POLISH-X TRANSFORMATIONS [1]

by
Lloyd D. Fosdick
Department of Computer Science
University of Colorado
Boulder CO 80309
CU~-Cs-203-81 28 May 1981

[1]Supported in part by NSF Grant MCS-8000017 and DOE
Contract DE-~AC02-80ER10718. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.






POLISH-X

Abstract.

1 LDF

This report describes rules for a component of
TOOLPACK[COW79] which will transform FORTRAN 77

source programs into a standard format. These
rules specify spacing of tokens, indentation of
lines, numbering of labels, clarification of DO
loops, etc. The objective of this tool 1is

improved readibility of FORTRAN 77 programs.



POLISH~X 2 LDF

1. Introduction.

POLISH-X is a software tool for formatting programs
written in FORTRAN 77. It is similar to POLISH [DOR76],
which was designed for FORTRAN 66 programs. The purpose of
this report is to define the formatting transformations made
by POLISH-X.

The choice of these transformations has been guided by
the following general requirements.

(1) The formatted program must have the same computa-
tional characteristics as the unformatted program;
that is, its input/output relations must be unaf-
fected by formatting.

(2) The formatter must be efficient.
(3) The formatter must be easy to use.

(4) Transformations other than insertion and deletion of
spaces are restricted to a small set: line break,
label replacement, unique terminators for DO-ranges,
movement of FORMAT statements, and insertion of iden-
tification information in columns 73-80.

The fourth of these requirements results from the
notion that structural changes to the source text are the
result of a functionally distinct set of source-to-source
transformations which ought to be performed by a separate
tool. However, a few structural transformations are
included in POLISH-X because they are necessary, as in the
case of line break, or because they seem to be particularly
useful.

It is assumed that POLISH-X receives a stream of tokens
created from the source text by a lexical analyzer and pro-
duces a sequence of lines, each 1line 80 characters in
length. The input stream contains an end-of-statement token
but no token to indicate the end of a line, and no token to
indicate a space. Comment lines are indicated by tokens.
Precise requirements on these tokens will be given in a
separate report.

The rules for the appearance of 1lines produced by
POLISH-X follow. Except where noted otherwise, the user can-
not control a transformation.

2. Statement Margins.

Following the FORTRAN convention, character positions
on a line are (implicitly) numbered 1, 2,..., 80, from left
to right. Two positions, the left margin (LMARGS) and the



POLISH-X 3 LDF

right margin (RMARGS) are distinguished. They must satisfy
the following conditions:

LMARGS »>= 7; RMARGS <= 72; RMARGS - LMARGS + 1 >= MINLEN
The parameters LMARGS, RMARGS, and MINLEN may be set by the
user: they have the default values 7, 72, and 30, respec-
tively.

3. Comment Lines.

A comment token represents a block of comment lines and
the block's internal structure is preserved by all transfor-

mations. In particular, if there is indentation of a com-
ment Dblock then every line in the block is moved the same
number of spaces, thus preserving relative indentation

within the block.

The left margin (LMARGC) for comment lines is dis-
tinguished. The parameter LMARGC may be set by the user: it
has the default value 3. If the user specifies LMARGC = O,
then all comment lines are left as they were in the source
text.

The indentation of a comment block may be made to agree
with indentation of a statement line in the sense that if a
statement line is indented some number of spaces relative to
LMARGS, then the comment block (if any) preceding the
statement line is also indented the same number of spaces
relative to LMARGC. This indentation of comment blocks is
controlled by the parameter INDNTC which may be set Dby the
user: if it is zero there is no indentation, otherwise there
is:; its default value is not zero. If LMARGC = 0, then
INDNTC 1is ignored. When a comment block is indented the
space between the column designated by LMARGC and the left
margin of the indented comment block will be filled with the
character {-}.

4. Spacing of Tokens.

In the following list the term "delimiter" means one of
the symbols { ()'/ }. The apostrophe and slash serve as left
and right delimiters. The interpretation of the slash as a
delimiter is context dependent: it is a delimiter enclosing
names of COMMON blocks, and enclosing lists of values in
DATA statements.

The term operator has its FORTRAN 77 meaning except
that it includes the assignment operator { = }. Precedence
levels for operators are as specified in FORTRAN 77: the
assignment operator is a lowest level binary operator.



POLISH-X 4 LDF

The term "separator" means one of the symbols { ,: }.

In the following discussion the parameter PRNLVL 1is a
non-negative integer denoting the depth of nesting of a
token within parentheses: for a token not nested within
parentheses PRNLVL=0. Comment lines are excluded from this
discussion.

There is to be one space after tokens except as noted
below.

* After left delimiter --- no space.

* Before right delimiter --- no space.

* Before separator ---—- no space.

* After separator --- if PRNILVL = 0 then one space else
no space.

* After unary operator --- no space.

* Before and after Dbinary arithmetic operator =--- if
PRNILVL = 0 and operator has lowest precedence then one

space else no space.

* Before and after assignment operator --- if PRNLVL = 0
then one space else no space.

* Before and after relational operator —--- if PRNLVL <= 1
then one space else no space.

* Before and after binary logical operator --- if PRNLVL
<= 1 and operator has lowest, or next-to-lowest pre-
cedence, then one space else no space.

* Before and after concatenation operator --- no space.

* Otherwise, unless precluded by one of the above, in
order of priority:

** Before left delimiter --- no space.

** After right delimiter --- if PRNLVL = 0 then one
space else no space.

5. 1Indentation of Control Scope.

In FORTRAN 77 the word "range" is used to identify the
control scope of a DO statement and the word "block" is used
to identify the control scope of a block IF, ELSE, and, ELSE
IF statement. Statements in a block or range are indented
relative to their innermost control statement.



POLISH-X 5 LDF

The rules for this indentation are as noted below.
* Statements in a DO range: indent INDNTS spaces;:
* Statements in an IF-block: indent INDNTS spaces.
* Statements in an ELSE IF-block: indent INDNTS spaces.
* Statements in an ELSE-block:indent INDNTS spaces.

6. Breaking a Statement.

A statement must be broken, and a continuation line
created, 1if the length of the statement is greater than
RMARGS-ALMARG+1, where ALMARG is the actual left margin, as
determined by the indentation. If no indentation is speci-
fied for the statement, then ALMARG = LMARGS. If the con-
tinuation 1line is too long then it must be broken, etc. The
following rules control these actions.

* The length of a line followed by a continuation line is
not less than (RMARGS-ALMARG+1)/2.

* The last token on a line followed by a continuation
line isg, in order of priority:

** a separator with PRNLVL = O;

** a lowest precedence binary operator with PRNLVL = 0;
** a binary operator with PRNLVL = 0;

** a separator;

** a binary operator;

** any token except a left delimiter.

* If there is more than one choice at the same preference
level for the last token, then select the rightmost.

* If no choice for the last token on a line 1is possible
by these rules then ignore the first rule above (i.e.
allow the 1line 1length to be less than (RMARGS-
ALMARG+1)/2). If a 1line break still cannot be found
then an error condition is signalled, the statement is
truncated at column 72 and continued at column 7 of the
next line.

* A continuation line is indented INDNTS spaces relative
to the left margin of the initial line.



POLISH-X 6 LDF

z. Blank Comment Line Before or After Some Statements.

A blank comment line appears Dbefore the following
statements:

* ELSE

* ELSE IF

* first executable statement of program unit

* first FORMAT statement in a block of FORMAT statements

A blank comment line appears after the following state-
ments:

* unconditional GO TO

* computed GO TO

* assigned GO TO

* RETURN

* STOP

* PAUSE

* END --- except for the last subprogram.

* last FORMAT statement in a block of FORMAT statements

These rules call for the insertion of a blank comment
line only if a blank comment line is not already present.

8. Terminal Statement of a DO Loop.

The terminal statement of a DO-loop 1is a CONTINUE
statement and it is not the terminal statement of another
DO-lo0p. Note that this implies additional labels may be
created. ‘

9. Labels.

Labels are in increasing order with respect to their
defining occurrence (appearance 1in columns 1-5) and are
right justified. The first label has the value LABELS, sub-
sequent labels increase in steps of LABELS. The default
value of LABELS is 10.



POLISH-X 7 LDF

19' FORMAT Statements.

The parameter MOVESF controls the placement of FORMAT
statements in the text. If MOVESF=0 then FORMAT statements
are not moved, otherwise they are moved to the end of the
program unit in which they appear. The default value of
MOVESFEF is O.

11. Identification Field.

The user can request that line identification be placed
in columns 73-80 with the parameter IDENTL. If IDENTL=0
then these columns will be filled with blanks, otherwise
they will be filled as follows: columns 73-76 will contain
the first four letters of the name of the program unit;
columns 77-80 will contain the line number within the pro-
gram unit, starting at 10 and increasing in steps of 10.

12. Key Words.

All key words are printed as they appear in the FORTRAN
77 Standards Document (ANSI ¥X3.9-1978). Thus GOTO in the
source text is printed as GO TO, etc.

13. Continuation Line Character.

This character is the currency symbol.

14. Embedded Stop-Start Control of Editing

If the source text contains the comment line
C$ STOP POLISH
then all text lines which follow will be reproduced in the
source text with no alteration up to the first occurrence of
the comment line
C$ START POLISH
These control lines are not reproduced in the output.

If labels are used in a segment of the source text del-
imited by C$ STOP... and C$ START... a warning is issued,
since incorrect label referencing may result.

15. Error Handling.

If an error is detected in the source text, or format-
ting cannot continue for some other reason, the text of the
program unit within which the interruption occurred is sim-
ply reproduced and a message identifying the cause of the
formatting suspension is printed. WNote that this suspension
applies only to the unit (subroutine, function, main pro-
gram, block data) in which the interruption occurred.



POLISH-X 8 LDF

16. Summary of Transformations Under User Control. In the
following 1list the name of the parameter is followed by its
default value in parentheses, and then by an abbreviated
descriptor.

LMARGS(7)....Left margin of statements.
RMARGS(72)...Right margin of statements.

MINLEN(30)...RMARGS-LMARGS+1 >= MINLEN.

LMARGC(3)....Left margin of comment text. LMARGC=0 means
leave comment lines as 1is.

INDNTS(2)....Indentation for statement lines.
INDNTC(1)....Indentation for comment lines. INDNTC=l means

indent comment lines like statements lines.

MOVESF(0)....Move FORMAT statements. MOVESF=0 means
don't move FORMAT statements.

LABELS(10)...First label and label increment.
IDENTL(1)....Identify lines in ccls. 72-80. IDENTL=0

means don't identify lines.

17. References.

[Ccow79] Wayne R. Cowell, Webb C. Miller: The Toolpack Pros-
pectus. Tech. Memo. 341, (Sep 1979), ppld4. Applied
Mathematics Division, Argonne National Laboratory,
Argonne IL 60439.

[DOR76] John Dorrenbacher, David Paddock, David Wisneski,
Lloyd D. Fosdick: POLISH, A FORTRAN Program to Edit
FORTRAN Programs. Tech. Rept. 50, (May 1976), pp35.
Dept. of Computer Science, University of Colorado,
Boulder CO 80309.



