,¥) = pref (tp*) = pref (top,*).

The case [h(p)| # [g(p) |, is not difficult to settle.
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Indeed, in this case we can effectively find a constant k such that for

words x.in (1), with |x| = k,

1

lagh(x)| - |ay9(x)[| > max{|b; "b,[, |b, "by|}

which guarantees that if I has a solution it has such one shorter than k.
If, in turn, [h(p)| = |g(p)| then the sets

Ly = Haght) ™ age0) | x € pref (tp*))
and

L

o = 1(2,8(x)) 7  agh(x) | x ¢ pref (tp*)}

are finite and hence to test whether or not I has a solution it suffices to test
whether there exists a word w in L; such that wb; = b, or whether there

exists a word u in’L, such that b, = ubs,.
This completes the- proof of case II.

ITI. (al’az)h,g is successful.

Here we have several subcases.

(i) both (h(0), g(p(O)))h’g and(}‘x(l),g(p(l)))h,g blocks.

Here we can apply the reasoning from case I.

(11) (h(0), 9(u(0)))y, o is infinite and (h(1), g(u(1))),, ; blocks, or

3

the other way around.

This case can be settled analogously to the case II.
Indeed, if a solution exists then it can be found from an effectively constructible

set F U pref (tp"), where F is a finite set and t,p ¢ {0,13%.

(iii) (h(0), g(p(O)))h’g is successful and (h(l),g(u(l)))h’g blocks, or

vice versa.



-33-

This is essentially similar to case III (ii). Now, if a solution exists then
it/can be found in a set F U pref (tp“s), where F is a finite set

and t,p,s € {0,1}".

(iv) both (h(0), 9(“(0)»h,g and (h(1), g(“(l)))h,g are successful.

Since I 1is unsuccessful the equation h(u)b1 = g(w)b2 has no solution (u,w).

Gonsequently, if I has solutions at all they must be among the prefixes
ey ).

of the word E& = h (a1 (s((al,az)h’g

(v) both (h(0), g(u(O)))h g and:(h(1), g(u(l)))h g are infinite.
This is again essentially similar to case II. Now we can effectively

construct = words t,p,q and s in {0,1}* such that if I has a solution then
it has a solution in the set pref (?p*) U pref (sq¥).

Consequently, a solution of I can be effectively found (if it exists at all).

(vi) (h(0), 9(u(0))),

or vice versa.

is successful and (h(1), h(u(l)))h is infinite,

»g g

This is the most complicated case. Wefirst look for words ti’pi’ri’qi’oi

and Sis for i = 1,2, such that P; and q; are nonempty and the equation
(2) a;h(x;) Pref a,9(X,)

implies that, for both i =1 and i = 2, either

*
(3) X € pref (Oiqi )
or
(4) X5 € gref(tipinsiqi*) for some n = 0.

Whether the first case leads to a solution can be decided as in case II.
So it remains to be shown .that we can decide whether or not I has a solution

satisfying . (4). We have two subcases.

) Ipql # Ip,l. First we Took for . a constant n, such that if the

0
Tanguages pref (tlplnslql*) and pref (tzpznszqz*), for each n > n,, have
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arbitrarily-long common prefixes, then necessarily, for n = o and i = 1,2,
(5) t.p;"r.q.* ¢ pref (tp*)
iYi i =

where t and p are some words in {O,l}*. If the above common prefix
condition is not satisfied, then possible soluticns can be. found .applying,

possibly several times, arguments from case II. If'thiéconditionis satisfied,
_

‘then again the existence of a solution of I satisfying (4),with
n z ny.can be decided as in case II. The same holds true also for each

n<n0.

b) 1p1| = |py|. Now if the languages pref (tlplnslql*) and pref (tzpznszqz*)
have arbitrarily long common prefixes only for small values of n, say n < Ny
then the existence of a solution of I can be decided using several times

arguments from II. In the other case we can find words t,p,ri and r,

in {0,1}* such that p, r; and ry are nonempty and

n 1 * N * i = >
t.ps riq.” = tpirig; for 1 = 1,2 and n = 0.

We should be able to decide whether there exists a solution of I in
pref (tpnriql*) N pref (tpnréqz*), for some n = 0. Let first |h(p)| = |g(p)].

Assuming that |a;h(t)] = Ja,g(t)| we may find a constant n, such that

|

n n,+1 No+l
(a,9(tp ) %) -1 ‘

a h(tp = (a,9(tp 2 )) T agh(tp ).

Consequently, if I has a solution at all then it has a solution in

n

n
2 1 2 i
pref (tp rlql*) N pref (tp rzqz*) for some n = n,+1.

Hence the methods of II becomes applicable.
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We still have to consider the case when [h(p)| # [g(p)| » say lg(p)| >
Let first ;g(q2)1 > ]h(qz)}. We look for a constant Ny such that

jay o(tp"p)| = lay h(ta"p')| > max {16, byl (b, by [

for all n z n, and p' € pref (préqz*). Consequently, I cannot have
solutions in tpn pref (préqz*), for n 2 n,. Whether or not I has solutions

in pref (tpnréqz*) for some fixed n < ng can be decided as in case II.

Secondly, Tlet 1g(q2)] < lh(qz){. Let m and k be natural numbers satisfying
m(Jg(p)| - [h(p)]) = k(In(ay)| - 9(a,)[) > [g(pry)| + [h(ap)| and

~1 -1
Klg(a)| > [h(ap)] + max {[by byl » [by by[} -
Now we choose a constant n, such that

(5) la, h(tp") | = fajapl + [h(tpry)| + [9(ta,) ]
and n . Ny -1 -1
(6) la, g(tpp')| - la; h(tp p')| > max {|{by "by|s[by "by[} +

+ k(lh(ay)| - lg(ap)])

for all n = n, and p' ¢ pref (préqz). Assume that I has a solution w = tpNx,

with Nz n, +m and x ¢ pref (réqz*). We claim that I has a solution

tpN_mE for some x € pref (réqz*).

Since w is a solution of I,(6) implies that x = réqu' for some x'.
Let w' = tpN-mréx’. Then, by the choice of k and m,
(7) la, g(w)] - |ay h(w)| = Jag g(w')| = lag h(w')].

Further, from the choice of k, from (6) and from the fact that tpNx is a

solution of I, it follows that

N 1 -1 N | * %
(a; h(tp'ry)) = a, g(tp rz)_gzgi‘h(qzﬁ +lo(a,) (9(ay)”) € pref (h(g,)").

This together with (6), the choice of k and (5) implies that

e

suf (9(p"ra,")) = suf (h(ap)"q') and suf(n(p™)ry) = suf(h(ap)")

. e e v NN Prememenmmitant iy ke (TN
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showing that w' is also a solution of I. In the.above we have used three
times the following well known result (see, e.g., [H]): if two words ak and
Bm have a common prefix of the length |a| + |p| then a and B are powers of
the same word. So we conclude that if I has solutions at all, then it has
solutions in_Eggf(tpnréqZ*), for some n = g +m. Hence the methods of case
IT become applicable, which completes our proof of case III and hence the

proof of the theorem.
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10. MAIN RESULT

Finally, we are ready to establish our main result.

Theorem 10.1. It is decidable whether or not an arbitrary instance of

PCP(2) has a solution.

Proof. The algorithm is described in the flowchart below. The following
comments are in order. The block of the fom denotes that at this point
we decide whether or not an instance of GPCP({2) in question has a solution.
Furthermore the word "special” refers to special instances defined in section 7.

That our algorithm terminates is seen as follows.

Certainly, it is decidable whether or not a given instance I of GPCP(2) is

periodic, unbalanced, special or successful.For each of these the existence of

a solution can be decided by Theorem 4.1., Theorem 5.1., Lemmas 5.1 - 5.4.

and Theorem 9.1., respectively. Moreover, by the Basic Lemma, if I is in none

of the above forms, then the instances in ECOL(I) are strictly smaller than I,

i.e, (H;E) < (h,g), with the possible exception of the case (e) of the Basic Lemma.
And in that case the ecol(I)'s are either special or unbalanced or unsuccess-

‘ful which guarantees the termination during the next cycle. Consequently, our
algorithm will always terminate.

That the answer obtained is correct follows from Theorem 8.1. and the
Reduction Lemma. Theorem 8.1 also gives an upper bound for the Jength of
solutions needed to be considered separately. A bound 1is
K'= 2 max{[h(01)[, |g(01)|} + |aja,b;b,|, depending on an instance used to

define the ecol version in question.
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Input := 1
Output := Yes
7 p
Yes
Const . ] Output := No
marked vers.
Output := Yes
N .':'
7
Yes
Qutput := No
Qutput := Yes
N M
Yes
Output := No
I Output := Yes
successful o > ?
f///?;;/ Output := No
Y
Const. Il,I2
Ecol versions
I == I(1) y
! I(i,k) := Ik
P4
7= 4l

Figure 1: PCP(2)-algorithm.
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Actually we have proved even a stronger result.

Theorem 10.2. It is decidable whether or not an arbitrary instance of

GPCP(2) has a solution.

Proof. The only difference from above is that now when constructing

marked versions we obtain a finite set of new instances instead of one only,

c.f. Lemma 3.2.
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